Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Animals (Basel) ; 14(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338057

ABSTRACT

Training has a significant effect on the physiology of blood coagulation in humans and in horses. Several hemostatic changes have been reported after exercise in the horse but data available are inconclusive. The aim of this study was to investigate platelet activation and primary platelet-related hemostasis modifications in young never-trained Thoroughbreds in the first incremental training period in order to improve knowledge on this topic. Twenty-nine clinically healthy, untrained, 2-year-old Thoroughbred racehorses were followed during their incremental 4-month sprint exercise training. Blood collection was performed once a month, five times in total (T-30, T0, T30, T60, and T90). Platelet aggregation was measured by light transmission aggregometry in response to various agonists: adenosine diphosphate (ADP), collagen, and calcium ionophore A23187. Platelet function was evaluated using a platelet function analyzer (PFA-100®) using collagen/ADP and collagen/adrenaline cartridges. Nitrite-nitrate (NOx) plasma concentrations were measured via a colorimetric assay to assess in vivo nitric oxide bioavailability. Platelet activation was also investigated through gene expression analyses (selectin P-SELP, ectonucleotidase CD39-ENTPD1, prostaglandin I2 synthase-PTGIS, endothelial nitric oxide synthase 3-NOS3). Differences among the time points were analyzed and mean ± SEM were calculated. Significant modifications were identified compared with T-30, with an increase in platelet aggregation (collagen:32.6 ± 4.8 vs. 21.6 ± 4.9%; ADP: 35.5 ± 2.0 vs. 24.5 ± 3.1%; A23187: 30 ± 4.7 vs. 23.8 ± 4%) and a shorter closure time of C-ADP cartridges (75.6 ± 4.4 vs. 87.7 ± 3.4 s) that tended to return to the baseline value at T90. NOx concentrations in plasma significantly increased after 30 days of the training program compared with the baseline. The first long-term training period seems to induce platelet hyperactivity after 30 days in never-trained Thoroughbreds. Regular physical training reduces the negative effects of acute efforts on platelet activation.

2.
Front Hum Neurosci ; 17: 1173993, 2023.
Article in English | MEDLINE | ID: mdl-37492559

ABSTRACT

Introduction: Dance is an art form that integrates the body and mind through movement. Dancers develop exceptional physical and mental abilities that involve various neurocognitive processes linked to embodied cognition. We propose that dancers' primary trait representation is movement-actuated and relies on the extended mirror neuron system (eMNS). Methods: A total of 29 dancers and 28 non-dancer controls were recruited. A hierarchical approach of intra-regional and inter-regional functional connectivity (FC) analysis was adopted to probe trait-like neurodynamics within and between regions in the eMNS during rest. Correlation analyses were employed to examine the associations between dance training, creativity, and the FC within and between different brain regions. Results: Within the eMNS, dancers exhibited increased intra-regional FC in various brain regions compared to non-dancers. These regions include the left inferior frontal gyrus, left ventral premotor cortex, left anterior insula, left posterior cerebellum (crus II), and bilateral basal ganglia (putamen and globus pallidus). Dancers also exhibited greater intrinsic inter-regional FC between the cerebellum and the core/limbic mirror areas within the eMNS. In dancers, there was a negative correlation observed between practice intensity and the intrinsic FC within the eMNS involving the cerebellum and basal ganglia. Additionally, FCs from the basal ganglia to the dorsolateral prefrontal cortex were found to be negatively correlated with originality in dancers. Discussion: Our results highlight the proficient communication within the cortical-subcortical hierarchy of the eMNS in dancers, linked to the automaticity and cognitive-motor interactions acquired through training. Altered functional couplings in the eMNS can be regarded as a unique neural signature specific to virtuoso dancers, which might predispose them for skilled dancing performance, perception, and creation.

3.
Front Sports Act Living ; 5: 1109488, 2023.
Article in English | MEDLINE | ID: mdl-37252427

ABSTRACT

Lifetime participation in sports is associated with improved components of physical conditioning. The main purpose was to cross-sectionally investigate postural balance and vertical jumping performance in athletes with different histories of sports participation and secondarily to examine the restriction of vision on balance ability. A final aim was to investigate possible associations between balance and jumping performance. We hypothesized higher balance and jumping performance in active veteran volleyball athletes compared to retired athletes and non-athletes, suggesting a positive effect of continuous systematic training in active veteran athletes. We also hypothesized greater negative effect of vision removal on balance in the veteran compared to non-athletes due to athletes' stronger reliance on visual information. Eighty-one healthy middle-aged women (mean (standard deviation) 50 (5) years) were assigned to three experimental groups, a retired (n = 39, recreationally active former athletes), an active (n = 27, training 2days/week x 1.5 h/session) veteran volleyball athletes' and a control group (n = 15, sedentary participants). Participants completed an assessment of single-legged quiet stance trials with either left or right leg with eyes open while standing barefoot on a force plate and two-legged trials with both eyes open or closed. They also executed a protocol of countermovement jumps. Statistical analyses included univariate and full factorial ANOVAs with group and vision as fixed and repeated-measures factors and simple linear regression analysis. In the single-legged balance task, solely the mediolateral sway range was greater for the active (p < 0.001) and retired athletes (p < 0.001) compared to non-athletes, whereas in the two-legged stance, no differences among groups were found (p > 0.05). Restriction of vision deteriorated balance performance similarly in the three groups as a significant vision effect was found for path length (p < 0.001), anteroposterior (p < 0.001) and mediolateral sway (p < 0.05). The active and retired athletes had significantly (p < 0.001) greater height, mean and maximal power in countermovement jump compared to non-athletes. Results showed weak associations (average R2 = 9.5%) of balance with jumping performance only in the veteran volleyball athletes' group. Overall, the findings showed that retired volleyball athletes exhibited similar balance ability and vertical jumping performance as the active ones, suggesting a positive impact of prior experience in systematic training.

4.
JMIR Form Res ; 7: e44857, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37103996

ABSTRACT

BACKGROUND: Social skills training by human trainers is a well-established method of teaching appropriate social and communication skills and strengthening social self-efficacy. Specifically, human social skills training is a fundamental approach to teaching and learning the rules of social interaction. However, it is cost-ineffective and offers low accessibility, since the number of professional trainers is limited. A conversational agent is a system that can communicate with a human being in a natural language. We proposed to overcome the limitations of current social skills training with conversational agents. Our system is capable of speech recognition, response selection, and speech synthesis and can also generate nonverbal behaviors. We developed a system that incorporated automated social skills training that completely adheres to the training model of Bellack et al through a conversational agent. OBJECTIVE: This study aimed to validate the training effect of a conversational agent-based social skills training system in members of the general population during a 4-week training session. We compare 2 groups (with and without training) and hypothesize that the trained group's social skills will improve. Furthermore, this study sought to clarify the effect size for future larger-scale evaluations, including a much larger group of different social pathological phenomena. METHODS: For the experiment, 26 healthy Japanese participants were separated into 2 groups, where we hypothesized that group 1 (system trained) will make greater improvement than group 2 (nontrained). System training was done as a 4-week intervention where the participants visit the examination room every week. Each training session included social skills training with a conversational agent for 3 basic skills. We evaluated the training effect using questionnaires in pre- and posttraining evaluations. In addition to the questionnaires, we conducted a performance test that required the social cognition and expression of participants in new role-play scenarios. Blind ratings by third-party trainers were made by watching recorded role-play videos. A nonparametric Wilcoxson Rank Sum test was performed for each variable. Improvement between pre- and posttraining evaluations was used to compare the 2 groups. Moreover, we compared the statistical significance from the questionnaires and ratings between the 2 groups. RESULTS: Of the 26 recruited participants, 18 completed this experiment: 9 in group 1 and 9 in group 2. Those in group 1 achieved significant improvement in generalized self-efficacy (P=.02; effect size r=0.53). We also found a significant decrease in state anxiety presence (P=.04; r=0.49), measured by the State-Trait Anxiety Inventory (STAI). For ratings by third-party trainers, speech clarity was significantly strengthened in group 1 (P=.03; r=0.30). CONCLUSIONS: Our findings reveal the usefulness of the automated social skills training after a 4-week training period. This study confirms a large effect size between groups on generalized self-efficacy, state anxiety presence, and speech clarity.

5.
J Neuroeng Rehabil ; 19(1): 95, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36068570

ABSTRACT

BACKGROUND: The brain-computer interface (BCI) race at the Cybathlon championship, for people with disabilities, challenges teams (BCI researchers, developers and pilots with spinal cord injury) to control an avatar on a virtual racetrack without movement. Here we describe the training regime and results of the Ulster University BCI Team pilot who has tetraplegia and was trained to use an electroencephalography (EEG)-based BCI intermittently over 10 years, to compete in three Cybathlon events. METHODS: A multi-class, multiple binary classifier framework was used to decode three kinesthetically imagined movements (motor imagery of left arm, right arm, and feet), and relaxed state. Three game paradigms were used for training i.e., NeuroSensi, Triad, and Cybathlon Race: BrainDriver. An evaluation of the pilot's performance is presented for two Cybathlon competition training periods-spanning 20 sessions over 5 weeks prior to the 2019 competition, and 25 sessions over 5 weeks in the run up to the 2020 competition. RESULTS: Having participated in BCI training in 2009 and competed in Cybathlon 2016, the experienced pilot achieved high two-class accuracy on all class pairs when training began in 2019 (decoding accuracy > 90%, resulting in efficient NeuroSensi and Triad game control). The BrainDriver performance (i.e., Cybathlon race completion time) improved significantly during the training period, leading up to the competition day, ranging from 274-156 s (255 ± 24 s to 191 ± 14 s mean ± std), over 17 days (10 sessions) in 2019, and from 230-168 s (214 ± 14 s to 181 ± 4 s), over 18 days (13 sessions) in 2020. However, on both competition occasions, towards the race date, the performance deteriorated significantly. CONCLUSIONS: The training regime and framework applied were highly effective in achieving competitive race completion times. The BCI framework did not cope with significant deviation in electroencephalography (EEG) observed in the sessions occurring shortly before and during the race day. Changes in cognitive state as a result of stress, arousal level, and fatigue, associated with the competition challenge and performance pressure, were likely contributing factors to the non-stationary effects that resulted in the BCI and pilot achieving suboptimal performance on race day. Trial registration not registered.


Subject(s)
Brain-Computer Interfaces , Disabled Persons , Electroencephalography/methods , Humans , Imagery, Psychotherapy , Quadriplegia
6.
Atten Percept Psychophys ; 84(2): 529-539, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34518970

ABSTRACT

The sound-induced flash illusion (SiFI) is a robust auditory-dominated multisensory integration phenomenon that is used as a reliable indicator to assess multisensory integration. Previous studies have indicated that the SiFI effect is correlated with perceptual sensitivity. However, to date, there is no consensus regarding how it corresponds to sensitivity with long-term training. The present study adopted the classic SiFI paradigm with feedback training to investigate the effect of a week of long-term training on the SiFI effect. Both the training group and control group completed a pretest and a posttest before and after the perceptual training; however, only the training group was required to complete 7-day behavioral training. The results showed that (1) long-term training could reduce the response of fission and fusion illusions by improving perceptual sensitivity and that (2) there was a "plateau effect" that emerged during the training stage, which tended to stabilize by the fifth day. These findings demonstrated that the SiFI effect could be modified with long-term training by ameliorating perceptual sensitivity, especially in terms of the fission illusion. Therefore, the present study supplements perceptual training in SiFI domains and provides evidence that the SiFI could be used as an assessment intervention to improve the efficiency of multisensory integration.


Subject(s)
Illusions , Acoustic Stimulation , Auditory Perception/physiology , Humans , Illusions/physiology , Photic Stimulation/methods , Visual Perception/physiology
7.
Gerontology ; 68(2): 151-161, 2022.
Article in English | MEDLINE | ID: mdl-33971654

ABSTRACT

BACKGROUND/AIMS: Walking speed (WS) is an objective measure of physical capacity and a modifiable risk factor of morbidity and mortality in the elderly. In this study, we (i) determined effects of 3-month supervised aerobic-strength training on WS, muscle strength, and habitual physical activity; (ii) evaluated capacity of long-term (21 months) training to sustain higher WS; and (iii) identified determinants of WS in the elderly. METHODS: Volunteers (F 48/M 14, 68.4 ± 7.1 years) completed either 3-month aerobic-strength (3 × 1 h/week, n = 48) or stretching (active control, n = 14) intervention (study A). Thirty-one individuals (F 24/M 7) from study A continued in supervised aerobic-strength training (2 × 1 h/week, 21 months) and 6 (F 5/M 1) became nonexercising controls. RESULTS: Three-month aerobic-strength training increased preferred and maximal WS (10-m walk test, p < 0.01), muscle strength (p < 0.01) and torque (p < 0.01) at knee extension, and 24-h habitual physical activity (p < 0.001), while stretching increased only preferred WS (p < 0.03). Effect of training on maximal WS was most prominent in individuals with baseline WS between 1.85 and 2.30 m·s-1. Maximal WS measured before intervention correlated negatively with age (r = -0.339, p = 0.007), but this correlation was weakened by the intervention (r = -0.238, p = 0.06). WS progressively increased within the first 9 months of aerobic-strength training (p < 0.001) and remained elevated during 21-month intervention (p < 0.01). Cerebellar gray matter volume (MRI) was positively associated with maximal (r = 0.54; p < 0.0001) but not preferred WS and explained >26% of its variability, while age had only minor effect. CONCLUSIONS: Supervised aerobic-strength training increased WS, strength, and dynamics of voluntary knee extension as well as habitual physical activity in older individuals. Favorable changes in WS were sustainable over the 21-month period by a lower dose of aerobic-strength training. Training effects on WS were not limited by age, and cerebellar cortex volume was the key determinant of WS.


Subject(s)
Resistance Training , Aged , Exercise/physiology , Humans , Muscle Strength , Torque , Walking/physiology , Walking Speed
8.
Neuropsychologia ; 159: 107921, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34181927

ABSTRACT

Recent studies show that limb apraxia is a quite frequent, yet often underdiagnosed, higher motor impairment following stroke. Because it adversely affects every-day life and personal independence, successful rehabilitation of apraxia is essential for personal well-being. Nevertheless, evidence of long-term efficacy of training schemes and generalization to untrained actions is still scarce. One possible reason for the tendency of this neurological disorder to persist may be a deficit in planning, conceptualisation and storage of complex motor acts. This pilot study aims at investigating explicit motor learning in apractic stroke patients. In particular, we addressed the ability of apractic patients to learn and to retain new explicit sequential finger movements across 10 training sessions over a 3-week interval. Nine stroke patients with ideomotor apraxia in its chronic stage participated in a multi-session training regimen and were included in data analyses. Patients performed an explicit finger sequence learning task (MSLT - motor sequence learning task), which is a well-established paradigm to investigate motor learning and memory processes. Patients improved task performance in terms of speed and accuracy across sessions. Specifically, they showed a noticeable reduction in the mean time needed to perform a correct sequence and the number of erroneous sequences. We found also a trend for improved performance at the Goldenberg apraxia test protocol: "imitation of meaningless hand and finger gestures" relative to when assessed before the MSLT training. Patients with ideomotor apraxia demonstrated the ability to acquire and maintain a novel sequence of movements; and, this training was associated with hints towards improvement of apraxia symptoms.


Subject(s)
Apraxia, Ideomotor , Apraxias , Apraxias/etiology , Gestures , Hand , Humans , Pilot Projects
9.
Front Hum Neurosci ; 15: 635777, 2021.
Article in English | MEDLINE | ID: mdl-33716698

ABSTRACT

CYBATHLON is an international championship where people with severe physical disabilities compete with the aid of state-of-the-art assistive technology. In one of the disciplines, the BCI Race, tetraplegic pilots compete in a computer game race by controlling an avatar with a brain-computer interface (BCI). This competition offers a perfect opportunity for BCI researchers to study long-term training effects in potential end-users, and to evaluate BCI performance in a realistic environment. In this work, we describe the BCI system designed by the team Mirage91 for participation in the CYBATHLON BCI Series 2019, as well as in the CYBATHLON 2020 Global Edition. Furthermore, we present the BCI's interface with the game and the main methodological strategies, along with a detailed evaluation of its performance over the course of the training period, which lasted 14 months. The developed system was a 4-class BCI relying on task-specific modulations of brain rhythms. We implemented inter-session transfer learning to reduce calibration time, and to reinforce the stability of the brain patterns. Additionally, in order to compensate for potential intra-session shifts in the features' distribution, normalization parameters were continuously adapted in an unsupervised fashion. Across the aforementioned 14 months, we recorded 26 game-based training sessions. Between the first eight sessions, and the final eight sessions leading up to the CYBATHLON 2020 Global Edition, the runtimes significantly improved from 255 ± 23 s (mean ± std) to 225 ± 22 s, respectively. Moreover, we observed a significant increase in the classifier's accuracy from 46 to 53%, driven by more distinguishable brain patterns. Compared to conventional single session, non-adaptive BCIs, the inter-session transfer learning and unsupervised intra-session adaptation techniques significantly improved the performance. This long-term study demonstrates that regular training helped the pilot to significantly increase the distance between task-specific patterns, which resulted in an improvement of performance, both with respect to class separability in the calibration data, and with respect to the game. Furthermore, it shows that our methodological approaches were beneficial in transferring the performance across sessions, and most importantly to the CYBATHLON competitions.

10.
Clin. transl. oncol. (Print) ; 23(1): 22-34, ene. 2021.
Article in English | IBECS | ID: ibc-220446

ABSTRACT

Purpose There is growing evidence of an association between physical activity and a reduced risk of cancer and cancer recurrence. The aim of this study was to assess the effects of exercise-conditioned human serum (HS) effects on the proliferative and tumorigenic potential of triple-negative breast cancer (TNBC) and prostate cancer (PC) cells. Moreover, modulated mechanisms and several physiological factors that can predict exercise effects were investigated. Methods Thirty healthy sedentary subjects were recruited for the study. The subjects performed two high-intensity endurance cycling (HIEC) sessions before and after a nine-week period of high-intensity interval training (HIIT). Cell tumorigenic capacity affected by HS collected before (t0), immediately after (t1), 4 h (t2), and 24 h (t3) after the HIEC sessions was evaluated by in vitro three-dimensional colony formation. The modulation of molecular pathways was analyzed by western blotting and qPCR in TNBC and PC cells, and in TNBC xenografts in exercised mice. Results All of the HIEC-conditioned HS (t1, t2, and t3) markedly impacted the proliferative and the microtumor-forming capacity of both TNBC and PC cell lines, while the HS collected from the subjects at rest did not. Modulation of the Hippo and Wnt/β-catenin pathways by HIEC-conditioned HS before and after the period of HIIT was shown. Multiple linear regression analysis showed relationships between the effects of HIEC-conditioned HS in PC cells, lactate threshold and VO2max. Conclusions These results highlight the potential of HIEC bouts in tumor progression control and the importance of optimizing an approach to identify physiological predictors of the effects of acute exercise in tertiary cancer prevention (AU)


Subject(s)
Humans , Male , Female , Exercise , High-Intensity Interval Training , Bicycling/physiology , Prostatic Neoplasms/prevention & control , Prostatic Neoplasms/physiopathology , Breast Neoplasms/prevention & control , Breast Neoplasms/physiopathology , Cell Proliferation , Disease Progression , Sedentary Behavior
11.
Clin Transl Oncol ; 23(1): 22-34, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32447643

ABSTRACT

PURPOSE: There is growing evidence of an association between physical activity and a reduced risk of cancer and cancer recurrence. The aim of this study was to assess the effects of exercise-conditioned human serum (HS) effects on the proliferative and tumorigenic potential of triple-negative breast cancer (TNBC) and prostate cancer (PC) cells. Moreover, modulated mechanisms and several physiological factors that can predict exercise effects were investigated. METHODS: Thirty healthy sedentary subjects were recruited for the study. The subjects performed two high-intensity endurance cycling (HIEC) sessions before and after a nine-week period of high-intensity interval training (HIIT). Cell tumorigenic capacity affected by HS collected before (t0), immediately after (t1), 4 h (t2), and 24 h (t3) after the HIEC sessions was evaluated by in vitro three-dimensional colony formation. The modulation of molecular pathways was analyzed by western blotting and qPCR in TNBC and PC cells, and in TNBC xenografts in exercised mice. RESULTS: All of the HIEC-conditioned HS (t1, t2, and t3) markedly impacted the proliferative and the microtumor-forming capacity of both TNBC and PC cell lines, while the HS collected from the subjects at rest did not. Modulation of the Hippo and Wnt/ß-catenin pathways by HIEC-conditioned HS before and after the period of HIIT was shown. Multiple linear regression analysis showed relationships between the effects of HIEC-conditioned HS in PC cells, lactate threshold and VO2max. CONCLUSIONS: These results highlight the potential of HIEC bouts in tumor progression control and the importance of optimizing an approach to identify physiological predictors of the effects of acute exercise in tertiary cancer prevention.


Subject(s)
Bicycling/physiology , Cell Proliferation/physiology , High-Intensity Interval Training , Prostatic Neoplasms/pathology , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Culture Media, Conditioned , Disease Progression , Female , Glycogen Synthase Kinase 3 beta/metabolism , Hippo Signaling Pathway , Humans , Male , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Prostatic Neoplasms/prevention & control , Protein Serine-Threonine Kinases/metabolism , Random Allocation , Regression Analysis , Sedentary Behavior , Tertiary Prevention , Time Factors , Triple Negative Breast Neoplasms/prevention & control , Tumor Stem Cell Assay/methods , Wnt Signaling Pathway , Young Adult
12.
Behav Brain Res ; 395: 112835, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32750463

ABSTRACT

Motor skill learning leads to task-related contextual behavioral changes that are underpinned by neuroplastic cortical reorganization. Short-term training induces environment-related contextual behavioral changes and neuroplastic changes in the primary motor cortex (M1). However, it is unclear whether environment-related contextual behavioral changes persist after long-term training and how cortical plastic changes are involved in behavior. To address these issues, we examined 14 elite competitive swimmers and 14 novices. We hypothesized that the sensorimotor skills of swimmers would be higher in a water environment than those of novices, and the recruitment of corticospinal and intracortical projections would be different between swimmers and novices. We assessed joint angle modulation performance as a behavioral measure and motor cortical excitation and inhibition using transcranial magnetic stimulation (TMS) at rest and during the tasks that were performed before, during, and after water immersion (WI). Motor cortical inhibition was measured with short-interval intracortical inhibition and long-interval intracortical inhibition by a paired-pulse TMS paradigm. We found that 1) the sensorimotor skills of swimmers who underwent long-term training in a water environment were superior and robustly unchanged compared with those of novices with respect to baseline on land, during WI, on land post-WI and 2) intracortical inhibition in water environments was increased in swimmers but was decreased in non-swimmers at rest compared to that on land; however, the latter alterations in intracortical inhibition in water environment were insufficient to account for the superior sensorimotor skills of swimmers. In conclusion, we demonstrate that environment-related contextual behavioral and neural changes occur even with long-term training experience.


Subject(s)
Motor Cortex/physiology , Sensorimotor Cortex/physiology , Swimming/physiology , Athletes , Evoked Potentials, Motor/physiology , Female , Hand/physiology , Humans , Inhibition, Psychological , Japan , Male , Motor Skills , Neural Inhibition/physiology , Neuronal Plasticity , Water , Young Adult
13.
Animals (Basel) ; 10(2)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085444

ABSTRACT

Training has a huge effect on physiological homeostasis. The Thoroughbred racehorse is a valid animal model to investigate such changes for training schedule fine-tuning. As happens in human athletes, it is hypothesized that biochemical and immune response changes and related biomolecular variations could be induced by training programs. The aim of this study was to investigate, for the first time, the long-term metabolic and biomolecular modifications in young untrained Thoroughbred racehorses in the first 4-month timeframe training period. Twenty-nine clinically healthy, untrained, two-year-old Thoroughbred racehorses were followed during their incremental 4-month sprint exercise schedule. Blood collection was performed once a month, five times (T-30, T0, T30, T60, and T90). For each sample, lactate concentration, plasma cell volume (PCV), and hematobiochemical parameters (glucose, urea, creatinine, aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), alkaline phosphatase (ALP), total bilirubin (Tbil), lactate dehydrogenase (LDH), creatine kinase (CK), cholesterol, triglycerides, albumin (Alb), total proteins (TPs), phosphorus (P), calcium (Ca2+), magnesium (Mg), sodium (Na+), potassium (K-), and chloride (Cl)) were determined. At T-30 and T90, serum protein electrophoresis (SPE), serum amyloid A (SAA), and real-time qPCR were performed on all samples to evaluate the expression of key genes and cytokines related to inflammatory and Th2 immunity responses: Interleukin-4 (IL-4), Interleukin-6 (IL-6), Interleukin-10 (IL-10), Interleukin-1ß (IL-1ß), Octamer-Binding Transcription Factor 1 (OCT1), B-cell lymphoma/leukemia 11A (BCL11A). Statistical analysis was performed (ANOVA and t test, p < 0.05). Significant modifications were identified compared with T-30 for PCV, glucose, triglycerides, cholesterol, lactate, urea, creatinine, Tbil, ALP, LDH, Na+, K-, Ca2+, SAA, TPs, SPE, IL-6, IL-4, Oct-1, and BCL11A. In conclusion, the first long-term training period was found to induce fundamental systemic changes in untrained Thoroughbreds.

14.
Front Neurol ; 9: 810, 2018.
Article in English | MEDLINE | ID: mdl-30349505

ABSTRACT

Robot-assisted training combined with neural guided strategy has been increasingly applied to stroke rehabilitation. However, the induced neuroplasticity is seldom characterized. It is still uncertain whether this kind of guidance could enhance the long-term training effect for stroke motor recovery. This study was conducted to explore the clinical improvement and the neurological changes after 20-session guided or non-guided robot hand training using two measures: changes in brain discriminant ability between motor-imagery and resting states revealed from electroencephalography (EEG) signals and changes in brain network variability revealed from resting-state functional magnetic resonance imaging (fMRI) data in 24 chronic stroke subjects. The subjects were randomly assigned to receive either combined action observation (AO) with EEG-guided robot-hand training (RobotEEG_AO, n = 13) or robot-hand training without AO and EEG guidance (Robotnon-EEG_Text, n = 11). The robot hand in RobotEEG_AO group was activated only when significant mu suppression (8-12 Hz) was detected from subjects' EEG signals in ipsilesional hemisphere, while the robot hand in Robotnon-EEG_Text group was randomly activated regardless of their EEG signals. Paretic upper-limb motor functions were evaluated at three time-points: before, immediately after and 6 months after the interventions. Only RobotEEG_AO group showed a long-term significant improvement in their upper-limb motor functions while no significant and long-lasting training effect on the paretic motor functions was shown in Robotnon-EEG_Text group. Significant neuroplasticity changes were only observed in RobotEEG_AO group as well. The brain discriminant ability based on the ipsilesional EEG signals significantly improved after intervention. For brain network variability, the whole brain was first divided into six functional subnetworks, and significant increase in the temporal variability was found in four out of the six subnetworks, including sensory-motor areas, attention network, auditory network, and default mode network after intervention. Our results revealed the differences in the long-term training effect and the neuroplasticity changes following the two interventional strategies: with and without neural guidance. The findings might imply that sustainable motor function improvement could be achieved through proper neural guidance, which might provide insights into strategies for effective stroke rehabilitation. Furthermore, neuroplasticity could be promoted more profoundly by the intervention with proper neurofeedback, and might be shaped in relation to better motor skill acquisition.

15.
Physiol Rep ; 6(5)2018 03.
Article in English | MEDLINE | ID: mdl-29504288

ABSTRACT

The striated activator of rho-signaling (STARS) protein acts as a link between external stimuli and exercise adaptation such as muscle hypertrophy. However, the acute and long-term adaptational response of STARS is still unclear. This study aimed at investigating the acute and long-term endurance training response on the mRNA and protein expression of STARS and its related upstream and downstream factors in human skeletal muscle. mRNA and protein levels of STARS and related factors were assessed in skeletal muscle of healthy young men and women following an acute bout of endurance exercise (n = 15) or 12 weeks of one-legged training (n = 23). Muscle biopsies were obtained before (acute and long-term), at 30 min, 2, and 6 h following acute exercise, and at 24 h following both acute exercise and long-term training. Following acute exercise, STARS mRNA was significantly elevated 3.9-fold at 30 min returning back to baseline 24 h after exercise. STARS protein levels were numerically but nonsignificantly increased 7.2-fold at 24 h. No changes in STARS or ERRα mRNA or STARS protein expression were seen following long-term training. PGC-1α mRNA increased 1.7-fold following long-term training. MRTF-A mRNA was increased both following acute exercise and long-term training, in contrast to SRF mRNA and protein which did not change. STARS mRNA is acutely upregulated with exercise, but there is no cumulative effect to long-term training as seen in PGC-1α mRNA expression. Exercise intensity might play a role in manifestation of protein expression, suggesting a more complex regulation of STARS.


Subject(s)
Microfilament Proteins/genetics , Muscle, Skeletal/metabolism , Physical Conditioning, Human , Transcription Factors/genetics , Adult , Case-Control Studies , Female , Humans , Male , Microfilament Proteins/metabolism , Muscle, Skeletal/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serum Response Factor/genetics , Serum Response Factor/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/metabolism
16.
Neurosci Lett ; 647: 117-121, 2017 04 24.
Article in English | MEDLINE | ID: mdl-28330717

ABSTRACT

Repetitive unilateral upper limb motor training does not only affect behavior but also increases excitability of the contralateral primary motor cortex (M1). The behavioral gain is partially transferred to the non-trained side. Changes in M1 intracortical facilitation (ICF) might as well be observed for both hand sides. We measured ICF of both left and right abductor pollicis brevis muscles (APB) before and after a two-week period of arm ability training (AAT) of the left hand in 13 strongly right handed healthy volunteers. Performance with AAT-tasks improved for both the left trained and right untrained hand. ICF for the untrained hand decreased over training while it remained unchanged for the left trained hand. Decrease of ICF for the right hand was moderately associated with an increase of AAT-performance for the untrained right hand. We conclude that ICF-imbalance between dominant and non-dominant hand is sensitive to long-term motor training: training of the non-dominant hand results in a decrease of ICF of the dominant hand. The ICF-decrease is associated with a transfer of training-induced improvement of performance from the non-dominant to the dominant hand.


Subject(s)
Dominance, Cerebral , Hand/physiology , Motor Cortex/physiology , Movement , Muscle, Skeletal/physiology , Adult , Exercise , Female , Humans , Male , Psychomotor Performance , Transcranial Magnetic Stimulation , Young Adult
17.
J Hum Kinet ; 60: 217-224, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29340002

ABSTRACT

The aim of this study was to describe the variations in power performance of elite Paralympic judo athletes across three consecutive training cycles of preparation for the ParaPan American Games, the World Championship and the Paralympic Games. Eleven Paralympic judokas from the Brazilian National team participated in this study. They were repeatedly assessed using squat and countermovement jumps, mean propulsive power (MPP) in the jump-squat (JS), the bench press and prone bench pull at several moments of the preparation. Training supervision based on the optimum power zone (range of loads where power production is maximized) was provided in the final cycle, prior to the Paralympic Games. Magnitude-based inference was used to compare the repeated measurements of power performance. Lower and upper limb muscle power gradually increased throughout the cycles; however, the best results in all exercises were observed prior to the Paralympic Games, during which the team won four silver medals. As an illustration, prior to participation in the Paralympic Games the MPP in the JS was likely to very likely higher than prior to the World Championship (effect size [ES] = 0.77) and ParaPan American Games (ES = 0.53), and in January and March 2016 (ES = 0.98 and 0.92, respectively; months preceding the Paralympic Games). Power performance assessments can provide information about the evolution of Paralympic judokas, and training at the optimum power zone seems to constitute an effective method to improve lower and upper limb power in these athletes.

18.
Breast Cancer Res Treat ; 159(3): 469-79, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27601139

ABSTRACT

PURPOSE: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses, in breast cancer survivors could regulate breast cancer cell viability in vitro. METHODS: Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated and pre/post exercise-conditioned sera from both studies were used to stimulate breast cancer cell lines (MCF-7, MDA-MB-231) in vitro. RESULTS: Six months of training increased VO2peak (16.4 %, p < 0.001) and muscle strength, and reduced resting levels of plasma cholesterol (-18.2 %, p = 0.003) and cytokines. Yet, these systemic adaptations had no effect on breast cancer cell viability in vitro. During 2 h of acute exercise, increases in serum lactate (6-fold, p < 0.001), epinephrine (2.9-fold, p = 0.009), norepinephrine (2.2-fold, p < 0.001), and cytokines, including IL-6 (2.1-fold, p < 0.001) were detected. Incubation with serum obtained after exercise reduced viability by -9.2 % in MCF-7 (p = 0.04) and -9.4 % in MDA-MB-231 (p < 0.001) compared to resting serum. CONCLUSION: Systemic changes to a 2 h exercise session reduced breast cancer viability, while adaptations to 6 months of training had no impact. Our data question the prevailing dogma that training-dependent baseline reductions in risk factors mediate the protective effect of exercise on breast cancer. Instead, we propose that the cancer protection is driven by accumulative effects of repeated acute exercise responses.


Subject(s)
Breast Neoplasms/blood , Exercise/physiology , Muscle, Skeletal/physiology , Adult , Breast Neoplasms/prevention & control , Cancer Survivors , Cell Line, Tumor , Cholesterol/blood , Cytokines/blood , Epinephrine/blood , Female , Humans , Lactic Acid/blood , MCF-7 Cells , Middle Aged , Muscle Strength , Norepinephrine/blood
19.
Front Hum Neurosci ; 10: 126, 2016.
Article in English | MEDLINE | ID: mdl-27064925

ABSTRACT

Detailed knowledge about online brain processing during the execution of complex motor tasks with a high motion range still remains elusive. The aim of the present study was to investigate the hemodynamic responses within sensorimotor networks as well as in visual motion area during the execution of a complex visuomotor task such as juggling. More specifically, we were interested in how far the hemodynamic response as measured with functional near infrared spectroscopy (fNIRS) adapts as a function of task complexity and the level of the juggling expertise. We asked expert jugglers to perform different juggling tasks with different levels of complexity such as a 2-ball juggling, 3- and 5-ball juggling cascades. We here demonstrate that expert jugglers show an altered neurovascular response with increasing task complexity, since a 5-ball juggling cascade showed enhanced hemodynamic responses for oxygenated hemoglobin as compared to less complex tasks such as a 3- or 2-ball juggling pattern. Moreover, correlations between the hemodynamic response and the level of the juggling expertise during the 5-ball juggling cascade, acquired by cinematographic video analysis, revealed only a non-significant trend in primary motor cortex, indicating that a higher level of expertise might be associated with lower hemodynamic responses.

20.
Neuroscience ; 284: 643-652, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25450962

ABSTRACT

Many everyday tasks such as typing, grasping, and object manipulation require coordination of dynamic movement across multiple joints and digits. Playing a musical instrument is also one such task where the precise movement of multiple digits is transformed into specific sounds defined by the instrument. Through extensive practice musicians are able to produce precisely controlled movements to interact with the instrument and produce specific sequences of sounds. The present study aimed to determine what aspects of these dynamic movement patterns differ between pianists who have achieved professional status compared to amateur pianists that have also trained extensively. Common patterns of movement for each digit strike were observed for both professional and amateur pianists that were sequence specific, i.e. influenced by the digit performing the preceding strike. However, group differences were found in multi-digit movement patterns for sequences involving the ring or little finger. In some sequences, amateur subjects tended to work against the innate connectivity between digits while professionals allowed slight movement at non-striking digits (covariation) which was a more economical strategy. In other sequences professionals used more individuated finger movements for performance. Thus the present study provided evidence in favor of enhancement of both movement covariation and individuation across fingers in more skilled musicians, depending on fingering and movement sequence.


Subject(s)
Fingers , Motor Skills , Music , Adult , Biomechanical Phenomena , Female , Finger Joint/physiology , Fingers/physiology , Humans , Male , Middle Aged , Motor Skills/physiology , Practice, Psychological , Professional Competence , Signal Processing, Computer-Assisted , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...