Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Heliyon ; 10(12): e31722, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975169

ABSTRACT

Lonicerae japonicae flos (LJF), Lonicerae japonicae caulis (LJC), Lonicerae folium (LF) and Lonicerae fructus (LFR) are derived from Lonicera japonica Thunb., which are formed due to different medicinal parts. The efficacy of the 4 medicinal materials has similarities and differences. However, little attention has been paid to illustrate the differences in efficacy from the perspective of phytochemistry. In this study, ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry (UPLC-Q-Exactive-Orbitrap-MS) was used to qualitatively analyze the ingredients in 4 herbs. A total of 86 compounds were plausibly or unambiguously identified, there were 54 common components among the 4 medicinal materials, and each kind of medicinal materials had its own unique components. On the basis of qualitative analysis, ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UPLC-QQQ-MS/MS) was used to quantitatively analyze 31 components contained in 4 medicinal materials, and principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA) and other multivariate statistical analysis were furtherly performed for comparing the component contents. The results showed that the samples from the same parts were clustered into one group, and the samples from different medicinal parts were significantly different. The analysis of variable importance projection (VIP) value of the OPLS-DA model showed that 10 components including chlorogenic acid, secologanic acid, isochlorogenic acid A, loganin, lonicerin, loganic acid, secoxyloganin, sweroside, luteolin and rhoifolin were the main difference components among the 4 medicinal materials. The study not only lays a solid foundation for the intrinsic quality control of 4 medicinal materials and the study of different effects of the 4 medicinal materials at the phytochemical level, but also provides a basis for more rational utilization of various parts of L. japonica and expansion of medicinal resources.

2.
J Food Sci ; 89(6): 3829-3846, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745368

ABSTRACT

Lonicera japonica Thunb. (LJT) is known for its valuable medicinal properties that highlight its potential application in the pharmaceutical and health food industry. We predict that LJT polyphenols by network pharmacology may be involved in immunomodulation, and the study of LJT polyphenols regulating immunity is still insufficient; therefore, we experimentally found that LJT enhances immunity by promoting the proliferation and phagocytic activity of RAW246.7 cells. A model of an immunosuppressed mouse was constructed using cyclophosphamide-induced, and LJT was extracted for the intervention. We found that LJT restored immune homeostasis in immune deficiency mice by inhibiting the abnormal apoptosis in lymphocytes, enhancing natural killer cell cytotoxicity, promoting T lymphocyte proliferation, and increasing the CD4+ and CD8+ T lymphocytes in quantity. Moreover, LJT treatment modulates immunity by significantly downregulating lipopolysaccharide-induced inflammation and oxidative stress levels. We verified the immunomodulatory function of LJT through both cell and animal experiments. The combination of potential-protein interactions and molecular docking later revealed that LJT polyphenols were associated with immunomodulatory effects on MAPK1; together, LJT intervention significantly modulates the immune, with the activation of MAPK1 as the underlying mechanism of action, which provided evidence for the utilization of LJT as a nutraceutical in immune function.


Subject(s)
Immunomodulation , Lonicera , Network Pharmacology , Plant Extracts , Lonicera/chemistry , Animals , Mice , Plant Extracts/pharmacology , Network Pharmacology/methods , Immunomodulation/drug effects , RAW 264.7 Cells , Molecular Docking Simulation , Polyphenols/pharmacology , Cell Proliferation/drug effects , Male , Apoptosis/drug effects , Mice, Inbred BALB C
3.
J Ethnopharmacol ; 331: 118333, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38750986

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Various components of Lonicera japonica Thunb. (LJT) exhibit pharmacological activities, including anti-inflammatory and antioxidant effects. Nevertheless, the relationship between LJT and ferroptosis remains largely unexplored. AIM OF THE STUDY: The purpose of this research was to look into the role of LJT in regulating LPS-induced ferroptosis in ALI and to compare the effects of different parts of LJT. MATERIALS AND METHODS: We established a mice ALI model by treating with LPS. Administered mice with different doses of Lonicerae Japonicae Flos (LJF), Lonicera Japonica Leaves (LJL) and Lonicerae Caulis (LRC) extracts, respectively. The levels of IL-6, IL-1ß, TNF-α, IL-4, IL-10, and PGE2 in bronchoalveolar lavage fluid (BALF) were measured using enzyme-linked immunosorbent assay. Furthermore, the concentrations of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), and total ferrous ions (Fe2+) in lung tissues were evaluated. Hematoxylin and eosin staining was conducted to examine the morphological structure of lung tissues. Transmission electron microscopy was used to investigate the ultrastructural morphology of mitochondria. Furthermore, the effects of LJT were evaluated via immunohistochemical staining, western blotting, and quantitative real-time polymerase chain reaction analyses. Finally, employing molecular docking and molecular dynamics research techniques, we aimed to identify crucial components in LJT that might inhibit ferroptosis by targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4). RESULTS: We observed that pretreatment with LJT significantly mitigated LPS-induced lung injury and suppressed ferroptosis. This was supported by reduced accumulation of pro-inflammatory cytokines, ROS, MDA, and Fe2+, along with increased levels of anti-inflammatory cytokines, SOD, GSH, Nrf2, and GPX4 in the lung tissues of ALI mice. Luteolin-7-O-rutinoside, apigenin-7-O-rutinoside, and amentoflavone in LJT exhibit excellent docking effects with key targets of ferroptosis, Nrf2 and GPX4. CONCLUSIONS: Pretreatment with LJT may alleviate LPS-induced ALI, possibly by suppressing ferroptosis. Our initial results indicate that LJT activates the Nrf2/GPX4 axis, providing protection against ferroptosis in ALI. This finding offers a promising therapeutic candidate for ALI treatment.


Subject(s)
Acute Lung Injury , Ferroptosis , Lipopolysaccharides , Lonicera , Oxidative Stress , Plant Extracts , Animals , Lonicera/chemistry , Lipopolysaccharides/toxicity , Ferroptosis/drug effects , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Mice , Male , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Plant Leaves/chemistry , Cytokines/metabolism , NF-E2-Related Factor 2/metabolism , Lung/drug effects , Lung/pathology , Lung/metabolism , Antioxidants/pharmacology , Disease Models, Animal , Reactive Oxygen Species/metabolism
4.
Plant Dis ; 2023 Nov 19.
Article in English | MEDLINE | ID: mdl-37981571

ABSTRACT

Honeysuckle flower (Lonicera japonica Thunb.) is a traditional Chinese medicinal plant. It is perennial and widely cultivated in China, Japan and Korea. From late August to October in 2021 and 2022, leaf spots symptoms were observed on L. japonica in different planting fields in Yuzhou, Yuanyang and Fenqiu districts, Henan province, China. The disease incidence was above 85% which reduce photosynthesis. Early disease symptoms appeared as small, circular to elliptical, brown spots on the leaves and later the lesions (1 to 5 mm × 1 to 4 mm) slowly developed yellow haloes. The different brown lesions seldom merge and form larger irregular lesions. Small fragments (3 to 5 mm) of leave tissue were excised from the lesion margins and surface-sterilized in 3% NaClO for 3 min, followed by three washes with sterile distilled water, and then placed on potato dextrose agar (PDA) and incubated at 25°C in the dark for 5 days. A total number of 8 cultures were obtained and purified by single-spore subcultures on PDA for morphological identification. The colonies on PDA were whitish to gray, with cottony aerial mycelium. Conidiophores were fasciculate, olivaceous brown, straight or geniculate, uniform in width, multiseptate, and ranged from 290 to 700 µm (560 µm on average, n = 20). Conidia were hyaline, slightly curved or straight, needle shaped, truncate at the base, and terminal at the tip, 3 to 17-septate, and measuring 150 to 240 µm (180 µm on average, n = 20). The morphological features were consistent with Cercospora cf. flagellaris Ellis & G. Martin (Groenewald et al. 2013). The genomic DNA was extracted using CTAB method. The nuclear ribosomal internal transcribed spacer region (ITS), portions of the actin (ACT), histone H3 (HIS3), and translation elongation factor 1-α (TEF1) genes were amplified using primers ITS1/ITS4 (Groenewald et al. 2013), ACT-512F/ACT-783R (Carbone and Kohn 1999), CYLH3F/CYLH3R (Crous et al. 2006), and EF1-728F/EF1-986R (Carbone and Kohn 1999). The resulting 537-bp ITS, 226-bp ACT, 410-bp HIS3, and 306-bp TEF1 sequences of isolate JDJ002 were deposited in GenBank (accession nos. OR492367, OR548247, OR548248 and OR548248, respectively). Sequence analysis revealed that ITS, ACT, HIS3 and TEF1α sequences exhibited ≥99% of identity with the ITS (KP896013), ACT(KP895965), HIS3(MK991295) and TEF1 (MN180408) sequences of C. cf. flagellaris, respectively. A pathogenicity test was conducted on healthy of L. japonica leaves. The healthy leaves pricked from L. japonica plants, rinsed in autoclaved distilled water three times and dried with distilled filter paper. Then twelve healthy leave were inoculated with a mycelial plug (0.4 cm diameter) harvested from the periphery of two week-old colony. As negative control, leaves inoculated with PDA medium plugs. Inoculated leaves were covered with plastic bags to maintain high relative humidity and incubated at 25°C in growth chamber. After 7 days, the inoculated leaves showed symptoms identical to those observed in the field under natural conditions, whereas negative control remained symptom-free. Re-isolation of the fungus from lesions on inoculated leaves confirmed that the causal agent was C. cf. flagellaris. Pathogenicity tests were repeated three times by the same methods with the same results. To our knowledge, this is the first report of C. cf. flagellaris except Cercospora rhamni Fack., Alternaria alternata, Corynespora cassiicola or Phomopsis sp. causing leave spots on L. japonica in China.

5.
Plants (Basel) ; 12(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37514303

ABSTRACT

The carbon sequestration and oxygen release of landscape plants are dominant ecological service functions, which can play an important role in reducing greenhouse gases, improving the urban heat island effect and achieving carbon peaking and carbon neutrality. In the present study, we are choosing Lonicera japonica Thunb. as a model plant to show the effects of Cd stress on growth, photosynthesis, carbon sequestration and oxygen release characteristics. Under 5 mg kg-1 of Cd treatment, the dry weight of roots and shoots biomass and the net photosynthetic rate (PN) in L. japonica had a significant increase, and with the increase in Cd treatment concentration, the dry weight of roots and shoots biomass and PN in the plant began to decrease. When the Cd treatment concentration was up to 125 mg kg-1, the dry weight of root and shoots biomass and PN in the plant decreased by 5.29%, 1.94% and 2.06%, and they had no significant decrease compared with the control, indicating that the plant still had a good ability for growth and photoenergy utilization even under high concentrations of Cd stress. The carbon sequestration and oxygen release functions in terms of diurnal assimilation amounts (P), carbon sequestration per unit leaf area (WCO2), oxygen release per unit leaf area (WO2), carbon sequestration per unit land area (PCO2) and oxygen release per unit land area (PO2) in L. japonica had a similar change trend with the photosynthesis responses under different concentrations of Cd treatments, which indicated that L. japonica as a landscaping Cd-hyperaccumulator, has a good ability for carbon sequestration and oxygen release even under high concentrations of Cd stress. The present study will provide a useful guideline for effectively developing the ecological service functions of landscaping hyperaccumulators under urban Cd-contaminated environment.

6.
Biomed Pharmacother ; 165: 115038, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37418981

ABSTRACT

The transforming growth factor-ß-activated kinase 1 (TAK1) phosphorylation promotes inflammation occurrence. Meanwhile, TAK1 directly interacts with KEAP1 and strenghtenes NRF2/HO-1 pathway downregulated-inflammation. Recently, we found that caffeoylquinic acids not only possessed powderful anti-inflammation function, but also attenuated oxidative damage through KEAP1/NRF2 pathway. Whereas it's rarely understood whether the anti-inflammatory activity were regulated by their interaction between TAK1 and NRF2. Herein, 34 caffeoylquinic acids including five new (2, 4-7) were systematically isolated and identified on the basis of spectroscopic evidence from Lonicera japonica Thunb. flower buds. Their inhibitory effects on inflammation induced by LPS plus IFN-γ were exerted substantial NO scavenging activity, and inhibited massive production of inflammatory cytokines and related proteins. Compound 3 (4F5C-QAME) exhibited the best anti-inflammation activity. 4F5C-QAME down-regulated the phosphorylation of TAK1, JNK, and c-JUN, thereby alleviated inflammation stimulated by LPS plus IFN-γ. Meanwhile, 4F5C-QAME could alleviate the interaction between TAK1 and KEAP1, inhibit the ubiquitination degradation of NRF2, activate NRF2/HO-1 signaling pathway, result in the increase in ROS elimination. Furthermore, 4F5C-QAME effectively protected against inflammation through direct inhibition of TAK1 phosphorylation. Based on these findings, 4F5C-QAME directly targeting TAK1 could be represented as a potential drug candidate for preventing/treating inflammatory diseases that regulated NRF2 activation through alleviating the interaction between TAK1 and KEAP1. Moreover, the regulatory mechanism of TAK1 on NRF2 activation under exogenous oxidative stress was revealed for the first time.


Subject(s)
Lipopolysaccharides , Lonicera , Humans , Lipopolysaccharides/adverse effects , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Lonicera/chemistry , Inflammation/drug therapy , Inflammation/chemically induced , Anti-Inflammatory Agents/adverse effects , Oxidative Stress , Interferon-gamma/pharmacology , Interferon-gamma/metabolism
7.
Molecules ; 28(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37375383

ABSTRACT

Lonicera japonica Thunb. is a widely distributed plant with ornamental, economic, edible, and medicinal values. L. japonica is a phytoantibiotic with broad-spectrum antibacterial activity and a potent therapeutic effect on various infectious diseases. The anti-diabetic, anti-Alzheimer's disease, anti-depression, antioxidative, immunoregulatory, anti-tumor, anti-inflammatory, anti-allergic, anti-gout, and anti-alcohol-addiction effects of L. japonica can also be explained by bioactive polysaccharides isolated from this plant. Several researchers have determined the molecular weight, chemical structure, and monosaccharide composition and ratio of L. japonica polysaccharides by water extraction and alcohol precipitation, enzyme-assisted extraction (EAE) and chromatography. This article searched in the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, and CNKI databases within the last 12 years, using "Lonicera. japonica polysaccharides", "Lonicera. japonica Thunb. polysaccharides", and "Honeysuckle polysaccharides" as the key word, systematically reviewed the extraction and purification methods, structural characteristics, structure-activity relationship, and health benefits of L. japonica polysaccharides to provide insights for future studies. Further, we elaborated on the potential applications of L. japonica polysaccharides in the food, medicine, and daily chemical industry, such as using L. japonica as raw material to make lozenges, soy sauce and toothpaste, etc. This review will be a useful reference for the further optimization of functional products developed from L. japonica polysaccharides.


Subject(s)
Alzheimer Disease , Lonicera , Humans , Lonicera/chemistry , Polysaccharides/pharmacology , Anti-Inflammatory Agents , China
8.
Front Plant Sci ; 14: 1080691, 2023.
Article in English | MEDLINE | ID: mdl-36938035

ABSTRACT

Introduction: The flower buds of Lonicera japonica Thunb. are widely used in Chinese medicine for their anti-inflammatory properties, and they have played an important role in the fight against SARS COVID-19 and other major epidemics. However, due to the lack of scientific and accurate variety identification methods and national unified standards, scattered and non-standardized management in flower bud production has led to mixed varieties that have caused significant difficulties in the cataloging and preservation of germplasm resources and the identification, promotion, and application of new L. japonica varieties. Methods: In this study, we evaluated the population structure, genetic relationships, and genetic fingerprints of 39 germplasm resources of Lonicera in China using simplified genome sequencing technology. Results: A total of 13,143,268 single nucleotide polymorphisms (SNPs) were identified. Thirty-nine samples of Lonicera were divided into four subgroups, and the population structure and genetic relationships among existing Lonicera germplasm resources were determined using principal component analysis, population structure analysis, and phylogenetic tree analysis. Through several stringent selection criteria, 15 additional streamlined, high-quality DNA fingerprints were filtered out of the validated 50 SNP loci and verified as being able to effectively identify the 39 Lonicera varieties. Discussion: To our knowledge, this is the first comprehensive study measuring the diversity and population structure of a large collection of Lonicera varieties in China. These results have greatly broadened our understanding of the diversity, phylogeny, and population structure of Lonicera. The results may enhance the future analysis of genetic diversity, species identification, property rights disputes, and molecular breeding by providing a scientific basis and reference data for these efforts.

9.
Metabolites ; 13(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36837805

ABSTRACT

Lonicera japonica Thunb. (LJT) has been widely used as medicines or food additives in Asian countries for thousands of years. The flower buds are often medicinally used, and the other tissues are ignored. However, flowers, leaves and stems have also been reported to have antimicrobial, anti-inflammatory and antioxidant effects. In the current study, un-targeted metabolomics analysis was performed to investigate the metabolic difference among different tissues (flowers, flower buds, stems and leaves) of LJT based on liquid chromatography with mass spectrometry. A total of 171 metabolites were identified, including 28 flavonoids, 35 phenolic acids, 43 iridoids, 9 amino acids, 6 nucleotides, 16 fatty acids, 22 lipids and 12 others. Four new secondary metabolites were discovered. Some flavonoids and iridoids were not detected in leaves and stems. Principal component analysis showed significant differences among four different tissues. Some 27, 81, 113 differential metabolites were found between flowers/flower buds, leaves/flower buds, stems/flower buds, respectively. Primary metabolites showed a higher content in the flowers and flower buds. For the flavonoids, flavones were mainly accumulated in the leaves, flavonols were mainly accumulated in the flower buds, and acylated flavonol glucosides were mainly accumulated in the flowers. Most phenolic acids showed a higher content in the flowers or flower buds, while phenolic acid-glucosides showed significantly higher content in the flower buds. The most abundant iridoids in the LJT also showed a higher content in the flowers and flower buds. These results can provide new insights into the understanding of the metabolites changes in different tissues, and lay a theoretical foundation for the comprehensive utilization of LJT.

10.
Plants (Basel) ; 12(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36840281

ABSTRACT

"Hormesis" is considered a dose-response phenomenon mainly observed at hyperaccumulator plants under heavy metals stress. In this study, the effects of electric fields on hormesis responses in Lonicera japonica Thunb. under cadmium (Cd) treatments were investigated by assessing the plant growth and photosynthetic characteristics. Under Cd treatments without electric fields, the parameters of plant growth and photosynthetic characteristics increased significantly when exposed to 5 mg L-1 Cd, and decreased slightly when exposed to 25 mg L-1 Cd, showing an inverted U-shaped trend, which confirmed that low concentration Cd has a hormesis effect on L. japonica. Under electric fields, different voltages significantly promoted the inverted U-shaped trend of the hormesis effect on the plant, especially by 2 V cm-1 voltage. Under 2 V cm-1 voltage, the dry weight of the root and leaf biomass exposed to 5 mg L-1 Cd increased significantly by 38.38% and 42.14%, and the photosynthetic pigment contents and photosynthetic parameters were also increased significantly relative to the control, indicating that a suitable electric field provides better improvements for the hormesis responses of the plant under Cd treatments. The synergistic benefits of the 5 mg L-1 Cd and 2 V cm-1 electric field in terms of the enhanced hormesis responses of growth and photosynthetic characteristics could contribute to the promoted application of electro-phytotechnology.

11.
J Chromatogr A ; 1687: 463693, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36516530

ABSTRACT

In this study, an advanced at-line nanofractionation based screening platform was developed to screen potential neuraminidase inhibitors (NAIs) from Lonicera japonica Thunb by involving two parallel bioassays, for determining both oseltamivir-sensitive neuraminidase (NAS) and oseltamivir-resistant neuraminidase (NAR) inhibitory activities. 20 potential NAIs with both NAS and NAR inhibitory effects were screened from Lonicera japonica Thunb and identified by mass spectrometer, including 11 phenolic acids, 8 flavonoids and one iridoid glycoside. The proposed at-line nanofractionation based screening platform for NAIs was also used to rapidly screen nine batches of water extracts of Lonicera japonica Thunb or its similar species. Clear differences in the number and content of active components were easily observed, demonstrating that the proposed method possesses great potential for the quality control of herb medicines.


Subject(s)
Influenza A Virus, H1N1 Subtype , Lonicera , Oseltamivir/pharmacology , Neuraminidase , Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology
12.
Bioresour Technol ; 367: 128264, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36343778

ABSTRACT

Discarding Lonicera japonica Thunb. (LJT) residues containing many active metabolites create tremendous waste. This study aimed to effectively use LJT residues by anaerobic fermentation. Fermentation significantly decreased the pH values and reduced the abundance of undesirable bacteria (potential pathogenic and biofilm-forming) while increasing Lactobacillus abundance. Compound additive use further improved fermentation quality (significantly increased the lactic acid (LA) content and decreased the pH values and ammonia nitrogen (a-N) content) and nutrient quality (significantly decreased the acid detergent fiber (ADF) content and increased the water-soluble carbohydrate (WSC) content) and optimized the microbial community (increased the Lactobacillus abundance). Fermentation also altered the flavonoids, alkaloids and phenols contents in the residues with minor effects on the functional metabolites amounts. The LJT residues metabolic profile was mainly attributed to its epiphytic bacteria, with a small contribution from the compound additive. Thus, compound additives may improve anaerobic LJT residue fermentation without functionally impairing the metabolites.


Subject(s)
Lonicera , Lonicera/chemistry , Lonicera/metabolism , Fermentation , Anaerobiosis , Metabolome , Lactobacillus , Bacteria , Silage/microbiology
13.
Acta Pharmaceutica Sinica ; (12): 3449-3460, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-999090

ABSTRACT

Anthocyanidin reductase (ANR) is one of the key enzyme in the flavonoid biosynthetic pathway, and its catalytic activity is important for the synthesis of plant anthocyanin. In this study, specific primers were designed according to the transcriptome data of Lonicera japonica Thunb., and the CDS, gDNA and promoter sequences of ANR genes from Lonicera japonica Thunb. and Lonicera japonica Thunb. var. chinensis (Wats.) Bak. were cloned. The results showed that the CDS sequences of LjANR and rLjANR were 1 002 bp, the gDNA sequences were 2 017 and 2 026 bp respectively, and the promoter sequences were 1 170 and 1 164 bp respectively. LjANR and rLjANR both contain 6 exons and 5 introns, which have the same length of exons and large differences in introns. The promoter sequences both contain a large number of light response, hormone response and abiotic stress response elements. Bioinformatics analysis showed that both LjANR and rLjANR encoded 333 amino acids and were predicted to be stable hydrophobic proteins without transmembrane segments and signal peptides. The secondary structures of LjANR and rLjANR were predicted to be mainly consisted of α-helix and random coil. Sequence alignment and phylogenetic analysis showed that LjANR and rLjANR had high homology with Actinidia chinensis var. chinensis, Camellia sinensis and Camellia oleifera, and were closely related to them. The expression levels of LjANR and rLjANR were the highest in flower buds and the lowest in roots. The expression patterns at different flowering stages were similar, with higher expression levels in S1 and S2 stages and then gradually decreased until reaching the lowest level in S4 stage, after a slow increase in S5 stage, the expression levels decreased again. The expression levels of ANR genes in the two varieties showed significant differences in roots, S2 and S5 stages, while the differences in stems, flower buds, S1, S3 and S6 stages were extremely significant. The prokaryotic expression vector pET-32a-LjANR was constructed for protein expression. The target protein was successfully expressed of about 59 kD. This study lays a foundation for further study on the function of ANR gene and provides theoretical guidance for breeding new varieties of Lonicera japonica Thunb.

14.
Heliyon ; 8(11): e11876, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36458288

ABSTRACT

Lonicera japonica (L. japonica) is utilized as foods and healthy drink around the world. Until now, the immunomodulatory activity of polysaccharides from L. japonica (LJP) is little studied. In our previous work, LJP was fractionated to a neutral component (LJP-N) and an acidic component (LJP-A) by a DEAE-Cellulose column, and LJP-N was a starch-like polysaccharide and LJP-A was a pectic polysaccharide. In this study, LJP-N and LJP-A were investigated for their immunomodulatory effect, and the protective effect of these two polysaccharide fractions against immune injury by cyclophosphamide (CTX) in BALB/c mice was evaluated. Results showed that when compared with CTX group, LJP fractions, especially for LJP-A (200 mg kg-1) can enhance the immune function, improve atrophy of the lymphoid organs thymus and spleen (the increased approximately 1.8- and 1.6-fold), increase the phagocytic function of macrophages (increased approximately 1.7-fold), increase the secretion of cytokines (the levels of IL-6, IL-2, and TNF-α increased approximately 2.5-, 2.0-, and 1.4-fold) and immunoglobulins levels (the levels of IgM and IgG increased approximately 1.2- and 1.7-fold) in serum, and enhance the cytotoxic activity of NK cells (increased approximately 3.5-fold). Taken together, the present results suggest that LJP-A, rich in uronic acid, with a molecular weight of 400 kDa, may be a potential candidate as the functional foods.

15.
Front Nutr ; 9: 998462, 2022.
Article in English | MEDLINE | ID: mdl-36204375

ABSTRACT

Pectins are nutrient components of plants and are widely used in the food industry. In this study, one major pectin fraction (WLJP-A0.2b) with Mw of 40.6 kDa was purified from Lonicera japonica Thunb. The structural feature and antioxidant activity of it was investigated. Monosaccharide composition, Fourier transform infrared (FT-IR) spectra, enzymatic hydrolysis, and nuclear magnetic resonance (NMR) spectra analysis indicated that WLJP-A0.2b consisted of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II), and homogalacturonan (HG) domains, with mass ratio of 0.4:1.0:2.1. The RG-I domain contained highly branched α-L-1,5-arabinan, ß-D-1,4-galactan and type II arabinogalactan (AG-II) side chains. The HG domain was released in the form of un-esterified and partly methyl-esterified and/or acetyl-esterified oligogalacturonides with degree of polymerization 1-8 after degradation by endo-polygalacturonase. Radical scavenging assays indicated that WLJP-A0.2b exhibited antioxidant activity through the synergistic effects of different pectin domains. Oligogalacturonides, especially de-esterified oligogalacturonides, showed better antioxidant activities than RG-II and RG-I domains. Moreover, de-esterified oligogalacturonides remarkably reduced H2O2-induced reactive oxygen species production in HEK-293T cells. These results provide useful information for screening of natural antioxidants from Lonicera japonica Thunb. and application of pectin in functional food field.

16.
Front Plant Sci ; 13: 989036, 2022.
Article in English | MEDLINE | ID: mdl-36172557

ABSTRACT

Lonicera japonica Thunb., belonging to the Caprifoliaceae family, is an important traditional Chinese medicinal plant. The L. japonica flower (LJF) is widely used in medicine, cosmetics, drinks, and food due to its medicinal and sweet-smelling properties. Considerable efforts have been devoted to investigating the pharmacological activities of LJF; however, the regulatory mechanism of the floral scents remains unknown. We previously selected and bred an elite variety of L. japonica var. chinensis Thunb. called 'Yujin2', which has a strong aroma and is used in functional drinks and cosmetics. In order to reveal the regulatory mechanism of the floral scents of LJF, volatile metabolomic and transcriptomic analyses of the LJF at the silver flowering stage of 'Yujin2' (strong aroma) and 'Fengjin1' (bland odor) were performed. Our results revealed that a total of 153 metabolites and 9,523 genes were differentially regulated in LJF between 'Yujin2' and 'Fengjin1'. The integrated analysis of omics data indicated that the biosynthetic pathways of terpenoids (i.e., monoterpenoids, including geraniol and alpha-terpineol; sesquiterpenoids, including farnesol, farnesal, and alpha-farnesene; triterpenoid squalene), tryptophan and its derivatives (methyl anthranilate), and fatty acid derivatives, were major contributors to the stronger aroma of 'Yujin2' compared to 'Fengjin1'. Moreover, several genes involved in the terpenoid biosynthetic pathway were characterized using quantitative real-time PCR. These results provide insights into the metabolic mechanisms and molecular basis of floral scents in LJF, enabling future screening of genes related to the floral scent regulation, such as alpha-terpineol synthase, geranylgeranyl diphosphate synthase, farnesyl pyrophosphate synthase, anthranilate synthase, as well as transcription factors such as MYB, WRKY, and LFY. The knowledge from this study will facilitate the breeding of quality-improved and more fragrant variety of L. japonica for ornamental purpose and functional beverages and cosmetics.

19.
Polymers (Basel) ; 14(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35566885

ABSTRACT

Natural hydrogels are growing in interest as a priority for wound healing. Plant polysaccharides have a variety of biological pharmacological activities, and chitosan hydrogels have proven strong antimicrobial effects, but hydrogels prepared with polysaccharides alone have certain deficiencies. Polysaccharides from flowers of Lonicera japonica Thunb. (LP) and the aerial parts of Mentha canadensis L. (MP) were extracted and oxidized by sodium periodate (NaIO4) and then cross-linked with oxidized-carboxymethylated chitosan (O-CCS) to develop oxidized plant- polysaccharides-chitosan hydrogels (OPHs). SEM observation showed that OPHs had porous interior structures with interconnecting pores. The OPHs showed good swelling, water-retention ability, blood coagulation, cytocompatibility properties, and low cytotoxicity (classed as grade 1 according to United States Pharmacopoeia), which met the requirements for wound dressings. Then the cutaneous wound-healing effect was evaluated in BALB/C mice model, after 7 days treatment, the wound-closure rate of OPHs groups were all greater than 50%, and after 14 days, all were greater than 90%, while the value of the control group was only 72.6%. Of them, OPH-2 and OPH-3 were more favorable to the wound-healing process, as the promotion was more significant. The plant polysaccharides and CS-based hydrogel should be a candidate for cutaneous wound dressings.

20.
Plants (Basel) ; 11(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35448768

ABSTRACT

The multi-system of electro-phytotechnology using a woody ornamental cadmium (Cd) hyperaccumulator (Lonicera japonica Thunb.) is a new departure for environmental remediation. The effects of four electric field conditions on Cd accumulation, growth, and photosynthesis of L. japonica under four Cd treatments were investigated. Under 25 and 50 mg L-1 Cd treatments, Cd accumulation in L. japonica was enhanced significantly compared to the control and reached 1110.79 mg kg-1 in root and 428.67 mg kg-1 in shoots influenced by the electric field, especially at 2 V cm-1, and with higher bioaccumulation coefficient (BC), translocation factor (TF), removal efficiency (RE), and the maximum Cd uptake, indicating that 2 V cm-1 voltage may be the most suitable electric field for consolidating Cd-hyperaccumulator ability. It is accompanied by increased root and shoots biomass and photosynthetic parameters through the electric field effect. These results show that a suitable electric field may improve the growth, hyperaccumulation, and photosynthetic ability of L.japonica. Meanwhile, low Cd supply (5 mg L-1) and medium voltage (2 V cm-1) improved plant growth and photosynthetic capacity, conducive to the practical application to a plant facing low concentration Cd contamination in the real environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...