Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 944
Filter
1.
Biochem Biophys Rep ; 38: 101738, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38831897

ABSTRACT

The renin-angiotensin system (RAS) is best known for playing a major role in maintaining the physiology of the cardiovascular system. Dysregulation of the RAS pathway has been proposed as a link to some malignancies and contributes to cancer metastasis. Breast cancer is considered as one of the leading causes of cancer death in women and its prevention remains yet a challenge. Elements of RAS are expressed in both normal breast tissue and cancerous cells, signifying the essential role of RAS in breast cancer pathology. Sertraline, a widely used antidepressant, has shown anti-proliferative properties on a variety of malignancies. This study aimed to investigate the effect of sertraline and its combination with agonists and antagonists of RAS (A779, Ang 1-7 and losartan) on viability of MCF-7 cells along with their effect on apoptosis and distribution of cell cycle. Our results indicated that sertraline, losartan and Ang 1-7 significantly decreased cell viability, induced apoptosis and cell cycle arrest. A779 blunted the effect of sertraline on cell viability, ROS generation and cell cycle arrest. Combination treatment of sertraline with losartan as well as Ang 1-7 caused a remarkable decline in cell viability. In conclusion, results of the present study support the anti-cancer properties of sertraline, losartan and Ang 1-7 via induction of apoptosis and cell cycle arrest.

2.
Int J Biol Macromol ; 272(Pt 2): 132690, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825270

ABSTRACT

A rising quantity of drugs has been discharged into the aquatic environment, posing a substantial hazard to public health. In the current work, a novel hydrogel (i.Carr@Bent@PTC), comprised of iota-carrageenan, bentonite, and 4-phenyl-3-thiosemicarbazide, was successfully prepared. The introduction of 4-phenyl-3-thiosemicarbazide and bentonite in iota-carrageenan significantly increased the mechanical strength of iota-carrageenan hydrogel and improved its degree of swelling, which can be attributed to the hydrophilic properties of PTC and Bent. The recorded contact angle was 70.8°, 59.1°, 53.9°, and 34.6° for pristine i.Carr, i.Carr@Bent, and i.Carr@Bent@PTC, respectively. The low contact angle measurement of the Bent and PTC loaded-i.Carr hydrogel was attributed to the hydrophilic Bent and PTC. The ternary i.Carr@Bent@PTC hydrogel demonstrated broad pH adaptability and excellent adsorption capacities for sulfamethoxazole (SMX) and losartan potassium (LP), i.e., 467.61 mg. g-1 and 274.43 mg. g-1 at 298.15 K, respectively. The pseudo-first-order (PSO) model provided a better fit for the adsorption kinetics. The adsorption of SMX and LP can be better explained by employing the Sips and Langmuir isotherm models. As revealed by XPS and FTIR investigations, π-π stacking, complexation, electrostatic interaction, and hydrogen bonding were primarily involved in the adsorption mechanisms.


Subject(s)
Bentonite , Carrageenan , Hydrogels , Losartan , Semicarbazides , Sulfamethoxazole , Water Pollutants, Chemical , Carrageenan/chemistry , Adsorption , Semicarbazides/chemistry , Losartan/chemistry , Hydrogels/chemistry , Bentonite/chemistry , Water Pollutants, Chemical/chemistry , Sulfamethoxazole/chemistry , Hydrogen-Ion Concentration , Kinetics , Water Purification/methods , Hydrophobic and Hydrophilic Interactions
3.
J Inorg Biochem ; 258: 112622, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852293

ABSTRACT

The human cytochrome P450 (CYP) 1, 2 and 3 families of enzymes are responsible for the biotransformation of a majority of the currently available pharmaceutical drugs. The highly polymorphic CYP2C9 predominantly metabolizes many drugs including anticoagulant S-warfarin, anti-hypertensive losartan, anti-diabetic tolbutamide, analgesic ibuprofen, etc. There are >80 single nucleotide changes identified in CYP2C9, many of which significantly alter the clearance of important drugs. Here we report the structural and biophysical analysis of two polymorphic variants, CYP2C9*14 (Arg125His) and CYP2C9*27 (Arg150Leu) complexed with losartan. The X-ray crystal structures of the CYP2C9*14 and *27 illustrate the binding of two losartan molecules, one in the active site near heme and another on the periphery. Both losartan molecules are bound in an identical conformation to that observed in the previously solved CYP2C9 wild-type complex, however, the number of losartan differs from the wild-type structure, which showed binding of three molecules. Additionally, isothermal titration calorimetry experiments reveal a lower binding affinity of losartan with *14 and *27 variants when compared to the wild-type. Overall, the results provide new insights into the effects of these genetic polymorphisms and suggests a possible mechanism contributing to reduced metabolic activity in patients carrying these alleles.


Subject(s)
Cytochrome P-450 CYP2C9 , Losartan , Losartan/chemistry , Losartan/metabolism , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 CYP2C9/chemistry , Humans , Crystallography, X-Ray , Protein Binding
4.
Curr Pharm Des ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38910484

ABSTRACT

INTRODUCTION: A sustained release system for losartan potassium designed to delay its residence time in the stomach through the preparation of solvent evaporation technique-based floating microspheres. The influence of the different grades of Ethocel™ such as 4 cps, 10 cps, and 22 cps as well as the drug: polymer ratio on various properties of microspheres were tested. METHODS: Thermal and functional analysis revealed no interaction between the encapsulated drug and polymer. The results indicated that the mean diameter of microspheres increased with a change in grades of ethyl cellulose relating to viscosity. However, the drug incorporation efficiency within ethyl cellulose microspheres decreased with increasing viscosity of ethyl cellulose. RESULTS: The bulk density of the formulations was proportionally dependent on concentration and the viscosity of the polymer, which resulted in a decrease in floating capacity from 90.02% to 73.58%. Moreover, the drug release was indirectly proportional to the viscosity of ethyl cellulose tested. The in vitro release profile exhibited a burst effect with a biphasic release pattern following Fickian diffusion, indicating a diffusioncontrolled release mechanism. CONCLUSION: The results demonstrated that the viscosity of ethyl cellulose significantly affects the floating capacity and drug release pattern from microspheres.

5.
Tissue Cell ; 88: 102420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795506

ABSTRACT

Peripheral and central neuropathies frequently complicate worldwide diabetes. Compared to peripheral neuropathy, central neuropathy didn`t gain a major research interest. Angiotensin II is reported to be involved in diabetic neuropathic pain but its role in the central pathological changes in the spinal cord is not clear. Here, we study the role of Losartan; an Angiotensin II receptor 1 (AT1) antagonist in suppression of the diabetes-induced changes in the spinal cord. Three groups of rats were applied; a negative control group, a streptozotocin (STZ) diabetic group, and a group receiving STZ and Losartan. After two months, the pathological alteration in the spinal cord was investigated, and an immunohistochemical study was performed for neuronal, astrocytic, and microglial markers; nuclear protein (NeuN), Glial fibrillary acidic protein (GFAP), and Ionized calcium-binding adaptor molecule 1 (Iba1), respectively, and for an apoptosis marker; caspase-3, and the inflammatory marker; nuclear factor kappa B (NF-kB) signaling, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2); physiological antioxidant system. The results showed that Losartan caused recovery of spinal cord changes, by inhibiting the microglial and astrocytic activation, suppressing neuronal apoptosis and NF-kB expression with activation of Nrf2/HO-1 (P<0.0005). It is suggested, herein, that Losartan can suppress diabetes-induced glial activation, inflammation, neuronal apoptosis, and oxidative stress in the spinal cord; the mechanisms that may underlie the role of AT1 antagonism in suppressing diabetic neuropathic pain.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Diabetes Mellitus, Experimental , Losartan , NF-E2-Related Factor 2 , Spinal Cord , Animals , Spinal Cord/pathology , Spinal Cord/metabolism , Spinal Cord/drug effects , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , NF-E2-Related Factor 2/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Rats , Male , Losartan/pharmacology , Heme Oxygenase-1/metabolism , Diabetic Neuropathies/pathology , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/drug therapy , Signal Transduction/drug effects , Rats, Wistar , Apoptosis/drug effects , NF-kappa B/metabolism , Oxidative Stress/drug effects
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124471, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38776669

ABSTRACT

Simultaneous determination of atenolol (ATN), losartan potassium (LOS), and hydrochlorothiazide (HCZ) in presence of HCZ impurity B was conducted by chemometric approaches and radial basis function network (RBFN) using UV-spectrophotometry without preliminary separation. Three chemometric models namely, classical least-squares (CLS), principal component regression (PCR), and partial least-squares (PLS) along with RBFN were utilized using the ternary mixtures of the three drugs. The multivariate calibrations were obtained by measuring the zero-order absorbance of the mixtures from 250 to 270 nm at the interval of 0.2 nm. The models were built covering the concentration range of (4.0 to 20.0), (3.8 to 20.2), and (0.9 to 50.1) µg mL-1 for ATN, LOS, and HCZ, respectively. The regression coefficient was calculated between the actual and predicted concentrations of the 3 drugs using CLS, PCR, PLS and RBFN. The accuracy of the developed models was evaluated using the root mean square error of prediction (RMSEP) giving satisfactory results. The proposed methods were simple, accurate, precise and were applied efficiently for the quantitation of the three components in laboratory-prepared mixtures, and in dosage form showing good recovery values. In addition, the obtained results were compared statistically with each other using ANOVA test showing non-significant difference between them.


Subject(s)
Atenolol , Hydrochlorothiazide , Losartan , Spectrophotometry, Ultraviolet , Hydrochlorothiazide/analysis , Atenolol/analysis , Losartan/analysis , Spectrophotometry, Ultraviolet/methods , Least-Squares Analysis , Principal Component Analysis , Dosage Forms , Reproducibility of Results
7.
J Am Heart Assoc ; 13(10): e033998, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38726925

ABSTRACT

BACKGROUND: The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS: Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS: The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.


Subject(s)
Angiotensin II , Brain , Calcium , Hypertension , Kidney , Microvessels , Nitric Oxide , Vasoconstriction , Animals , Nitric Oxide/metabolism , Angiotensin II/pharmacology , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/drug therapy , Kidney/blood supply , Kidney/metabolism , Calcium/metabolism , Vasoconstriction/drug effects , Microvessels/metabolism , Microvessels/drug effects , Microvessels/pathology , Brain/metabolism , Brain/blood supply , Mice , Disease Models, Animal , Male , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Mice, Inbred C57BL , Calcium Signaling/drug effects
8.
Eur J Pharmacol ; 977: 176663, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38815786

ABSTRACT

BACKGROUND: We have documented profound release of nitric oxide (NO) and endothelium-derived hyperpolarization factor (EDHF) by angiotensin II (ANGII) receptor 1 (AT1) blocker (ARB) losartan and its unique metabolite EXP3179, a pleiotropic effect that may help rationalize the protective properties of ARBs. Since blood pressure (BP) lowering by ARBs likely require an ANGII-dependent switch from AT1 to ANGII receptor 2 (AT2) signaling, a receptor known to stimulate endothelial NO release, we investigated the contribution of AT1 and AT2 to losartan and EXP3179's endothelial function-activating properties. EXPERIMENTAL APPROACH: Two AT1 ligands were used in an attempt to block the AT1-dependent endothelium-enhancing effects of EXP3179. AT2-null mice were used to evaluate the acute ex vivo and chronic in vivo effects of EXP3179 (20µM) and losartan (0.6 g/l), respectively, on endothelial function, BP and aortic stiffness. KEY RESULTS: Ex vivo blockade of AT1 receptors did not attenuate EXP3179's effects on NO and EDHF-dependent endothelial function activation. We observed significant reductions in PE-induced contractility with EXP3179 in both WT and AT2 knockout (KO) aortic rings. In vivo, a 1-month chronic treatment with losartan did not affect pulse wave velocity (PWV) but decreased PE-induced contraction by 74.9 % in WT (p < 0.0001) and 47.3 % in AT2 KO (p < 0.05). Presence of AT2 was critical to losartan's BP lowering activity. CONCLUSION: In contrast to BP lowering, the endothelial function-enhancing effects of losartan and EXP3179 are mostly independent of the classic ANGII/AT1/AT2 pathway, which sheds light on ARB pleiotropism.


Subject(s)
Blood Pressure , Endothelium, Vascular , Losartan , Mice, Knockout , Receptor, Angiotensin, Type 2 , Animals , Losartan/pharmacology , Blood Pressure/drug effects , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Mice , Receptor, Angiotensin, Type 2/metabolism , Receptor, Angiotensin, Type 2/genetics , Male , Nitric Oxide/metabolism , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/genetics , Imidazoles/pharmacology , Mice, Inbred C57BL , Angiotensin II Type 1 Receptor Blockers/pharmacology , Vascular Stiffness/drug effects , Sulfonamides , Thiophenes
9.
Genetics ; 227(3)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38788202

ABSTRACT

Developmental and Epileptic Encephalopathies (DEE) are a genetically diverse group of severe, early onset seizure disorders. DEE are normally identified clinically in the first six months of life by the presence of frequent, difficult to control seizures and accompanying stalling or regression of development. DEE75 results from de novo mutations of the NEUROD2 gene that result in loss of activity of the encoded transcription factor, and the seizure phenotype was shown to be recapitulated in Xenopus tropicalis tadpoles. We used CRISPR/Cas9 to make a DEE75 model in Xenopus laevis, to further investigate the developmental etiology. NeuroD2.S CRISPR/Cas9 edited tadpoles were more active, swam faster on average, and had more seizures (C-shaped contractions resembling unprovoked C-start escape responses) than their sibling controls. Live imaging of Ca2+ signaling revealed prolongued, strong signals sweeping through the brain, indicative of neuronal hyperactivity. While the resulting tadpole brain appeared grossly normal, the blood-brain barrier (BBB) was found to be leakier than that of controls. Additionally, the TGFß antagonist Losartan was shown to have a short-term protective effect, reducing neuronal hyperactivity and reducing permeability of the BBB. Treatment of NeuroD2 CRISPant tadpoles with 5 mM Losartan decreased seizure events by more than 4-fold compared to the baseline. Our results support a model of DEE75 resulting from reduced NeuroD2 activity during vertebrate brain development, and indicate that a leaky BBB contributes to epileptogenesis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Blood-Brain Barrier , Disease Models, Animal , Larva , Seizures , Xenopus Proteins , Xenopus laevis , Animals , Blood-Brain Barrier/metabolism , Larva/genetics , Seizures/genetics , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain/metabolism , Neurons/metabolism , Gene Knockdown Techniques , Epilepsy/genetics
11.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792099

ABSTRACT

Losartan, an angiotensin II receptor antagonist frequently detected in wastewater effluents, poses considerable risks to both aquatic ecosystems and human health. Seeking to address this challenge, advanced oxidation processes (AOPs) emerge as robust methodologies for the efficient elimination of such contaminants. In this study, the degradation of Losartan was investigated in the presence of activated peroxymonosulfate (PMS), leveraging ferrous iron as a catalyst to enhance the oxidation process. Utilizing advanced analytical techniques such as NMR and mass spectrometry, nine distinct byproducts were characterized. Notably, seven of these byproducts were identified for the first time, providing novel insights into the degradation pathway of Losartan. The study delved into the kinetics of the degradation process, assessing the degradation efficiency attained when employing the catalyst alone versus when using it in combination with PMS. The results revealed that Losartan degradation reached a significant level of 64%, underscoring the efficacy of PMS/Fe(II) AOP techniques as promising strategies for the removal of Losartan from water systems. This research not only enriches our understanding of pollutant degradation mechanisms, but also paves the way for the development of sustainable water treatment technologies, specifically targeting the removal of pharmaceutical contaminants from aquatic environments.


Subject(s)
Losartan , Oxidation-Reduction , Peroxides , Water Pollutants, Chemical , Water Purification , Losartan/chemistry , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Water Purification/methods , Iron/chemistry , Wastewater/chemistry , Catalysis , Kinetics
13.
Nefrologia (Engl Ed) ; 44(2): 139-149, 2024.
Article in English | MEDLINE | ID: mdl-38697694

ABSTRACT

Losartan is widely used in the treatment of chronic kidney disease (CKD) and has achieved good clinical efficacy, but its exact mechanism is not clear. We performed high-throughput sequencing (HTS) technology to screen the potential target of losartan in treating CKD. According to the HTS results, we found that the tumor necrosis factor (TNF) signal pathway was enriched. Therefore, we conducted in vivo and in vitro experiments to verify it. We found that TNF signal pathway was activated in both unilateral ureteral obstruction (UUO) rats and human proximal renal tubular epithelial cells (HK-2) treated with transforming growth factor-ß1 (TGF-ß1), while losartan can significantly inhibit TNF signal pathway as well as the expression of fibrosis related genes (such as COL-1, α-SMA and Vimentin). These data suggest that losartan may ameliorate renal fibrosis through modulating the TNF pathway.


Subject(s)
Fibrosis , Losartan , Signal Transduction , Tumor Necrosis Factor-alpha , Losartan/pharmacology , Losartan/therapeutic use , Animals , Signal Transduction/drug effects , Rats , Male , Humans , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy , Rats, Sprague-Dawley , Kidney/pathology , Kidney/drug effects , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/etiology
14.
JTCVS Open ; 18: 306-321, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38690408

ABSTRACT

Objective: Previous studies have demonstrated synergistic antitumor effects of angiotensin system inhibition (ASI) combined with cisplatin therapy in pancreatic cancer. This study examines whether or not synergistic antitumor effects occur with combination ASI and cisplatin treatment in lung cancer, and whether or not ASI-induced changes in epithelial-mesenchymal transition play a role in the mechanism of this antitumor phenomenon. Methods: A set of lung cancer cell lines representing a spectrum of epithelial to mesenchymal phenotypes were identified and characterized. Response of epithelial-mesenchymal transition markers to losartan was characterized. Cell culture models of lung cancer were next treated with losartan, cisplatin, or combination of both. Markers of epithelial-mesenchymal transition or surrogates of other signaling pathways (AKT, Stat3, and programmed death-ligand), and cell viability were quantified. Findings were confirmed in both allogenic and syngeneic in vivo murine flank tumor models. Results: Losartan treatment significantly increased E-cadherin and reduced vimentin in human lung cancer cell lines. Combination treatment with losartan and cisplatin enhanced epithelial markers, reduced mesenchymal markers, inhibited promesenchymal signaling mediators, and reduced cell viability. Findings were confirmed in vivo in a murine flank tumor model with transition from mesenchymal to epithelial phenotype and reduced tumor size following combination losartan and cisplatin treatment. Conclusions: Combination losartan and cisplatin treatment attenuates the epithelial-mesenchymal transition pathway and enhances the cytotoxic effect of chemotherapy with in vitro and in vivo models of non-small cell lung cancer. This study suggests an important role for ASI therapy in the treatment of lung cancer.

15.
Int J Cardiol ; 408: 132067, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38714235

ABSTRACT

AIMS: The aim of this study is to evaluate the effect of beta-blockers and angiotensin receptor blockers in reducing the aortic growth rate in children with bicuspid aortic valve (BAV)-related aortopathy and ascending phenotype. METHODS: Consecutive paediatric patients (≤16 years) with BAV and ascending aorta (AsAo) dilation (z-score > 3) were enrolled in this observational retrospective cohort study. Patients receiving prophylactic treatment with either atenolol (0.5 to 1.0 mg/kg/daily) or losartan (0.7 to 1.4 mg/kg/daily) were compared with those who did not receive medical prophylaxis (control group). The primary outcome of interest was the annual rate of change in maximal AsAo diameter z-score in the treatment and control groups. RESULTS: From a cohort of 1005 patients, 120 (mean age 11.3 ± 4.5 years, 82% males) fulfilled the inclusion criteria and were included in the study. Patients in the treatment and control group had similar age, sex, family history of BAV, BAV morphology, and baseline AsAo diameter. During a median follow-up of 7.1 years (interquartile range 3.8-10.2), no differences were observed in the annual growth rate of aortic diameter z-score between patients on treatment and controls. The prevalence of aortic diameter progression was similar in the treatment and control groups, and treatment with atenolol or losartan was not associated with a lower rate of aortic disease progression. CONCLUSIONS: The findings revealed no significant difference in the annual aortic growth rate between treated and untreated patients. Larger cohort studies or, ideally, randomized clinical controlled trials are needed to validate these findings.


Subject(s)
Adrenergic beta-Antagonists , Aortic Valve , Bicuspid Aortic Valve Disease , Humans , Male , Female , Child , Retrospective Studies , Adolescent , Adrenergic beta-Antagonists/therapeutic use , Aortic Valve/abnormalities , Aortic Valve/diagnostic imaging , Aortic Valve/pathology , Aortic Valve/drug effects , Angiotensin Receptor Antagonists/therapeutic use , Losartan/therapeutic use , Follow-Up Studies , Cohort Studies , Atenolol/therapeutic use , Treatment Outcome , Aorta/drug effects , Aorta/diagnostic imaging , Aortic Valve Disease/drug therapy , Heart Valve Diseases/drug therapy , Heart Valve Diseases/complications , Angiotensin II Type 1 Receptor Blockers/therapeutic use
16.
Microbes Infect ; 26(4): 105333, 2024.
Article in English | MEDLINE | ID: mdl-38570086

ABSTRACT

Cerebral malaria (CM) induced by Plasmodium falciparum is a devastating neurological complication that may lead the patient to coma and death. This study aimed to protect Plasmodium-infected C57BL6 mice from CM by targeting the angiotensin II type 1 (AT1) receptor, which is considered the common connecting link between hypertension and CM. In CM, AT-1 mediates blood-brain barrier (BBB) damage through the overexpression of ß-catenin. The AT-1-inhibiting drugs, such as irbesartan and losartan, were evaluated for the prevention of CM. The effectiveness of these drugs was determined by the down regulation of ß-catenin, TCF, LEF, ICAM-1, and VCAM-1 in the drug-treated groups. The expression levels of VE-cadherin and vinculin, essential for the maintenance of BBB integrity, were found to be restored in the drug-treated groups. The pro-inflammatory cytokine levels were decreased, and the anti-inflammatory cytokine levels increased with the treatment. As a major highlight, the mean survival time of treated mice was found to be increased even in the absence of treatment with an anti-malarial agent. The combination of irbesartan or losartan with the anti-malarial agent α/ß-arteether has contributed to an 80% cure rate, which is higher than the 60% cure rate observed with α/ß-arteether alone treatment.


Subject(s)
Disease Models, Animal , Irbesartan , Malaria, Cerebral , Mice, Inbred C57BL , Animals , Mice , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/parasitology , Blood-Brain Barrier/drug effects , Cytokines/metabolism , Irbesartan/pharmacology , Irbesartan/therapeutic use , Losartan/pharmacology , Losartan/therapeutic use , Malaria, Cerebral/drug therapy , Malaria, Cerebral/parasitology , Receptor, Angiotensin, Type 1/metabolism , Angiotensins/metabolism
17.
Avicenna J Med Biotechnol ; 16(2): 104-110, 2024.
Article in English | MEDLINE | ID: mdl-38618512

ABSTRACT

Background: In order to measure the plasma levels of Losartan and Bosentan, a sensitive Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) technique was developed. Methods: To compare bioavailability, the Area Under the Curve (AUC), peak plasma concentration (Cmax), and time to Cmax (Tmax) were employed. The standard curve (150-2400 ng/ml) was linear (R2=0.999), relative errors were between 2.4 to 10.05% and the coefficient of variation (CV%) ranged from 1.52 to 10.88. A single dosage (test and reference) was used for the in vivo investigation, which involved 16 healthy individuals. Results: The AUC0-48, AUC0-, Cmax, and Tmax of the test and reference had no statistically significant differences. The Cmax and 95% confidence intervals of the ratio of Cmax of the two formulations were 0.93-0.96 and 97.6-135%, respectively. Conclusion: Therefore, it was established that generic Bosentan was equivalent to Bosentan from Actelion and that both medications could be regarded as equally effective in clinical settings. The blood level of Bosentan could be measured using this straightforward procedure in all hospital laboratories.

18.
AAPS PharmSciTech ; 25(4): 79, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589718

ABSTRACT

The development of suitable dosage forms is essential for an effective pharmacological treatment in children. Orally disintegrating tablets (ODTs) are attractive dosage forms that avoid swallowing problems, ensure dosage accuracy and are easy to administer as they disintegrate in the oral cavity. This study aimed to develop ODTs containing losartan potassium (LP) for the treatment of arterial hypertension in children. The ODTs, produced by the cost-effective manufacturing process of direct compression, consisted of a mixture of diluent, superdisintegrant, glidant and lubricant. Five superdisintegrants (croscarmellose sodium, two grades of crospovidone, sodium starch glycolate and pregelatinized starch) were tested (at two concentrations), and combined with three diluents (mannitol, lactose and sorbitol). Thus, thirty formulations were evaluated based on disintegration time, hardness and friability. Two formulations, exhibiting the best results concerning disintegration time (< 30 s), hardness and friability (≤ 1.0%), were selected as the most promising ones for further evaluation. These ODTs presented favourable drug-excipient compatibility, tabletability and flow properties. The in vitro dissolution studies demonstrated 'very rapid' drug release. Preliminary stability studies highlighted the requirement of a protective packaging. All quality properties retained appropriate results after 12 months of storage in airtight containers. In conclusion, the ODTs were successfully developed and characterised, suggesting a potential means to accomplish a final prototype that enables an improvement in childhood arterial hypertension treatment.


Subject(s)
Hypertension , Losartan , Humans , Child , Cost-Benefit Analysis , Solubility , Administration, Oral , Drug Compounding/methods , Excipients , Hypertension/drug therapy , Tablets , Hardness
19.
Sci Rep ; 14(1): 8729, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38622264

ABSTRACT

Pirfenidone (PFD), one acceptable medication for treating idiopathic pulmonary fibrosis (IPF), is not well tolerated by patients at full doses. Hence, employing of some approaches such as combination therapy may be applicable for increasing therapeutic efficacy of PFD. Losartan (LOS), an angiotensin II receptor antagonist, could be a suitable candidate for combination therapy because of its stabilizing effect on the pulmonary function of IPF patients. Therefore, this study aimed to investigate the effects of LOS in combination with PFD on bleomycin (BLM)-induced lung fibrosis in rats. BLM-exposed rats were treated with LOS alone or in combination with PFD. The edema, pathological changes, level of transforming growth factor-ß (TGF-ß1), collagen content, and oxidative stress parameters were assessed in the lung tissues. Following BLM exposure, the inflammatory response, collagen levels, and antioxidant markers in rat lung tissues were significantly improved by PFD, and these effects were improved by combination with LOS. The findings of this in vivo study suggest that the combined administration of PFD and LOS may provide more potent protection against IPF than single therapy through boosting its anti-inflammatory, anti-fibrotic, and anti-oxidant effects. These results hold promise in developing a more effective therapeutic strategy for treating of lung fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Losartan , Pyridones , Humans , Rats , Animals , Losartan/pharmacology , Losartan/therapeutic use , Bleomycin/toxicity , Lung/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Antioxidants/pharmacology , Transforming Growth Factor beta1/pharmacology , Collagen/pharmacology
20.
Exp Eye Res ; 242: 109884, 2024 May.
Article in English | MEDLINE | ID: mdl-38570181

ABSTRACT

Recent studies in rabbits and case reports in humans have demonstrated the efficacy of topical losartan in the treatment of corneal scarring fibrosis after a wide range of injuries, including chemical burns, infections, surgical complications, and some diseases. It is hypothesized that the effect of losartan on the fibrotic corneal stroma occurs through a two-phase process in which losartan first triggers the elimination of myofibroblasts by directing their apoptosis via inhibition of extracellular signal-regulated kinase (ERK)-mediated signal transduction, and possibly through signaling effects on the viability and development of corneal fibroblast and fibrocyte myofibroblast precursor cells. This first step likely occurs within a week or two in most corneas with fibrosis treated with topical losartan, but the medication must be continued for much longer until the epithelial basement membrane (EBM) is fully regenerated or new myofibroblasts will develop from precursor cells. Once the myofibroblasts are eliminated from the fibrotic stroma, corneal fibroblasts can migrate into the fibrotic tissue and reabsorb/reorganize the disordered extracellular matrix (ECM) previously produced by the myofibroblasts. This second stage is longer and more variable in different eyes of rabbits and humans, and accounts for most of the variability in the time it takes for the stromal opacity to be markedly reduced by topical losartan treatment. Eventually, keratocytes reemerge in the previously fibrotic stromal tissue to fine-tune the collagens and other ECM components and maintain the normal structure of the corneal stroma. The efficacy of losartan in the prevention and treatment of corneal fibrosis suggests that it acts as a surrogate for the EBM, by suppressing TGF beta-directed scarring of the wounded corneal stroma, until control over TGF beta action is re-established by a healed EBM, while also supporting regeneration of the EBM by allowing corneal fibroblasts to occupy the subepithelial stroma in the place of myofibroblasts.


Subject(s)
Corneal Stroma , Fibrosis , Losartan , Myofibroblasts , Losartan/therapeutic use , Corneal Stroma/drug effects , Corneal Stroma/metabolism , Corneal Stroma/pathology , Fibrosis/drug therapy , Humans , Animals , Myofibroblasts/pathology , Myofibroblasts/drug effects , Rabbits , Corneal Diseases/drug therapy , Corneal Diseases/pathology , Angiotensin II Type 1 Receptor Blockers , Administration, Topical
SELECTION OF CITATIONS
SEARCH DETAIL
...