Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964333

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) provide modest but unsatisfactory benefits for extensive-stage small cell lung cancer (ES-SCLC). Developing strategies for treating ES-SCLC is critical. METHODS: We preliminarily explored the outcomes of salvage low-dose radiotherapy (LDRT) plus ICI on refractory SCLC patients. Next, we evaluated the combinational efficacy in murine SCLC. The tumor immune microenvironment (TIME) was analyzed for mechanistic study. Subsequently, we conducted a multicenter, prospective phase II trial that administered concurrent thoracic LDRT plus chemoimmunotherapy to treatment-naive ES-SCLC patients (MATCH trial, NCT04622228). The primary endpoint was confirmed objective response rate (ORR), and the key secondary endpoints included progression-free survival (PFS) and safety. FINDINGS: Fifteen refractory SCLC patients treated with LDRT plus ICI were retrospectively reviewed. The ORR was 73.3% (95% confidence interval [CI], 44.9-92.2). We identified a specific dose of LDRT (15 Gy/5 fractions) that exhibited growth retardation and improved survival in murine SCLC when combined with ICIs. This combination recruited a special T cell population, TCF1+ PD-1+ CD8+ stem-like T cells, from tumor-draining lymph nodes into the TIME. The MATCH trial showed a confirmed ORR of 87.5% (95% CI, 75.9-94.8). The median PFS was 6.9 months (95% CI, 5.4-9.3). CONCLUSIONS: These findings verified that LDRT plus chemoimmunotherapy was safe, feasible, and effective for ES-SCLC, warranting further investigation. FUNDING: This research was funded by West China Hospital (no. ZYJC21003), the National Natural Science Foundation of China (no. 82073336), and the MATCH trial was fully funded by Roche (China) Holding Ltd. (RCHL) and Shanghai Roche Pharmaceuticals Ltd. (SRPL).

2.
Transl Lung Cancer Res ; 13(5): 1032-1046, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38854937

ABSTRACT

Background: Cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors have shown significant activity against several solid tumors by reducing the phosphorylation of the canonical CDK4/6 substrate retinoblastoma (Rb) protein, while the anti-tumor effect of CDK4/6 inhibitors on Rb-deficient tumors is not clear. Most small cell lung cancers (SCLCs) are Rb-deficient and show very modest response to immune checkpoint blockade (ICB) despite recent advances in the use of immunotherapy. Here, we aimed to investigate the direct effect of CDK4/6 inhibition on SCLC cells and determine its efficacy in combination therapy for SCLC. Methods: The immediate impact of CDK4/6 inhibitor abemaciclib on cell cycle, cell viability and apoptosis in four SCLC cell lines was initially checked. To explore the effect of abemaciclib on double-strand DNA (ds-DNA) damage induction and the combination impact of abemaciclib coupled with radiotherapy (RT), western blot, immunofluorescence (IF) and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. An Rb-deficient immunocompetent murine SCLC model was established to evaluate efficacy of abemaciclib in combination therapy. Histological staining, flow cytometry analysis and RNA sequencing were performed to analyze alteration of infiltrating immune cells in tumor microenvironment (TME). Results: Here, we demonstrated that abemaciclib induced increased ds-DNA damage in Rb-deficient SCLC cells. Combination of abemaciclib and RT induced more cytosolic ds-DNA, and activated the STING pathway synergistically. We further showed that combining low doses of abemaciclib with low-dose RT (LDRT) plus anti-programmed cell death protein-1 (anti-PD-1) antibody substantially potentiated CD8+ T cell infiltration and significantly inhibited tumor growth and prolonged survival in an Rb-deficient immunocompetent murine SCLC model. Conclusions: Our results define previously uncertain DNA damage-inducing properties of CDK4/6 inhibitor abemaciclib in Rb-deficient SCLCs, and demonstrate that low doses of abemaciclib combined with LDRT inflame the TME and enhance the efficacy of anti-PD-1 immunotherapy in SCLC model, which represents a potential novel therapeutic strategy for SCLC.

3.
Radiother Oncol ; 196: 110316, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38679201

ABSTRACT

BACKGROUND AND PURPOSE: This phase Ib study was designed to assess the safety/tolerability and preliminary antitumor activity of neoadjuvant low-dose radiotherapy (LDRT) plus durvalumab and chemotherapy for potentially resectable stage III non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS: Eligible patients received dose-escalated radiotherapy (10 Gy in 5 fractions [cohort 1], 20 Gy in 10 fractions [cohort 2], and 30 Gy in 15 fractions [cohort 3]) according to a 3 + 3 design, with concurrent durvalumab plus standard chemotherapy for two cycles. Primary objective was safety/tolerability. Secondary objectives included major pathological response (MPR), pathological complete response (pCR), event-free survival (EFS), and exploratory biomarker analysis. RESULTS: Nine patients were enrolled and completed the planned neoadjuvant therapy. No dose-limiting toxicity was recorded. Grade 3-4 treatment-related adverse events were observed in three (33.3 %) patients. Seven (77.8 %) patients successfully converted to resectable cases with R0 resection. No treatment-related surgical delay or death was reported. The MPR and pCR rates were both 33.3 % % (1/3) for cohort 1, 66.7 % (2/3) and 0.0 % for cohort 2, and 100.0 % (3/3), and 66.7 % (2/3) for cohort 3. At data cutoff, the 12 month-EFS rates were 33.3 %, 66.7 %, and 100 % for three cohorts, respectively. By biomarker analysis, TMB values were higher in either pathologically or radiologically responders than in others (all p > 0.05). CONCLUSION: Neoadjuvant LDRT plus durvalumab and chemotherapy was well-tolerated in potentially resectable stage III NSCLC. The preliminary efficacy supports this combined regimen's potential, the optimal radiotherapy dosage was determined to be 30 Gy in 15 fractions, warranting further clinical investigation.


Subject(s)
Antibodies, Monoclonal , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neoadjuvant Therapy , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/mortality , Male , Female , Middle Aged , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Lung Neoplasms/mortality , Lung Neoplasms/drug therapy , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/administration & dosage , Aged , Neoplasm Staging , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemoradiotherapy , Radiotherapy Dosage
4.
Radiother Oncol ; 194: 110213, 2024 May.
Article in English | MEDLINE | ID: mdl-38458258

ABSTRACT

BACKGROUND AND PURPOSE: Poor penetration of transferred T cells represents a critical factor impeding the development of adoptive cell therapy in solid tumors. We demonstrated that iRGD-antiCD3 modification promoted both T cell infiltration and activation in our previous work. Interest in low-dose radiotherapy has recently been renewed due to its immuno-stimulatory effects including T cell recruitment. This study aims to explore the synergistic effects between low-dose radiotherapy and iRGD-antiCD3-modified T cells. MATERIALS AND METHODS: Flow cytometry was performed to assess the expression of iRGD receptors and chemokines. T cell infiltration was evaluated by immunohistofluorescence and in vivo real-time fluorescence imaging and antitumor effects were investigated by in vivo bioluminescence imaging in the gastric cancer peritoneal metastasis mouse model. RESULTS: We found that 2 Gy irradiation upregulated the expression of all three iRGD receptors and T-cell chemokines. The addition of 2 Gy low-dose irradiation boosted the accumulation and penetration of iRGD-antiCD3-modified T cells in peritoneal tumor nodules. Combining 2 Gy low-dose irradiation with iRGD-antiCD3-modified T cells significantly inhibited tumor growth and prolonged survival in the peritoneal metastasis mouse model with a favorable safety profile. CONCLUSION: Altogether, we demonstrated that low-dose radiotherapy could improve the antitumor potency of iRGD-antiCD3-modified T cells by promoting T cell infiltration, providing a rationale for exploring low-dose radiotherapy in combination of other adoptive T cell therapies in solid tumors.


Subject(s)
Stomach Neoplasms , T-Lymphocytes , Animals , Mice , Stomach Neoplasms/radiotherapy , Stomach Neoplasms/pathology , Stomach Neoplasms/immunology , T-Lymphocytes/radiation effects , T-Lymphocytes/immunology , Immunotherapy, Adoptive/methods , Radiotherapy Dosage , Oligopeptides , Peritoneal Neoplasms/radiotherapy , Peritoneal Neoplasms/secondary , Cell Line, Tumor , Female , Combined Modality Therapy
5.
Adv Sci (Weinh) ; 11(17): e2308905, 2024 May.
Article in English | MEDLINE | ID: mdl-38419379

ABSTRACT

The precise theranostics of rheumatoid arthritis (RA) remains a formidable challenge in clinical practice. Exploring novel applications of contemporary therapeutic approaches like chemo-radiotherapy is promising as a highly effective strategy for RA. Herein, a novel activatable nanoradiosensitizer-40 (denoted as IRnR-40) is developed, based on encapsulating the clinically approved drugs cisplatin (DDP) and indocyanine green (ICG) within a gelatin shell to achieve second near-infrared fluorescence (NIR-II FL) imaging-guided safe-dose synergetic chemo-radiotherapy. The high concentration of matrix metalloproteinase-9 (MMP-9) in the RA microenvironment plays a pivotal role in triggering the responsive degradation of IRnR-40, leading to the rapid release of functional molecules DDP and ICG. The released ICG serves the dual purpose of illuminating the inflamed joints to facilitate accurate target volume delineation for guiding radiotherapy, as well as acting as a real-time reporter for quantifying the release of DDP to monitor efficacy. Meanwhile, the released DDP achieves highly effective synergistic chemotherapy and radiosensitization for RA via the dual reactive oxygen species (ROS)-mediated mitochondrial apoptotic pathway. To sum up, this activatable nanoradiosensitizer IRnR-40 is believed to be the first attempt to achieve efficient NIR-II FL imaging-guided safe-dose chemo-radiotherapy for RA, which provides a new paradigm for precise theranostics of refractory benign diseases.


Subject(s)
Arthritis, Rheumatoid , Cisplatin , Indocyanine Green , Optical Imaging , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/drug therapy , Animals , Indocyanine Green/administration & dosage , Mice , Optical Imaging/methods , Cisplatin/administration & dosage , Cisplatin/therapeutic use , Disease Models, Animal , Radiation-Sensitizing Agents/administration & dosage , Radiation-Sensitizing Agents/therapeutic use , Humans , Chemoradiotherapy/methods
6.
BJR Case Rep ; 10(1): uaad010, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38352262

ABSTRACT

Classic Hodgkin lymphoma is a potentially curable disease. With the advent of effective systemic regimens with adriamycin, bleomycin, vincristine, and dacarbazine, chemotherapy has become the treatment of choice for advanced Hodgkin lymphoma. However, for advanced Hodgkin lymphoma after chemotherapy, disease relapse rates are still high. This case report highlights how low-dose palliative radiotherapy can be used successfully for the management of an unusual case of recurrent lymphoma with a different histology soon after completing systemic therapy, which was further complicated by an ongoing local infection.

7.
Strahlenther Onkol ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285172

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy that can manifest with skin nodules and erythematous plaques. In most cases BPDCN progresses rapidly, causing multiple skin lesions and also affecting internal organs and bone marrow, warranting initiation of systemic therapies or hematopoietic stem cell transplantation (HCT). Although not curative, radiotherapy for isolated lesions might be indicated in case of (imminent) ulceration and large or symptomatic lesions. To this end, doses of 27.0-51.0 Gy have been reported. Here, we present the case of an 80-year-old male with BPDCN with multiple large, nodular, and ulcerating lesions of the thorax, abdomen, and face. Low-dose radiotherapy of 2â€¯× 4.0 Gy was administered to several lesions, which resolved completely within 1 week with only light residual hyperpigmentation of the skin in affected areas and reliably prevented further ulceration. Radiotoxicity was not reported. Therefore, low-dose radiotherapy can be an effective and low-key treatment in selected cases of BPDCN, especially in a palliative setting, with a favorable toxicity profile.

8.
Int J Cancer ; 154(7): 1143-1157, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38059788

ABSTRACT

Radiotherapy has unique immunostimulatory and immunosuppressive effects. Although high-dose radiotherapy has been found to have systemic antitumor effects, clinically significant abscopal effects were uncommon on the basis of irradiating single lesion. Low-dose radiation therapy (LDRT) emerges as a novel approach to enhance the antitumor immune response due to its role as a leverage to reshape the tumor immune microenvironment (TIME). In this article, from bench to bedside, we reviewed the possible immunomodulatory role of LDRT on TIME and systemic tumor immune environment, and outlined preclinical evidence and clinical application. We also discussed the current challenges when LDRT is used as a combination therapy, including the optimal dose, fraction, frequency, and combination of drugs. The advantage of low toxicity makes LDRT potential to be applied in multiple lesions to amplify antitumor immune response in polymetastatic disease, and its intersection with other disciplines might also make it a direction for radiotherapy-combined modalities.


Subject(s)
Neoplasms , Humans , Neoplasms/radiotherapy , Forecasting , Immunity , Combined Modality Therapy , Immunomodulation , Immunotherapy , Tumor Microenvironment
9.
Strahlenther Onkol ; 200(2): 134-142, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37815599

ABSTRACT

OBJECTIVE: Updated report about the randomized comparison of the effect of radiotherapy on painful osteoarthritis (OA) applying a standard dose vs. a very low dose regime after a follow-up of 1 year. PATIENTS AND METHODS: Patients presenting with OA of the hand/finger and knee joints were included. After randomization (every joint region was randomized separately) the following protocols were applied: (a) standard arm: total dose 3.0 Gy, single fractions of 0.5 Gy twice a week; (b) experimental arm: total dose 0.3 Gy, single fractions of 0.05 Gy twice a week. The dosage was blinded for the patients. For evaluation the scores after 1­year visual analog scale (VAS), Knee Injury and Osteoarthritis Outcome Score-Short Form (KOOS-PS), Short Form Score for the Assessment and Quantification of Chronic Rheumatic Affections of the Hands (SF-SACRAH) and 12-item Short-Form Health Survey (SF-12) were used (for further details: see [1]). RESULTS: The standard dose was applied to 77 hands and 33 knees, the experimental dose was given to 81 hands and 30 knees. After 12 months, the data of 128 hands and 45 knees were available for evaluation. Even after this long time, we observed a favorable response of pain to radiotherapy in both trial arms; however, there were no reasonable statistically significant differences between both arms concerning pain, functional, and quality of life scores. Side effects did not occur. The only prognostic factor was the pain level before radiotherapy. CONCLUSIONS: We found a favorable pain relief and a limited response in the functional and quality of life scores in both treatment arms. The possible effect of low doses such as 0.3 Gy on pain is widely unknown.


Subject(s)
Osteoarthritis, Knee , Osteoarthritis , Humans , Follow-Up Studies , Quality of Life , Osteoarthritis/radiotherapy , Pain/radiotherapy , Pain Management , Osteoarthritis, Knee/radiotherapy , Treatment Outcome
10.
Nanotechnology ; 35(13)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38134437

ABSTRACT

Due to the unique ability to mimic natural enzymes, single-atom nanoenzymes (SAE) have garnered significant attention and research in tumor therapy. However, their efficacy often faces challenges in terms of drug delivery methods, and the research regarding their applications in radiotherapy is scarce. Herein, we introduce a light-controlled SAE hydrogel platform (SH) for glutathione-depletion-mediated low-dose radiotherapy. The SH incorporates a Cu single-atom enzyme (CuSA), and upon irradiation with 1064 nm near-infrared light, the CuSA can convert light energy into heat, which in turn degrades the hydrogel, enabling the release of CuSA into tumor cells or tissues. The diffused CuSA not only can facilitate the conversion of H2O2into hydroxyl radicals (•OH), but also can effectively depletes cellular glutathione. This leads to increased sensitivity of tumor cells to radiotherapy, resulting in enhanced cytotoxicity even at low doses. The animal study results further confirmed the good tumor-killing efficacy of this SH system. To the best of our knowledge, this stands as the pioneering report on leveraging a single-atom enzyme for GSH depletion-mediated low-dose radiotherapy.


Subject(s)
Drug Delivery Systems , Neoplasms , Animals , Diffusion , Glutathione , Hot Temperature , Hydrogels , Hydrogen Peroxide
11.
ACS Nano ; 17(24): 25419-25438, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38055636

ABSTRACT

Low-dose radiotherapy (LDR) has shown significant implications for inflaming the immunosuppressive tumor microenvironment (TME). Surprisingly, we identify that FABP-dependent lipid droplet biogenesis in tumor cells is a key determinant of LDR-evoked cytotoxic and immunostimulatory effects and developed a nanointegrated strategy to promote the antitumor efficacy of LDR through cooperative ferroptosis immunotherapy. Specifically, TCPP-TK-PEG-PAMAM-FA, a nanoscale multicomponent functional polymer with self-assembly capability, was synthesized for cooperatively entrapping hafnium ions (Hf4+) and HIF-1α-inhibiting siRNAs (siHIF-1α). The TCPP@Hf-TK-PEG-PAMAM-FA@siHIF-1α nanoassemblies are specifically taken in by folate receptor-overexpressing tumor cells and activated by the elevated cellular ROS stress. siHIF-1α could readily inhibit the FABP3/7 expression in tumor cells via HIF-1α-FABP3/7 signaling and abolish lipid droplet biogenesis for enhancing the peroxidation susceptibility of membrane lipids, which synergizes with the elevated ROS stress in the context of Hf4+-enhanced radiation exposure and evokes pronounced ferroptotic damage in vital membrane structures. Interestingly, TCPP@Hf-TK-PEG-PAMAM-FA@siHIF-1α-enhanced ferroptotic biomembrane damage also facilitates the exposure of tumor-associated antigens (TAAs) to promote post-LDR immunotherapeutic effects, leading to robust tumor regression in vivo. This study offers a nanointegrative approach to boost the antitumor effects of LDR through the utilization of tumor-intrinsic lipid metabolism.


Subject(s)
Ferroptosis , Neoplasms , Humans , Reactive Oxygen Species , Lipid Droplets , Neoplasms/radiotherapy , Immunotherapy , Cell Line, Tumor , Tumor Microenvironment
12.
Future Oncol ; 19(34): 2291-2296, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37937444

ABSTRACT

This randomized phase II trial (NCT05978193) combines low-dose radiotherapy (LDRT) and conventionally fractionated radiotherapy (CFRT) with immunochemotherapy for metastatic esophageal squamous cell carcinoma, aiming to assess the potential enhanced effect of radiotherapy on immunotherapy. Patients are administered a PD-1 inhibitor along with paclitaxel and platinum-based chemotherapy (arm B), or combined with LDRT and CFRT (arm A). Immunotherapy is given every 3 weeks with chemotherapy for 4 cycles, followed by immunotherapy maintenance therapy for up to 24 months. In arm A, LDRT (2 Gy, 2 fractions; delivered to the primary and all metastatic tumors) precedes each immunochemotherapy cycle for 4 cycles, followed by CFRT (40-50 Gy, 20-25 fractions; delivered to the primary tumor) starting from the fifth immunotherapy cycle. The primary end point is median progression-free survival. Clinical Trial Registration: NCT05978193 (clinicaltrials.gov).


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/drug therapy , Carcinoma, Squamous Cell/pathology , Esophageal Neoplasms/pathology , Paclitaxel/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Immunotherapy/adverse effects , Clinical Trials, Phase II as Topic , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
13.
J Cancer Res Clin Oncol ; 149(20): 18253-18270, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37985502

ABSTRACT

BACKGROUND: Immunotherapy has shown promise in the treatment of esophageal cancer, but using it alone only benefits a small number of patients. Most patients either do not have a significant response or develop secondary drug resistance. The combination of radiotherapy and immunotherapy appears to be a promising approach to treating esophageal cancer. PURPOSE: We reviewed milestone clinical trials of radiotherapy combined with immunotherapy for esophageal cancer. We then discussed potential biomarkers for radiotherapy combined with immunotherapy, including programmed cell death-ligand 1 (PD-L1) status, tumor mutation burden (TMB), tumor-infiltrating lymphocytes, ct-DNA, imaging biomarkers, and clinical factors. Furthermore, we emphasize the key mechanisms of radiation therapy-induced immune stimulation and immune suppression in order to propose strategies for overcoming immune resistance in radiation therapy (RT). Lastly, we discussed the emerging role of low-dose radiotherapy (LDRT) , which has become a promising approach to overcome the limitations of high-dose radiotherapy. CONCLUSION: Radiotherapy can be considered a triggering factor for systemic anti-tumor immune response and, with the assistance of immunotherapy, can serve as a systemic treatment option and potentially become the standard treatment for cancer patients.


Subject(s)
Esophageal Neoplasms , Immunotherapy , Humans , Immunotherapy/methods , Esophageal Neoplasms/therapy , Combined Modality Therapy , Biomarkers, Tumor , B7-H1 Antigen
14.
Front Oncol ; 13: 1274487, 2023.
Article in English | MEDLINE | ID: mdl-37869085

ABSTRACT

Combination strategies to improve immunotherapy response in microsatellite stable metastatic colorectal cancer (MSS mCRC) remain an unmet need. Several single-arm clinical trials have shown promising synergistic effects between regorafenib and ICIs; however, some contradictory results have also been reported. Randomized controlled trials are needed to further validate the combination of regorafenib with ICIs. In addition, low-dose radiotherapy has been demonstrated to induce local immune responses by reprogramming the tumor microenvironment when combined with high-dose radiotherapy and ICIs. In this study, we designed a prospective, randomized, controlled phase II trial to investigate the efficacy and safety of regorafenib in combination with high/low-dose radiotherapy plus toripalimab in MSS mCRC compared to regorafenib alone. Patients with MSS metastatic adenocarcinoma of the colon or rectum will be enrolled and randomly assigned into two arms: a control arm and an experimental arm. Patients in the control arm will receive regorafenib monotherapy (120 mg once daily on days 1-21 of each 28 days cycle). Patients in the experimental arm will first receive one cycle of regorafenib (80 mg once daily on days 1-21 of each 28 days cycle) and toripalimab (240mg, q3w), followed by high-dose (4-8 fractions of 8-12Gy) and low-dose (1-10Gy at 0.5-2Gy/fraction) radiotherapy, and then continue regorafenib and toripalimab treatment. The primary endpoint is the objective response rate, and the secondary endpoints are disease control rate, duration of remission, median progress-free survival, median overall survival, and adverse events. Recruitment started in August 2023 and is ongoing. Clinical Trial Registration: https://clinicaltrials.gov/study/NCT05963490?cond=NCT05963490&rank=1, identifier NCT05963490.

15.
Leuk Lymphoma ; 64(13): 2195-2201, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37706509

ABSTRACT

Extranodal marginal zone lymphoma of bronchus-associated lymphoid tissue (BALT) is a rare cancer for which optimal treatment strategies are undefined. Retrospective analyses suggest excellent outcomes with surgical resection for localized BALT lymphoma; however, the role of radiotherapy remains underexplored. We report the largest-to-date single-center analysis of 13 primary BALT lymphoma patients treated with radiotherapy. Of 15 treated lesions, we report a 100% response rate with complete response (CR) achieved in 67% of lesions. Among 10 lesions treated with very low-dose radiotherapy (VLDRT; 4 Gray [Gy]), 6 (60%) achieved a CR; among 5 lesions treated with full-dose radiotherapy (24-36 Gy), 4 (80%) achieved a CR. There were no local recurrences. Only one patient, treated with 30 Gy, developed an acute grade 3/4 toxic effect. There were no events of radiation-induced secondary malignancies. Our institutional experience indicates that radiotherapy, including VLDRT, is a safe and effective treatment for primary BALT lymphoma.


Subject(s)
Lymphoma, B-Cell, Marginal Zone , Humans , Retrospective Studies , Lymphoma, B-Cell, Marginal Zone/diagnosis , Lymphoma, B-Cell, Marginal Zone/radiotherapy , Lymphoma, B-Cell, Marginal Zone/drug therapy , Treatment Outcome , Lymphoid Tissue , Bronchi/pathology
16.
Radiat Oncol J ; 41(2): 89-97, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37403351

ABSTRACT

PURPOSE: We aimed to determine whether low-dose radiotherapy (LDRT) is effective in patients with Alzheimer disease (AD). MATERIALS AND METHODS: We included patients according to the following criteria: probable Alzheimer's dementia according to the New Diagnostic Criteria for Alzheimer's Disease; confirmation of amyloid plaque deposits on baseline amyloid positron emission tomography (PET); a Korean Mini-Mental State Examination 2nd edition (K-MMSE-2) score of 13-26; and a Global Clinical Dementia Rating (CDR) score of 0.5-2 points. LDRT was performed six times at 0.5 Gy each. Post-treatment cognitive function tests and PET-CT examinations were performed to evaluate efficacy. The medication for AD treatment was maintained throughout the study period. RESULTS: At 6 months after LDRT, neurological improvement was seen in 20% of patients. Patient #2 showed improvement in all domains of the Seoul Neuropsychological Screening Battery II (SNSB-II). Moreover, the K-MMSE-2 and Geriatric Depression Score-Short Form scores improved from 20 to 23 and from 8 to 2, respectively. For patient #3, the CDR score (sum of box score) improved from 1 (4.0) to 1 (3.5) at 3 months follow-up. Moreover, the Z scores for language and related functions, memory, and frontal executive function improved to -2.56, -1.86, and -1.32, respectively at the 6-month follow-up. Two patients complained of mild nausea and mild hair loss during LDRT, which improved after treatment. CONCLUSION: One of the five patients with AD treated with LDRT experienced a temporary improvement in SNSB-II. LDRT is tolerable in patients with AD. We are currently under follow-up and will conduct cognitive function tests after 12 months after LDRT. A large-scale randomized controlled trial with a longer follow-up period is warranted to determine the effect of LDRT on patients with AD.

17.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166789, 2023 10.
Article in English | MEDLINE | ID: mdl-37302425

ABSTRACT

Immune checkpoint inhibitors (ICIs) have revolutionized the current treatment landscape for cancer, yet the response rates of ICIs remain unmet. Synergistic with immunotherapy, low-dose radiotherapy (LDRT) has been demonstrated to activate anti-tumor immunity - a transition from traditional radiation therapy geared toward local radical treatment to a type of immunological adjuvant. As such, studies utilizing LDRT to enhance the efficacy of immunotherapy have been increasing preclinically and clinically. This paper reviews the recent strategies of using LDRT to overcome the resistance of ICIs, as well as providing potential opportunities in cancer treatment. Despite the potential of LDRT in immunotherapy is recognized, the mechanisms behind this form of treatment remain largely elusive. Thus, we reviewed history, mechanisms and challenges associated with this form of treatment, as well as different modes of its application, to provide relatively accurate practice standards for LDRT as a sensitizing treatment when combined with immunotherapy or radio-immunotherapy.


Subject(s)
Neoplasms , Humans , Neoplasms/radiotherapy , Immunotherapy
18.
Transl Oncol ; 35: 101710, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37320873

ABSTRACT

The history of low-dose radiotherapy (LDRT or LDR) as a treatment modality for malignant tumors dates back to the 1920s. Even with the minimal total dose administered during treatment, LDRT can result in long-lasting remission. Autocrine and paracrine signaling are widely recognized for fostering the growth and development of tumor cells. LDRT exerts systemic anti-tumor effects through various mechanisms, such as enhancing the activity of immune cells and cytokines, shifting the immune response towards an anti-tumor phenotype, influencing gene expression, and blocking crucial immunosuppressive pathways. Additionally, LDRT has been demonstrated to enhance the infiltration of activated T cells and initiate a series of inflammatory processes while modulating the tumor microenvironment. In this context, the objective of receiving radiation is not to directly kill tumor cells but to reprogram the immune system. Enhancing anti-tumor immunity may be a critical mechanism by which LDRT plays a role in cancer suppression. Therefore, this review primarily focuses on the clinical and preclinical efficacy of LDRT in combination with other anti-cancer strategies, such as the interaction between LDRT and the tumor microenvironment, and the remodeling of the immune system.

19.
Colloids Surf B Biointerfaces ; 227: 113347, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37196465

ABSTRACT

Radiotherapy (RT) efficacy can be promoted with the help of nanoenzyme that can "re-programing" the tumour's micro-environment by changing the expression level of special bio-molecules. However, problems such as low reaction efficiency, limited endogenous H2O2, and/or unsatisfactory results of a single catalysis mode in treatment limit the application in the RT field. Herein, a novel Au nanoparticles (AuNPs) decorated iron SAE (FeSAE@Au) was formulated for self-cascade catalytic RT. In this dual-nanozyme system, embedded AuNPs can sever as GOx and endow FeSAE@Au with self-H2O2 supplying ability, which can elevate the H2O2 level in tumors by catalyzing cellular glucose in situ, further improving the catalytic performance of FeSAE with peroxidase-like activity. The self-cascade catalytic reaction can significantly increase cellular hydroxyl radicals (•OH) level, further promoting RT's effect. Furthermore, in vivo findings demonstrated that FeSAE can effectively limit tumor growth while causing low damage in important organs. According to our understanding, FeSAE@Au is the first description of a hybrid SAE-based nanomaterial employed in cascade catalytic RT. The research yields new and interesting insights for developing various SAE systems for anticancer therapy.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/radiotherapy , Gold/therapeutic use , Hydrogen Peroxide , Neoplasms/pathology , Catalysis , Glucose Oxidase/metabolism , Tumor Microenvironment
20.
Cancer Lett ; 565: 216239, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37211066

ABSTRACT

Progress in the treatment of small cell lung cancer (SCLC) has been modest over the past decades until the advent of immune checkpoint inhibitors, which have redefined the standard first-line treatment for extensive-stage SCLC (ES-SCLC). However, despite the positive results of several clinical trials, the limited survival benefit achieved suggests that the priming and sustaining of immunotherapeutic efficacy are poor and further investigation is urgently needed. In this review, we aim to summarize the potential mechanisms underlying the limited efficacy of immunotherapy and intrinsic resistance in ES-SCLC, including impaired antigen presentation and limited T cell infiltration. Moreover, to tackle the current dilemma, given the synergistic effects of radiotherapy on immunotherapy, especially the unique advantages of low-dose radiotherapy (LDRT), such as less immunosuppression and lower radiation toxicity, we propose radiotherapy as a booster to enhance the immunotherapeutic efficacy by overcoming the poor priming effect. Recent clinical trials, including ours, have also focused on adding radiotherapy, including LDRT, to first-line treatment of ES-SCLC. Additionally, we also suggest combination strategies to sustain the immunostimulatory effect of radiotherapy, as well as the cancer-immunity cycle, and further improve survival outcomes.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/radiotherapy , Small Cell Lung Carcinoma/drug therapy , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Immunotherapy/methods , Combined Modality Therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...