Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
1.
Food Chem ; 457: 140041, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38924916

ABSTRACT

Longan fruit deteriorates rapidly after harvest, which limits its storability. This study aimed to investigate the effect of tert-butylhydroquinone (TBHQ) on quality maintenance, membrane lipid metabolism, and energy status of longan fruit during 25 °C storage. Compared with control fruit, TBHQ treatment maintained better marketable fruit rate and suppressed activities of phospholipase D (PLD), lipase, and lipoxygenase (LOX), and downregulated expressions of DlPLD, DlLOX, and Dllipase. TBHQ also increased the ratio of unsaturated fatty acids to saturated fatty acids (U/S) and the index of unsaturated fatty acids (IUFA). In addition, higher levels of ATP, ADP, energy charge, NADP+/ NADPH as well as higher activities of H+-ATPase, Ca2+-ATPase and NADK were also observed in TBHQ-treated fruit. These results suggested that TBHQ may maintain postharvest quality of longan fruit by regulating membrane lipid and energy metabolisms.

2.
Nutrients ; 16(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892587

ABSTRACT

Longan (Dimcarpus longan Lour.) is a kind of traditional fruit used as a medicine and a food. Fresh longan is primarily consumed as a fruit, whereas dried longan is commonly employed for medicinal purposes. The differences in the immunomodulatory activities and mechanisms of polysaccharides between dried and fresh longan remain unclear. The present study comparatively analyzed the mechanisms of macrophage activation induced by polysaccharides from dried (LPG) and fresh longan (LPX). The results revealed that LPG and LPX differentially promoted macrophage phagocytosis and the secretion of NO, TNF-α, and IL-6. RNA-seq analysis revealed that LPG and LPX differentially affected gene expression in macrophages. The LPG treatment identified Tnf and chemokine-related genes as core genes, while myd88 and interferon-related genes were the core genes affected by LPX. A comprehensive analysis of the differentially expressed genes showed that LPG initiated macrophage activation primarily through the TLR2/4-mediated TRAM/TRAF6 and CLR-mediated Src/Raf1 NF-κB signaling pathways. LPX initiated macrophage activation predominantly via the CLR-mediated Bcl10/MALT1 and NLR-mediated Rip2/TAK1 MAPK and NF-κB signaling pathways. Interestingly, the non-classical NF-κB signaling pathway was activated by polysaccharides in both dried and fresh longan to elicit a slow, mild immune response. LPG tends to promote immune cell migration to engage in the immune response, while LPX facilitates antigen presentation to promote T cell activation. These findings contribute insights into the mechanisms underlying the differences in bioactivity between dried and fresh longan and their potential applications in immune-enhancing strategies and functional-food development.


Subject(s)
Fruit , Macrophage Activation , Macrophages , Phagocytosis , Polysaccharides , Sapindaceae , Signal Transduction , Macrophage Activation/drug effects , Polysaccharides/pharmacology , Animals , Mice , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Signal Transduction/drug effects , Fruit/chemistry , Sapindaceae/chemistry , Phagocytosis/drug effects , NF-kappa B/metabolism
3.
Gene ; 927: 148698, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908456

ABSTRACT

Glutamate decarboxylase (GAD) is involved in GABA metabolism and plays an essential regulatory role in plant growth, abiotic stresses, and hormone response. This study investigated the expression mechanism of the GAD family during longan early somatic embryogenesis (SE) and identified 6 GAD genes based on the longan genome. Homology analysis indicated that DlGAD genes had a closer relationship with dicotyledonous plants. The analysis of cis-acting elements in the promoter region suggests that the GAD genes were associated with various stress responses and hormones. RNA sequencing (RNA-Seq) and the qRT-PCR data indicated that most DlGAD genes were highly expressed in the incomplete compact pro-embryogenic cultures (ICpEC) and upregulated in longan embryogenic callus (EC) after treatments with 2,4-D, high temperature (35 °C), IAA, and ABA. Moreover, the RNA-Seq analysis also revealed that DlGADs exhibit different expression patterns in various tissues and organs. The subcellular localization results showed that DlGAD5 was localized in the cytoplasm, suggesting that it played a role in the cytoplasm. Transient overexpression of DlGAD5 enhanced the expression levels of DlGADs and increased the activity of glutamate decarboxylase in longan embryogenic callus (EC), while the content of glutamic acid decreased. Thus, the DlGAD gene can play an important role in the early somatic embryogenesis of longan by responding to hormones such as IAA and ABA. DlGAD5 can affect the growth and development of longan by stimulating the expression of the DlGAD gene family, thereby increasing the GAD activity in the early SE of longan, participating in hormone synthesis and signaling pathways.

4.
Environ Geochem Health ; 46(7): 257, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884845

ABSTRACT

Gold nanoparticles (AuNPs) were extensively employed for in-situ detection sulfadiazine (SDZ) residues, yet current synthesis methods suffer from complex procedures, reagent pollution of the environment, and low particle quality. This study presents a novel synthesis method using discarded longan seed extract as a reducing agent to synthesized high-quality AuNPs, and then can be used for in-situ SDZ detection. Response surface methodology (RSM) was employed to optimize synthesis parameters, which resulted in five optimal combinations that enhanced the flexibility of synthesis. These AuNPs, ranging in size from 18.26 nm to 33.8 nm with zeta potentials from - 29.5 mV to - 14.3 mV, were successfully loaded with functional groups from longan seed extract. In the detection of SDZ, the colorimetric aptasensor demonstrated excellent sensitivity and selectivity over other antibiotics with a limit of detection and quantification at 70.98 ng·mL-1 and 236.59 ng·mL-1 in the concentration range of 200-800 ng·mL-1. Recoveries of spiked SDZ samples ranged from 97.90% to 106.7%, with RSD values below 9.25%. Meanwhile, the aptasensor exhibited exceptional diagnostic efficacy (AUC: 0.976) compared to UV absorption methods in the ROC evaluation. In conclusion, this study highlights the potential of using AuNPs synthesized from longan seed extract coupled with aptamer technology as a straightforward detection method for SDZ in river water, offering promising applications in environmental monitoring.


Subject(s)
Aptamers, Nucleotide , Colorimetry , Gold , Metal Nanoparticles , Plant Extracts , Rivers , Seeds , Sulfadiazine , Water Pollutants, Chemical , Gold/chemistry , Metal Nanoparticles/chemistry , Seeds/chemistry , Colorimetry/methods , Rivers/chemistry , Water Pollutants, Chemical/analysis , Plant Extracts/chemistry , Sulfadiazine/analysis , Aptamers, Nucleotide/chemistry , Limit of Detection , Biosensing Techniques/methods
5.
Int J Biol Macromol ; 274(Pt 2): 133326, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925198

ABSTRACT

Tyrosinase is a biological macromolecule closely related to browning of fruit and vegetables, melanin production, and tyrosinase inhibitors are usually used to prevent browning and pigmentation. In this study, longan shell tannins (LSTs) were screened as tyrosinase inhibitors and their structures were proved to be mixtures of procyanidins (condensed tannins) and ellagitannins (hydrolyzed tannins). Enzymatic experiments verified that LSTs were efficient inhibitors, and the IC50 values for monophenolase and bisphenolase were 176.04 ± 10 and 59.94 ± 5 µg mL-1, respectively. Fluorescence detections and molecular docking revealed that the combination of LSTs to tyrosinase was mainly driven by hydrogen bonding, hydrophobic interaction, as well as van der Waals force, which changed the microenvironment of tyrosine and tryptophan residues as well as enzyme conformation. Circular dichroism and molecular dynamics simulation showed that LSTs affected secondary structures of tyrosinase, resulting in structural stretching and conformational modification of the enzyme. In addition, preservation studies demonstrated that LSTs owned the ability to delay the browning of fresh-cut apples by inhibiting phenolic metabolism, strengthening the antioxidant system, and reducing lipid peroxidation. This paper testified that LSTs are exteaordinary tyrosinase inhibitors, and offered a scientific foundation for the application of LSTs in food industry and medicine.

6.
Environ Sci Pollut Res Int ; 31(25): 37316-37325, 2024 May.
Article in English | MEDLINE | ID: mdl-38769265

ABSTRACT

Litchi and longan pests significantly affect crop yield and quality. Chemical prevention and control are very effective for production; therefore, it is crucial to study fate assessment and appropriate field efficacy before pesticide application on crops to appropriately assess the health and ecological risks linked with these agents. This study conducted Good Agricultural Practice (GAP) field trials and laboratory experiments to elucidate the dissipation, terminal residues, and efficacy of methoxyfenozide on litchi and longan in six locations throughout China. To detect methoxyfenozide residues on litchi and longan, a QuEChERS/UPLC-MS/MS-based method was designed. The initial methoxyfenozide levels in litchi and longan ranged from 2.21-2.86 to 0.83-0.95 mg kg-1 and indicated half-lives of 5.1-5.3 and 5.3-5.7 days, respectively. After 7 days of foliage treatment, the concentrations of terminal methoxyfenozide residue were 0.78-2.61 and 0.02-1.01 mg kg-1, which were less than the established maximum residue limit for methoxyfenozide in litchi and longan. The chronic (acceptable daily intake = 0.0055-0.0331%) dietary intake risk analysis for methoxyfenozide in longan and litchi indicated acceptable concentrations of terminal residue for the general population. Methoxyfenozide in litchi and longan was readily degraded in first-order kinetics models, the degradation rate on longan was higher than that on litchi, and their dietary risks were negligible to consumers. Two hundred forty grams per liter of methoxyfenozide suspension concentrate (SC) represents a highly efficacious insecticidal dose to control litchi and longan pests and indicates a significant application potential as it is rapidly degraded and linked with reduced post-treatment residue levels.


Subject(s)
Hydrazines , Litchi , Litchi/chemistry , Animals , Insecticides , China , Pesticide Residues , Juvenile Hormones
7.
Foods ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731704

ABSTRACT

This study focused on isolating tannin-tolerant yeasts from Miang, a fermented tea leaf product collected from northern Laos PDR, and investigating related food applications. From 43 Miang samples, six yeast isolates capable of ethanol production were obtained, with five isolates showing growth on YPD agar containing 4% (w/v) tannic acid. Molecular identification revealed three isolates as Saccharomyces cerevisiae (B5-1, B5-2, and C6-3), along with Candida tropicalis and Kazachstania humilis. Due to safety considerations, only Saccharomyces spp. were selected for further tannic acid tolerance study to advance food applications. Tannic acid at 1% (w/v) significantly influenced ethanol fermentation in all S. cerevisiae isolates. Notably, B5-2 and C6-3 showed high ethanol fermentation efficiency (2.5% w/v), while others were strongly inhibited. The application of tannin-tolerant yeasts in longan fruit wine (LFW) fermentation with longan seed extract (LSE) supplementation as a source of tannin revealed that C6-3 had the best efficacy for LFW fermentation. C6-3 showed promising efficacy, particularly with LSE supplementation, enhancing phenolic compounds, antioxidant activity, and inhibiting α-glucosidase activity, indicating potential antidiabetic properties. These findings underscore the potential of tannin-tolerant S. cerevisiae C6-3 for fermenting beverages from tannin-rich substrates like LSE, with implications for functional foods and nutraceuticals promoting health benefits.

8.
Plants (Basel) ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38794443

ABSTRACT

Benzoxazinoids (BXs) are tryptophan-derived indole metabolites and play a role in various physiological processes, such as auxin metabolism. Auxin is essential in the process of somatic embryogenesis (SE) in plants. In this study, we used bioinformatics, transcriptome data, exogenous treatment experiments, and qPCR analysis to study the evolutionary pattern of Bx genes in green plants, the regulatory mechanism of DlBx genes during early SE, and the effect of 2,4-dihydroxy-7-methoxy-1,4-benzoxazine-3-one (DIMBOA) on the early SE in Dimocarpus longan Lour. The results showed that 27 putative DlBxs were identified in the longan genome; the Bx genes evolved independently in monocots and dicots, and the main way of gene duplication for the DlBx was tandem duplication (TD) and the DlBx were strongly constrained by purification selection during evolution. The transcriptome data indicated varying expression levels of DlBx during longan early SE, and most DlBxs responded to light, temperature, drought stress, and 2,4-dichlorophenoxyacetic acid (2,4-D) treatment; qRT-PCR results showed DlBx1, DlBx6g and DlBx6h were responsive to auxin, and treatment with 0.1mg/L DIMBOA for 9 days significantly upregulated the expression levels of DlBx1, DlBx3g, DlBx6c, DlBx6f, DlB6h, DlBx7d, DlBx8, and DlBx9b. The correlation analysis showed a significantly negative correlation between the expression level of DlBx1 and the endogenous IAA contents; DIMBOA significantly promoted the early SE and significantly changed the endogenous IAA content, and the IAA content increased significantly at the 9th day and decreased significantly at the 13th day. Therefore, the results suggested that DIMBOA indirectly promote the early SE by changing the endogenous IAA content via affecting the expression level of DlBx1 and hydrogen peroxide (H2O2) content in longan.

9.
Food Chem ; 452: 139572, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38733686

ABSTRACT

The discarded longan shell-derived porous carbon material (LPC) served as a scaffold for synthesizing bismuth nanoparticle-loaded longan porous carbon nanocomposite (BiNPs@LPC) via a hydrothermal method. Then BiNPs@LPC was utilized to modify screen-printed carbon electrodes (SPCE) for simultaneous detection of Pb(II) and Cd(II) by square wave anodic stripping voltammetry (SWASV). The material was thoroughly characterized by scanning electron microscopy, X-ray diffraction, Raman spectra, Brunauer-Emmett-Teller analysis, electrochemical impedance spectroscopy and cyclic voltammetry. BiNPs@LPC exhibited abundant porous structures, high surface area, and numerous active sites, which could improve significantly response sensitivity. Under optimal conditions, the peak currents of Pb(II) and Cd(II) exhibited favorable linear relationships with the concentration within a range of 0.1-150 µg L-1, with detection limits (S/N = 3) of 0.02 µg L-1 and 0.03 µg L-1, respectively. BiNPs@LPC/SPCE demonstrated remarkable selectivity, stability and repeatability. The proposed method was successfully applied for the detection of Pb(II) and Cd(II) in seafoods achieving satisfying recovery of 97.8%-108.3% and 96.7%-106.4%. These excellent test properties were coupled with convenience for batch preparation of the modified electrodes, highlighting its potential for practical applications in heavy metal detection of real samples.


Subject(s)
Bismuth , Cadmium , Carbon , Electrochemical Techniques , Food Contamination , Lead , Seafood , Bismuth/chemistry , Lead/analysis , Lead/chemistry , Cadmium/chemistry , Cadmium/analysis , Seafood/analysis , Carbon/chemistry , Food Contamination/analysis , Porosity , Animals , Metal Nanoparticles/chemistry , Limit of Detection , Electrodes
10.
Int J Biol Macromol ; 267(Pt 2): 131634, 2024 May.
Article in English | MEDLINE | ID: mdl-38636747

ABSTRACT

Oxidative damage is an important cause of aging. The antioxidant and anti-aging activities of Longan polysaccharides, especially purified Longan polysaccharides, have not been thoroughly investigated. Therefore, this study aimed to investigate the antioxidant and anti-aging activities and mechanisms of crude polysaccharides and purified polysaccharides from Longan. A purified acidic Longan polysaccharide LP-A was separated from Longan crude polysaccharide LP. Subsequently, its structural characterization, anti-aging activity and mechanism were studied. The results showed that LP-A was an acidic heteropolysaccharide with an average molecular weight (Mw) of 4.606 × 104 Da which was composed of nine monosaccharides. The scavenging rate of ABTS free radical in vitro reached 99 %. In the nematode life experiment, 0.3 mg/mL LP group and LP-A group could prolong the average lifespan of nematodes by 9.31 % and 25.80 %, respectively. Under oxidative stress stimulation, LP-A group could prolong the survival time of nematodes by 69.57 %. In terms of mechanism, Longan polysaccharide can regulate insulin / insulin-like growth factor (IIS) signaling pathway, increase the activity of antioxidant enzymes, reduce lipid peroxidation, enhance the body's resistance to stress damage, and effectively prolong the lifespan of nematodes. In conclusion, LP-A has better anti-aging activity than crude polysaccharide LP, which has great potential for developing as an anti-aging drug.


Subject(s)
Aging , Antioxidants , Caenorhabditis elegans , Oxidative Stress , Polysaccharides , Animals , Caenorhabditis elegans/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Aging/drug effects , Oxidative Stress/drug effects , Lipid Peroxidation/drug effects , Molecular Weight , Monosaccharides/analysis , Longevity/drug effects
11.
Front Plant Sci ; 15: 1379750, 2024.
Article in English | MEDLINE | ID: mdl-38645392

ABSTRACT

Sucrose content is one of the important factors to determine longan fruit flavor quality. To gain deep insight of molecular mechanism on sucrose accumulation in longan, we conducted comparative transcriptomic analysis between low sucrose content longan cultivar 'Qingkebaoyuan' and high sucrose content cultivar 'Songfengben'. A total of 12,350 unique differentially expressed genes (DEGs) were detected across various development stages and different varieties, including hexokinase (HK) and sucrose-phosphate synthase (SPS), which are intricately linked to soluble sugar accumulation and metabolism. Weighted gene co-expression network analysis (WGCNA) identified magenta module, including DlSPS gene, was significantly positively correlated with sucrose content. Furthermore, transient expression unveiled DlSPS gene play crucial role in sucrose accumulation. Moreover, 5 transcription factors (MYB, ERF, bHLH, C2H2, and NAC) were potentially involved in DlSPS regulation. Our findings provide clues for sucrose metabolism, and lay the foundation for longan breeding in the future.

12.
Food Chem ; 449: 139235, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38583405

ABSTRACT

Acidic electrolyzed oxidizing water (AEOW) was applied to suppress disease development and maintain good quality of fresh fruit. However, the involvement of AEOW in improving disease resistance of fresh longan remains unknown. Here, transcriptomic and metabolic analyses were performed to compare non-treated and AEOW-treated longan during storage. The transcriptome analysis showed AEOW-induced genes associated with phenylpropanoid and flavonoid biosynthesis. The metabolome analysis found the contents of coumarin, phenolic acid, and tannin maintained higher levels in AEOW-treated longan than non-treated longan. Moreover, the weighted correlation network analysis (WGCNA) was performed to identify hub genes, and a gene-metabolite correlation network associated with AEOW-improved disease resistance in longan was constructed by the co-analysis of transcriptomics and metabolomics. These findings identified a series of important genes and metabolites involving in AEOW-induced disease resistance of longan fruit, expanding our knowledges on fruit disease resistance and quality maintenance at the transcript and metabolic levels.


Subject(s)
Fruit , Metabolome , Transcriptome , Water , Fruit/chemistry , Fruit/metabolism , Fruit/genetics , Water/metabolism , Water/analysis , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Electrolysis , Gene Expression Regulation, Plant , Oxidation-Reduction , Plant Proteins/genetics , Plant Proteins/metabolism
13.
Food Chem ; 449: 139175, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38593723

ABSTRACT

Postharvest harmful pathogenic infestation leads to rapid decay in longan fruit. Compared with P. longanae-infected longans, AEOW alleviated fruit disease severity and diminished the O2-. production rate and MDA content. It also increased APX, CAT, and SOD activities, delayed the decrease in the levels of GSH and AsA, as well as the reducing power and DPPH radical scavenging ability, which resulted in a decline in membrane lipid peroxidation in P. longanae-infected longans. Additionally, AEOW reduced LOX, lipase, PI-PLC, PC-PLC, and PLD activities, maintained higher levels of PC, PI, IUFA, USFAs, and U/S, while reducing levels of PA, DAG, SFAs, and CMP. These effects alleviated membrane lipid degradation and peroxidation in P. longanae-infected longans. Consequently, AEOW effectively maintained membrane integrity via improving antioxidant capacity and suppressing membrane lipid peroxidation. This comprehensive coordination of ROS and membrane lipid metabolisms improved fruit resistance and delayed disease development in longans.


Subject(s)
Fruit , Plant Diseases , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Fruit/chemistry , Fruit/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Oxidation-Reduction , Membrane Lipids/metabolism , Ascomycota/chemistry , Water/metabolism , Lipid Peroxidation/drug effects , Lipid Metabolism , Electrolysis
14.
Plants (Basel) ; 13(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38498444

ABSTRACT

Ran GTPases play essential roles in plant growth and development. Our previous studies revealed the nuclear localization of DlRan3A and DlRan3B proteins and proposed their functional redundancy and distinction in Dimocarpus longan somatic embryogenesis, hormone, and abiotic stress responses. To further explore the possible roles of DlRan3A and DlRan3B, gene expression analysis by qPCR showed that their transcripts were both more abundant in the early embryo and pulp in longan. Heterologous expression of DlRan3A driven by its own previously cloned promoter led to stunted growth, increased root hair density, abnormal fruits, bigger seeds, and enhanced abiotic stress tolerance. Conversely, constitutive promoter CaMV 35S (35S)-driven expression of DlRan3A, 35S, or DlRan3B promoter-controlled expression of DlRan3B did not induce the alterations in growth phenotype, while they rendered different hypersensitivities to abiotic stresses. Based on the transcriptome profiling of longan Ran overexpression in tobacco plants, we propose new mechanisms of the Ran-mediated regulation of genes associated with cell wall biosynthesis and expansion. Also, the transgenic plants expressing DlRan3A or DlRan3B genes controlled by 35S or by their own promoter all exhibited altered mRNA levels of stress-related and transcription factor genes. Moreover, DlRan3A overexpressors were more tolerant to salinity, osmotic, and heat stresses, accompanied by upregulation of oxidation-related genes, possibly involving the Ran-RBOH-CIPK network. Analysis of a subset of selected genes from the Ran transcriptome identified possible cold stress-related roles of brassinosteroid (BR)-responsive genes. The marked presence of genes related to cell wall biosynthesis and expansion, hormone, and defense responses highlighted their close regulatory association with Ran.

15.
Plants (Basel) ; 13(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38475508

ABSTRACT

The basic leucine zip (bZIP) transcription factors (TFs) are a group of highly conserved gene families that play important roles in plant growth and resistance to adversity stress. However, studies on hormonal regulatory pathways and functional analysis during somatic embryogenesis (SE) in Dimocarpus longan is still unavailable. In this study, a total of 51 bZIP family members were systematically identified in the whole genome of longan, a comprehensive bioinformatics analysis of DlbZIP (bZIP family members of D. longan) was performed, and subcellular localization and profiles patterns after transiently transformed DlbZIP60 were analyzed. The combined analysis of RNA-seq, ATAC-seq and ChIP-seq showed that four members have different H3K4me1 binding peaks in early SE and differentially expressed with increased chromatin accessibility. Comparative transcriptome analysis of bZIPs expression in early SE, different tissues and under 2,4-D treatment revealed that DlbZIP family might involved in growth and development during longan early SE. The qRT-PCR results implied that DlbZIP family were subjected to multiple hormonal responses and showed different degrees of up-regulated expression under indole-3-acetic acid (IAA), abscisic acid (ABA) and methyl jasmonate (MeJA) treatments, which indicated that they played an important role in the hormone synthesis pathways associated with the early SE of longan. Subcellular localization showed that DlbZIP60 was located in the nucleus, and the contents of endogenous IAA, MeJA and ABA were up-regulated in transiently DlbZIP60 overexpressed cell lines. These results suggest that DlbZIP60 may mediate hormones pathways that functions the development during early SE in longan.

16.
BMC Genomics ; 25(1): 308, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528464

ABSTRACT

BACKGROUND: Flowering at the right time is a very important factor affecting the stable annual yield of longan. However, a lack of knowledge of the regulatory mechanism and key genes of longan flowering restricts healthy development of the longan industry. Therefore, identifying relevant genes and analysing their regulatory mechanism are essential for scientific research and longan industry development. RESULTS: DlLFY (Dimocarpus longan LEAFY) contains a 1167 bp open reading frame and encodes 388 amino acids. The amino acid sequence has a typical LFY/FLO family domain. DlLFY was expressed in all tissues tested, except for the leaf, pericarp, and pulp, with the highest expression occurring in flower buds. Expression of DlLFY was significantly upregulated at the early flower induction stage in "SX" ("Shixia"). The results of subcellular localization and transactivation analysis showed that DlLFY is a typical transcription factor acting as a transcriptional activator. Moreover, overexpression of DlLFY in Arabidopsis promoted early flowering and restrained growth, resulting in reduced plant height and rosette leaf number and area in transgenic plants. DNA affinity purification sequencing (DAP-Seq) analysis showed that 13 flower-related genes corresponding to five homologous genes of Arabidopsis may have binding sites and be putative target genes. Among these five flower-related genes, only AtTFL1 (terminal flower 1) was strongly inhibited in transgenic lines. CONCLUSION: Taken together, these results indicate that DlLFY plays a pivotal role in controlling longan flowering, possibly by interacting with TFL1.


Subject(s)
Arabidopsis , Sapindaceae , Arabidopsis/genetics , Arabidopsis/metabolism , Flowers , Plant Leaves/metabolism , Sapindaceae/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
17.
Food Chem ; 439: 138169, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38128425

ABSTRACT

The deterioration of fruit could reduce the shelf life, decreased marketability and substantial economic value. Thus, a safe, simple, economical and environmentally friendly preservation technology for fruit is of great significance. Here, the postharvest preservation technology was investigated with zinc-doped carbon quantum dots and chlorogenic acid (Zn-CQDs/CGA) composite. Zn-CQDs/CGA composite were synthesized, which exhibits superior antioxidant and antibacterial activities. The binding mechanism of the Zn-CQDs/CGA composite was investigated, which revealed that the bindings of two components were mainly driven by hydrogen bonding and van der Waals forces to create a novel composite. The Zn-CQDs/CGA composite was applied to longan preservation and was found to significantly reduce the incidence of mildew spot, browning of fruit endocarp and pulp, as well as the degree of degradation of quality indexes. These results suggest that the Zn-CQDs/CGA composite has the potential for inhibiting browning and preserving the quality of longan during storage.


Subject(s)
Antioxidants , Quantum Dots , Antioxidants/pharmacology , Zinc , Chlorogenic Acid/pharmacology , Chlorogenic Acid/chemistry , Carbon/chemistry , Anti-Bacterial Agents/pharmacology , Quantum Dots/chemistry
18.
Food Chem X ; 20: 101002, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144736

ABSTRACT

Mycotoxins exposure from food can trigger serious health hazards. This study aimed to establish an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous detection of 44 mycotoxins in fruits and their products, followed by dietary exposure risk assessment. The optimized UPLC-MS/MS method exhibited a good linear relationship with correlation coefficients ≥ 0.99041. The limits of detection (LOD) and the limits of quantification (LOQ) were within the range of 0.003 âˆ¼ 0.700 µg/kg and 0.01 âˆ¼ 2.00 µg/kg, respectively. The three fruits and their corresponding value-added products, with a total sampling size of 42, were subjected to analysis and detected with mycotoxins. Further dietary exposure risk assessment revealed that the hazard quotient (HQ) and hazard index (HI) of mycotoxins were 1.213 âˆ¼ 60.032 % and 5.573 âˆ¼ 93.750 %, indicating a low risk for Chinese consumers. However, we still need be cautious about 15-acetyl-deoxynivalenol (15-ADON), as it had 78.6 % occurrence among all samples. This work provides an accurate analysis strategy for 44 mycotoxins and contributes to mycotoxins supervision.

19.
Food Chem X ; 20: 100973, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144775

ABSTRACT

Longan seeds, rich in phenolic compounds with antioxidant properties, are an underestimated by-product of longan processing. Polycyclic aromatic hydrocarbons (PAHs), which are carcinogenic and mutagenic, are produced during the cooking of meat products at high temperatures. The effects of different concentrations of longan seed extract (LSE, 0.2, 0.6, 1.0 mg/mL) on the formation of PAHs and muscle oxidation in mutton kebabs were investigated. Mutton kebabs were baked at 150, 200, 250 °C for 20 min, respectively, and the contents of PAHs, the degree of lipid and protein oxidation were evaluated. The results showed that LSE exhibited positive effects in inhibiting total PAHs formation (range from 14.9 to 48.8 %), decreasing the thiobarbituric acid reactive substances (TBARS) values (range from 17.1 to 39.1 %), reducing carbonyl content (range from 22.0 to 51.2 %) and increasing sulfhydryl content (range from 18.6 to 51.8 %). This study provided a guidance and potential solution for reducing the content of PAHs and muscle oxidation levels in baked meat.

20.
Food Chem X ; 20: 100923, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144865

ABSTRACT

The influences of hydrogen peroxide (H2O2) on the storability and metabolism of disease-resistant substances in fresh longan were investigated. Compared to the control samples, H2O2-treated longan exhibited a higher index of fruit disease, pericarp browning, and pulp breakdown, a higher rate of fruit weight loss, but lower chromaticity values (L*, a* and b*) in pericarp appearance, and a lower commercially acceptable fruit rate. Additionally, H2O2-treated longan showed a lower lignin content, lower activities of enzymes including phenylalnine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumaryl coenzyme A ligase (4-CL), cinnamate dehydrogenase (CAD), peroxidase (POD), chitinase (CHI), and ß-1,3-glucanase (GLU). These data collectively suggest that H2O2 negatively impacted the storability of fresh longan. This can be attributed to H2O2's role in reducing the levels of disease-resistant substances and suppressing the activities of disease-resistant enzymes, implying that H2O2 reduced the postharvest storability of longan by compromising its disease resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...