Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
Physiol Rep ; 12(13): e16148, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38991987

ABSTRACT

Pulmonary fibrosis is characterized by pathological accumulation of scar tissue in the lung parenchyma. Many of the processes that are implicated in fibrosis, including increased extracellular matrix synthesis, also occur following pneumonectomy (PNX), but PNX instead results in regenerative compensatory growth of the lung. As fibroblasts are the major cell type responsible for extracellular matrix production, we hypothesized that comparing fibroblast responses to PNX and bleomycin (BLM) would unveil key differences in the role they play during regenerative versus fibrotic lung responses. RNA-sequencing was performed on flow-sorted fibroblasts freshly isolated from mouse lungs 14 days after BLM, PNX, or sham controls. RNA-sequencing analysis revealed highly similar biological processes to be involved in fibroblast responses to both BLM and PNX, including TGF-ß1 and TNF-α. Interestingly, we observed smaller changes in gene expression after PNX than BLM at Day 14, suggesting that the fibroblast response to PNX may be muted by expression of transcripts that moderate pro-fibrotic pathways. Itpkc, encoding inositol triphosphate kinase C, was a gene uniquely up-regulated by PNX and not BLM. ITPKC overexpression in lung fibroblasts antagonized the pro-fibrotic effect of TGF-ß1. RNA-sequencing analysis has identified considerable overlap in transcriptional changes between fibroblasts following PNX and those overexpressing ITPKC.


Subject(s)
Bleomycin , Fibroblasts , Mice, Inbred C57BL , Pneumonectomy , Pulmonary Fibrosis , Bleomycin/pharmacology , Animals , Fibroblasts/metabolism , Fibroblasts/drug effects , Mice , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Lung/metabolism , Lung/cytology , Lung/pathology , Male , Sequence Analysis, RNA/methods , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Cells, Cultured
3.
Respir Res ; 25(1): 282, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014439

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by chronic bronchitis, emphysema and vascular remodelling. The disease is associated with hypoxia, inflammation and oxidative stress. Lung fibroblasts are important cells in remodelling processes in COPD, as main producers of extracellular matrix proteins but also in synthesis of growth factors and inflammatory mediators. METHODS: In this study we aimed to investigate if there are differences in how primary distal lung fibroblasts obtained from COPD patients and healthy subjects respond to hypoxia (1% O2) and pro-fibrotic stimuli with TGF-ß1 (10 ng/mL). Genes and proteins associated with oxidative stress, endoplasmic reticulum stress, remodelling and inflammation were analysed with RT-qPCR and ELISA. RESULTS: Hypoxia induced differences in expression of genes involved in oxidative stress (SOD3 and HIF-1α), ER stress (IRE1, PARK and ATF6), apoptosis (c-Jun and Bcl2) and remodelling (5HTR2B, Collagen7 and VEGFR2) in lung fibroblasts from COPD subjects compared to control subjects, where COPD fibroblasts were in general less responsive. The release of VEGF-C was increased after hypoxia, whereas TGF-ß significantly reduced the VEGF response to hypoxia and the release of HGF. COPD fibroblasts had a higher release of IL-6, IL-8, MCP-1 and PGE2 compared to lung fibroblasts from control subjects. The release of inflammatory mediators was less affected by hypoxia, whereas TGFß1 induced differences in inflammatory profile between fibroblasts from COPD and control subjects. CONCLUSION: These results suggest that there is an alteration of gene regulation of various stress responses and remodelling associated mediator release that is related to COPD and hypoxia, where fibroblasts from COPD patients have a deficient response.


Subject(s)
Fibroblasts , Lung , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Male , Female , Middle Aged , Cells, Cultured , Aged , Lung/metabolism , Lung/pathology , Cell Hypoxia/physiology , Oxidative Stress/physiology , Inflammation Mediators/metabolism , Endoplasmic Reticulum Stress/physiology , Inflammation/metabolism , Inflammation/pathology , Hypoxia/metabolism , Transforming Growth Factor beta1/metabolism , Case-Control Studies
4.
Aging (Albany NY) ; 16(9): 7523-7534, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38696307

ABSTRACT

Electrolyzed-reduced water has powerful antioxidant properties with constituents that scavenge reactive oxygen species (ROS), which are known to be produced by several intrinsic and extrinsic processes. When there is an imbalance between ROS production and antioxidant defenses, oxidative stress occurs. Persistent oxidative stress leads to cellular senescence, an important hallmark of aging, and is involved in several age-related conditions and illnesses. This study aims to investigate whether Weo electrolyzed water (WEW) could modulate the phenotype of senescent cells. We compared normal human lung fibroblasts (BJ) and breast cancer cells (T47D) treated with hydrogen peroxide (H2O2) to induce senescence. We assessed the molecular impact of WEW on markers of cellular senescence, senescence-associated secretory phenotype (SASP) factors, and stress response genes. Treatment with WEW modulated markers of cellular senescence, such as the senescence-associated ß-galactosidase (SA-ß-gal) activity, EdU incorporation and p21 expression, similarly in both cell types. However, WEW modulated the expression of SASP factors and stress response genes in a cell type-dependent and opposite fashion, significantly decreasing them in BJ cells, while stimulating their expression in T47D cells. Reduction in the expression of SASP factors and stress-related genes in BJ cells suggests that WEW acts as a protective factor, thereby reducing oxidative stress in normal cells, while making cancer cells more sensitive to the effects of cellular stress, thus increasing their elimination and consequently reducing their deleterious effects. These findings suggest that, due to its differential effects as a senomorphic factor, WEW could have a positive impact on longevity and age-related diseases.


Subject(s)
Cellular Senescence , Hydrogen Peroxide , Oxidative Stress , Water , Humans , Cellular Senescence/drug effects , Hydrogen Peroxide/pharmacology , Oxidative Stress/drug effects , Cell Line, Tumor , Fibroblasts/drug effects , Fibroblasts/metabolism , Senescence-Associated Secretory Phenotype/drug effects , Reactive Oxygen Species/metabolism , Female , Electrolysis
5.
J Ethnopharmacol ; 330: 118226, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38670401

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing pulmonary disorder that has a poor prognosis and high mortality. Although there has been extensive effort to introduce several new anti-fibrotic agents in the past decade, IPF remains an incurable disease. Mimosa pudica L., an indigenous Vietnamese plant, has been empirically used to treat respiratory disorders. Nevertheless, the therapeutic effects of M. pudica (MP) on lung fibrosis and the mechanisms underlying those effects remain unclear. AIM OF THE STUDY: This study investigated the protective effect of a crude ethanol extract of the above-ground parts of MP against pulmonary fibrogenesis. MATERIALS AND METHODS: Inflammatory responses triggered by TNFα in structural lung cells were examined in normal human lung fibroblasts and A549 alveolar epithelial cells using Western blot analysis, reverse transcription-quantitative polymerase chain reaction assays, and immunocytochemistry. The epithelial-to-mesenchymal transition (EMT) was examined via cell morphology observations, F-actin fluorescent staining, gene and protein expression measurements, and a wound-healing assay. Anti-fibrotic assays including collagen release, differentiation, and measurements of fibrosis-related gene and protein expression levels were performed on TGFß-stimulated human lung fibroblasts and lung fibroblasts derived from mice with fibrotic lungs. Finally, in vitro anti-fibrotic activities were validated using a mouse model of bleomycin-induced pulmonary fibrosis. RESULTS: MP alleviated the inflammatory responses of A549 alveolar epithelial cells and lung fibroblasts, as revealed by inhibition of TNFα-induced chemotactic cytokine and chemokine expression, along with inactivation of the MAPK and NFκB signalling pathways. MP also partially reversed the TGFß-promoted EMT via downregulation of mesenchymal markers in A549 cells. Importantly, MP decreased the expression levels of fibrosis-related genes/proteins including collagen I, fibronectin, and αSMA; moreover, it suppressed collagen secretion and prevented myofibroblast differentiation in lung fibroblasts. These effects were mediated by FOXO3 stabilization through suppression of TGFß-induced ERK1/2 phosphorylation. MP consistently protected mice from the onset and progression of bleomycin-induced pulmonary fibrosis. CONCLUSION: This study explored the multifaceted roles of MP in counteracting the pathobiological processes of lung fibrosis. The results suggest that further evaluation of MP could yield candidate therapies for IPF.


Subject(s)
Epithelial-Mesenchymal Transition , Forkhead Box Protein O3 , MAP Kinase Signaling System , Plant Extracts , Pulmonary Fibrosis , Animals , Humans , Male , Mice , A549 Cells , Antifibrotic Agents/pharmacology , Bleomycin , Epithelial-Mesenchymal Transition/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Forkhead Box Protein O3/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology , Lung/drug effects , Lung/pathology , Lung/metabolism , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced
6.
Biomed Mater ; 19(3)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38626774

ABSTRACT

Bioinks play a crucial role in tissue engineering, influencing mechanical and chemical properties of the printed scaffold as well as the behavior of encapsulated cells. Recently, there has been a shift from animal origin materials to their synthetic alternatives. In this context, we present here bioinks based on fully synthetic and biodegradable poly(α,L-amino acids) (PolyAA) as an alternative to animal-based gelatin methacrylate (Gel-Ma) bioinks. Additionally, we first reported the possibility of the visible light photoinitiated incorporation of the bifunctional cell adhesive RGD peptide into the PolyAA hydrogel matrix. The obtained hydrogels are shown to be cytocompatible, and their mechanical properties closely resemble those of gelatin methacrylate-based scaffolds. Moreover, combining the unique properties of PolyAA-based bioinks, the photocrosslinking strategy, and the use of droplet-based printing allows the printing of constructs with high shape fidelity and structural integrity from low-viscosity bioinks without using any sacrificial components. Overall, presented PolyAA-based materials are a promising and versatile toolbox that extends the range of bioinks for droplet bioprinting.


Subject(s)
Amino Acids , Biocompatible Materials , Gelatin , Hydrogels , Light , Tissue Engineering , Tissue Scaffolds , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Gelatin/chemistry , Amino Acids/chemistry , Biocompatible Materials/chemistry , Animals , Bioprinting/methods , Oligopeptides/chemistry , Ink , Methacrylates/chemistry , Humans , Printing, Three-Dimensional , Materials Testing , Mice , Viscosity
7.
Noncoding RNA ; 10(2)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38668384

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease marked by abnormal accumulation of extracellular matrix (ECM) due to dysregulated expression of various RNAs in pulmonary fibroblasts. This study utilized RNA-seq data meta-analysis to explore the regulatory network of hub long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in IPF fibroblasts. The meta-analysis unveiled 584 differentially expressed mRNAs (DEmRNA) and 75 differentially expressed lncRNAs (DElncRNA) in lung fibroblasts from IPF. Among these, BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA were identified as hub mRNAs, while AC008708.1, AC091806.1, AL442071.1, FAM111A-DT, and LINC01989 were designated as hub lncRNAs. Functional characterization revealed involvement in TGF-ß, PI3K, FOXO, and MAPK signaling pathways. Additionally, this study identified regulatory interactions between sequences of hub mRNAs and lncRNAs. In summary, the findings suggest that AC008708.1, AC091806.1, FAM111A-DT, LINC01989, and AL442071.1 lncRNAs can regulate BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA mRNAs in fibroblasts bearing IPF and contribute to fibrosis by modulating crucial signaling pathways such as FoxO signaling, chemical carcinogenesis, longevity regulatory pathways, non-small cell lung cancer, and AMPK signaling pathways.

8.
J Cell Mol Med ; 28(7): e18191, 2024 04.
Article in English | MEDLINE | ID: mdl-38494860

ABSTRACT

Epigenetic modifications are involved in fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and contribute to the silencing of anti-fibrotic genes. H3K27me3, a key repressive histone mark, is catalysed by the methyltransferase enhancer of Zeste homologue 2 (EZH2), which is regulated by the post-translational modification, O-linked N-Acetylglucosamine (O-GlcNAc). In this study, we explored the effects of O-GlcNAc and EZH2 on the expression of antifibrotic genes, cyclooxygenase-2 (Cox2) and Heme Oxygenase (Homx1). The expression of Cox2 and Hmox1 was examined in primary IPF or non-IPF lung fibroblasts with or without EZH2 inhibitor EZP6438, O-GlcNAc transferase (OGT) inhibitor (OSMI-1) or O-GlcNAcase (OGA) inhibitor (thiamet G). Non-IPF cells were also subjected to TGF-ß1 with or without OGT inhibition. The reduced expression of Cox2 and Hmox1 in IPF lung fibroblasts is restored by OGT inhibition. In non-IPF fibroblasts, TGF-ß1 treatment reduces Cox2 and Hmox1 expression, which was restored by OGT inhibition. ChIP assays demonstrated that the association of H3K27me3 is reduced at the Cox2 and Hmox1 promoter regions following OGT or EZH2 inhibition. EZH2 levels and stability were decreased by reducing O-GlcNAc. Our study provided a novel mechanism of O-GlcNAc modification in regulating anti-fibrotic genes in lung fibroblasts and in the pathogenesis of IPF.


Subject(s)
Histones , Idiopathic Pulmonary Fibrosis , Humans , Histones/metabolism , Acetylglucosamine/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Lung/metabolism , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism
9.
Article in English | MEDLINE | ID: mdl-38529321

ABSTRACT

Thioredoxin-interacting protein (TXNIP) plays a critical role in regulation of cellular redox reactions and inflammatory responses by interacting with thioredoxin (TRX) or the inflammasome. The role of TXNIP in lung fibrosis and molecular regulation of its stability have not been well studied. Therefore, here we investigated the molecular regulation of TXNIP stability and its role in TGF-ß1-mediated signaling in lung fibroblasts. TXNIP protein levels were significantly decreased in lung tissues from bleomycin-challenged mice. Overexpression of TXNIP attenuated transforming growth factor-ß1 (TGF-ß1)-induced phosphorylation of Smad2/3 and fibronectin expression in lung fibroblasts, suggesting that decrease in TXNIP may contribute to the pathogenesis of lung fibrosis. Further, we observed that TGF-ß1 lowered TXNIP protein levels, while TXNIP mRNA levels were unaltered by TGF-ß1 exposure. TGF-ß1 induced TXNIP degradation via the ubiquitin-proteasome system. A serine residue mutant (TNXIP-S308A) was resistant to TGF-ß1-induced degradation. Furthermore, downregulationof ubiquitin-specific protease-13 (USP13) promoted the TGF-ß1-induced TXNIP ubiquitination and degradation. Mechanistic studies revealed that USP13 targeted and deubiquitinated TXNIP. The results of this study revealed that the decrease of TXNIP in lungs apparently contributes to the pathogenesis of pulmonary fibrosis and that USP13 can target TXNP for deubiquitination and regulate its stability.

10.
Toxicol Res (Camb) ; 13(2): tfae037, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38500513

ABSTRACT

Background: Epidemiological studies demonstrate that particulate matter 2.5 (PM2.5) exposure closely related to chronic respiratory diseases. Cellular senescence plays an important role in many diseases. However, it is not fully clear whether PM2.5 exposure could induce cellular senescence in the human lung. In this study, we generated a three-dimensional (3D) spheroid model using isolated primary human lung fibroblasts (HLFs) to investigate the effects of PM2.5 on cellular senescence at the 3D level. Methods: 3D spheroids were exposed to 25-100 µg/ml of PM2.5 in order to evaluate the impact on cellular senescence. SA-ß-galactosidase activity, cell proliferation, and the expression of key genes and proteins were detected. Results: Exposure of the HLF spheroids to PM2.5 yielded a more sensitive cytotoxicity than 2D HLF cell culture. Importantly, PM2.5 exposure induced the rapid progression of cellular senescence in 3D HLF spheroids, with a dramatically increased SA-ß-Gal activity. In exploiting the mechanism underlying the effect of PM2.5 on senescence, we found a significant increase of DNA damage, upregulation of p21 protein levels, and suppression of cell proliferation in PM2.5-treated HLF spheroids. Moreover, PM2.5 exposure created a significant inflammatory response, which may be at least partially associated with the activation of TGF-ß1/Smad3 axis and HMGB1 pathway. Conclusions: Our results indicate that PM2.5 could induce DNA damage, inflammation, and cellular senescence in 3D HLF spheroids, which may provide a new evidence for PM2.5 toxicity based on a 3D model which has been shown to be more in vivo-like in their phenotype and physiology than 2D cultures.

11.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338745

ABSTRACT

Cryopreservation is an essential step for utilizing various cell types for biological research and medical purposes. At the same time, there is a lack of data on the effect of cryopreservation, especially when prolonged, on the karyotype of cells. In the present work, we analyzed the genetic stability of cells subjected to a cryopreservation procedure. The objects were immortalized Chinese hamster lung fibroblasts (CHL V-79 RJK line) and human endometrial mesenchymal stem/stromal cells (eMSCs). We showed that short-term cryopreservation in liquid nitrogen for up to 6 months did not affect the karyotype stability of CHL V-79 RJK and eMSCs. On the contrary, karyotyping of G-banded metaphase chromosomes in cells underwent 10-year cryopreservation, which revealed genomic instability in both cell lines associated with the variability of chromosome number in cells, random chromosomal rearrangements, and condensation disorder in homologs. In addition, we found out that long-term cryopreservation of eMSCs does not affect the expression of their typical surface markers and morphology, but results in a significant reduction in proliferative potential and early manifestation of cellular senescence features upon eMSCs culturing. Thus, we concluded that the long-term cryopreservation of cells of different types and biological origin can lead to irreversible changes of their karyotype and acceleration of cellular senescence.


Subject(s)
Cryopreservation , Genomic Instability , Cricetinae , Animals , Humans , Karyotyping , Cell Line , Karyotype , Cricetulus
12.
Toxicol Appl Pharmacol ; 483: 116806, 2024 02.
Article in English | MEDLINE | ID: mdl-38195004

ABSTRACT

Cadmium (Cd) is a naturally occurring, toxic environmental metal found in foods. Humans do not have an efficient mechanism for Cd elimination; thus, Cd burden in humans increases with age. Cell and mouse studies show that Cd burden from low environmental levels of exposure impacts lung cell metabolism, proliferation signaling and cell growth as part of disease-promoting profibrotic responses in the lungs. Prior integrative analysis of metabolomics and transcriptomics identified the zDHHC11 transcript as a central functional hub in response to Cd dose. zDHHC11 encodes a protein S-palmitoyltransferase, but no evidence is available for effects of Cd on protein S-palmitoylation. In the present research, we studied palmitoylation changes in response to Cd and found increased protein S-palmitoylation in human lung fibroblasts that was inhibited by 2-bromopalmitate (2-BP), an irreversible palmitoyltransferase inhibitor. Mass spectrometry-based proteomics showed palmitoylation of proteins involved in divalent metal transport and in fibrotic signaling. Mechanistic studies showed that 2-BP inhibited palmitoylation of divalent metal ion transporter ZIP14 and also inhibited cellular Cd uptake. Transcription analyses showed that Cd stimulated transforming growth factor (TGF)-ß1 and ß3 expression within 8 h and lung fibrotic markers α-smooth muscle actin, matrix metalloproteinase-2, and collagen 1α1 gene expression and that these effects were blocked by 2-BP. Because 2-BP also blocked palmitoylation of proteins controlled by TGFß1, these results show that palmitoylation impacts Cd-dependent fibrotic signaling both by enhancing cellular Cd accumulation and by supporting post-translational processing of TGFß1-dependent proteins.


Subject(s)
Cadmium , Matrix Metalloproteinase 2 , Humans , Mice , Animals , Cadmium/toxicity , Cadmium/metabolism , Matrix Metalloproteinase 2/metabolism , Lipoylation , Lung , Signal Transduction , Fibrosis , Fibroblasts , Transforming Growth Factor beta1/metabolism
13.
Rev Med Virol ; 34(1): e2496, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38282408

ABSTRACT

Among the leucocyte subpopulations circulating in peripheral blood of immune-compromised patients with disseminated Human cytomegalovirus (HCMV) infection, polymorphonuclear leuckocytes (PMNL) and M/M may carry infectious virus. While only in PMNL early HCMV replicative events do occur, monocytes are susceptible to complete virus replication when they enter human organs, where as macrophages become a site of active complete virus replication. In vivo leucocytes and endothelial cells interact continuously, as suggested by several in vitro experimental findings showing the bidirectional HCMV transmission from leucocytes to and from endothelial cells with the critical aid of adhesion molecules. Recently, the neutralising antibody response in sera from subjects with primary HCMV infection was reported to be much higher and earlier than in human embryonic lung fibroblasts (HELF) cells when measured in endothelial cells and epithelial cells, where virus entry is mediated mostly by the pentamer complex gH/gL/pUL128/pUL130/pUL131, whereas it was much lower and delayed when determined in HELF, where virus entry is mediated mostly by the trimer complex gH/gL/gO. Thus, these results suggested that products of UL128L were the molecules primary responsible for the differential neutralising antibody response. This conclusion was confirmed by a series of polyclonal and monoclonal antibodies directed to the components of pUL128L. Very recently, based on two sets of experiments including inhibition and immunoblotting assays, the pentamer complex/trimer complex ratio has been finally identified as the main factor of the neutralising antibody response. This ratio may change with the virus suspension producer and target cell system as well as number of cell culture passages.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Endothelial Cells , Viral Envelope Proteins , Antibodies, Neutralizing , Virus Internalization , Leukocytes
14.
Pulm Pharmacol Ther ; 83: 102267, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37972706

ABSTRACT

The tyrosine kinase inhibitor nintedanib has been recently approved for the treatment of Interstitial Lung Diseases (ILDs) that manifest a progressive fibrosis phenotype other than Idiopathic pulmonary Fibrosis (IPF). Nintedanib reduces the development of lung fibrosis in various animal models resembling features of PF-ILD and in vitro, it inhibits the fibrosing phenotype of human lung fibroblasts (HLFs) isolated from patients with IPF. To get insight on the cellular and molecular mechanisms that drive the clinical efficiency of nintedanib in patients with non-IPF PF-ILD, we investigated its effects on the fibrosing functions of HLFs derived from patients with PF-hypersensitivity pneumonitis (PF-HP, n = 7), PF-sarcoidosis (n = 5) and pleuroparenchymal fibroelastosis (PPFE, n = 4). HLFs were treated with nintedanib (10 nM-1 µM) and then stimulated with PDGF-BB (25-50 ng/ml) or TGF-ß1 (1 ng/ml) for 24-72 h to assess proliferation and migration or differentiation. At nanomolar concentrations, nintedanib reduced the levels of PDGF receptor and ERK1/2 phosphorylation, the proliferation and the migration of PF-HP, PF-sarcoidosis and PPFE HLFs stimulated with PDGF-BB. Moreover, nintedanib also attenuates the myofibroblastic differentiation driven by TGF-ß1 but only when it is used at 1 µM. The drug reduced the phosphorylation of SMAD2/3 and decreased the induction of collagen, fibronectin and α-smooth muscle actin expression induced by TGF-ß1. In conclusion, our results demonstrate that nintedanib counteracts fundamental fibrosing functions of lung fibroblasts derived from patients with PF-HP, PF-sarcoidosis and PPFE, at concentrations previously reported to inhibit control and IPF HLFs. Such effects may contribute to its clinical benefit in patients suffering from these irreversible ILDs.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Sarcoidosis , Animals , Humans , Transforming Growth Factor beta1/metabolism , Becaplermin , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/pathology , Lung , Fibrosis , Idiopathic Pulmonary Fibrosis/pathology , Fibroblasts/metabolism , Disease Progression
15.
Respir Res ; 24(1): 242, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37798767

ABSTRACT

The pulmonary extracellular matrix (ECM) is a macromolecular structure that provides mechanical support, stability and elastic recoil for different pulmonary cells including the lung fibroblasts. The ECM plays an important role in lung development, remodeling, repair, and the maintenance of tissue homeostasis. Biomechanical and biochemical signals produced by the ECM regulate the phenotype and function of various cells including fibroblasts in the lungs. Fibroblasts are important lung structural cells responsible for the production and repair of different ECM proteins (e.g., collagen and fibronectin). During lung injury and in chronic lung diseases such as asthma, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), an abnormal feedback between fibroblasts and the altered ECM disrupts tissue homeostasis and leads to a vicious cycle of fibrotic changes resulting in tissue remodeling. In line with this, using 3D hydrogel culture models with embedded lung fibroblasts have enabled the assessment of the various mechanisms involved in driving defective (fibrotic) fibroblast function in the lung's 3D ECM environment. In this review, we provide a summary of various studies that used these 3D hydrogel models to assess the regulation of the ECM on lung fibroblast phenotype and function in altered lung ECM homeostasis in health and in chronic respiratory disease.


Subject(s)
Hydrogels , Idiopathic Pulmonary Fibrosis , Humans , Hydrogels/analysis , Hydrogels/metabolism , Lung/metabolism , Extracellular Matrix/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Fibrosis , Fibroblasts/metabolism
16.
Aging (Albany NY) ; 15(19): 10524-10539, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37815883

ABSTRACT

G protein-coupled receptor kinase-2 (GRK2) is involved in TGF-ß1-induced activation of lung fibroblasts, which could give rise to the pathogenesis of pulmonary fibrosis. Paroxetine (PRXT) serves as a selective GRK2 inhibitor which is widely used to treat anxiety and depression for several decades. However, whether PRXT could inhibit TGF-ß1-induced activation of lung fibroblasts and combat bleomycin-induced pulmonary fibrosis remains unclear. Here, we investigated the effects of PRXT on pulmonary fibrosis in C57/BL6 caused by bleomycin as well as on the activation of murine primary lung fibroblasts stimulated with TGF-ß1. The results demonstrated that PRXT markedly improved the pulmonary function and 21-day survival in bleomycin-induced mice. Meanwhile, PRXT significantly decreased collagen deposition, inflammation, and oxidative stress in lung tissues from bleomycin-induced mice. Furthermore, we found that PRXT could inhibit the protein and mRNA expression of GRK2 and Smad3 in lung tissues from bleomycin-induced mice. In vitro experiments also PRXT could inhibit cell activation and collagen synthesis in a concentration-dependent manner in TGF-ß1-induced lung fibroblasts. In addition, we found that Smad3 overexpression by adenovirus transfection could offset anti-fibrotic and antioxidative effects from PRXT in TGF-ß1-induced lung fibroblasts, which showed no effects on the protein expression of GRK2. In conclusion, PRXT mediates the inhibition of GRK2, which further blocks the transcription of Smad3 in TGF-ß1-induced lung fibroblasts, providing an attractive therapeutic target for pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/prevention & control , Pulmonary Fibrosis/metabolism , Bleomycin/toxicity , Transforming Growth Factor beta1/metabolism , Paroxetine/therapeutic use , Lung/pathology , Fibroblasts/metabolism , Collagen/metabolism , Mice, Inbred C57BL
17.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(8): 1152-1162, 2023 Aug 28.
Article in English, Chinese | MEDLINE | ID: mdl-37875355

ABSTRACT

OBJECTIVES: The phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is one of the main signaling pathways related to autophagy. Autophagy plays a key role in the formation of silicosis fibrosis. The phenotypic transformation of lung fibroblasts into myofibroblasts is a hallmark of the transition from the inflammatory phase to the fibrotic phase in silicosis. This study aims to investigate whether the PI3K/Akt/mTOR pathway affects the phenotypic transformation of silicosis-induced lung fibroblasts into myofibroblasts via mediating macrophage autophagy. METHODS: The human monocytic leukemia cell line THP-1 cells were differentiated into macrophages by treating with 100 ng/mL of phorbol ester for 24 h. Macrophages were exposed to different concentrations (0, 25, 50, 100, 200, 400 µg/mL) and different times (0, 6, 12, 24, 48 h) of SiO2 dust suspension. The survival rate of macrophages was measured by cell counting kit-8 (CCK-8) method. Enzyme linked immunosorbent assay (ELISA) was used to measure the contents of transforming growth factor-ß1 (TGF-ß1) and tumor necrosis factor-α (TNF-α) in the cell supernatant. The co-culture system of macrophages and HFL-1 cells was established by transwell. A blank control group, a SiO2 group, a LY294002 group, a SC79 group, a LY294002+SiO2 group, and a SC79+SiO2 group were set up in this experiment. Macrophages in the LY294002+SiO2 group were pretreated with LY294002 (PI3K inhibitor) for 18 hours, and macrophages in the SC79+SiO2 group were pretreated with SC79 (Akt activator) for 24 hours, and then exposed to SiO2 (100 µg/mL) dust suspension for 12 hours. The expression of microtubule-associated protein 1 light chain 3 (LC3) protein in macrophages was detected by the immunofluorescence method. The protein expressions of PI3K, Akt, mTOR, Beclin-1, LC3 in macrophages, and collagen III (Col III), α-smooth muscle actin (α-SMA), fibronectin (FN), matrix metalloproteinase-1 (MMP-1), tissue metalloproteinase inhibitor-1 (TIMP-1) in HFL-1 cells were measured by Western blotting. RESULTS: After the macrophages were exposed to SiO2 dust suspension of different concentrations for 12 h, the survival rates of macrophages were gradually decreased with the increase of SiO2 concentration. Compared with the 0 µg/mL group, the survival rates of macrophages in the 100, 200, and 400 µg/mL groups were significantly decreased, and the concentrations of TGF-ß1 and TNF-α in the cell supernatant were obviously increased (all P<0.05). When 100 µg/mL SiO2 dust suspension was applied to macrophages, the survival rates of macrophages were decreased with the prolonged exposure time. Compared with the 0 h group, the survival rates of macrophages were significantly decreased (all P<0.05), the concentrations of TGF-ß1 and TNF-α in the cell supernatant were significantly increased, and the protein expression levels of Beclin-1 and LC3II were increased markedly in the 6, 12, 24, and 48 h groups (all P<0.05). Immunofluorescence results demonstrated that after exposure to SiO2 (100 µg/mL) dust for 12 h, LC3 exhibited punctate aggregation and significantly higher fluorescence intensity compared to the blank control group (P<0.05). Compared with the blank control group, the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated in the SiO2 group (all P<0.05). Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were down-regulated and the protein expressions of LC3II and Beclin-1 were up-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-ß1 in the cell supernatant were decreased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were down-regulated (all P<0.05) in the LY294002+SiO2 group. Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were up-regulated and the protein expressions of LC3II and Beclin-1 were down-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-ß1 in the cell supernatant were increased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated (all P<0.05) in the SC79+SiO2 group. CONCLUSIONS: Silica dust exposure inhibits the PI3K/Akt/mTOR pathway, increases autophagy and concentration of inflammatory factors in macrophages, and promotes the phenotype transformation of HFL-1 cells into myofibroblasts. The regulation of the PI3K/Akt/mTOR pathway can affect the autophagy induction and the concentration of inflammatory factors of macrophages by silica dust exposure, and then affect the phenotype transformation of HFL-1 cells into myofibroblasts induced by silica dust exposure.


Subject(s)
Proto-Oncogene Proteins c-akt , Silicosis , Humans , Proto-Oncogene Proteins c-akt/metabolism , Transforming Growth Factor beta1/metabolism , Silicon Dioxide/toxicity , Silicon Dioxide/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Matrix Metalloproteinase 1/metabolism , Tissue Inhibitor of Metalloproteinase-1 , Sirolimus , Beclin-1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Dust , TOR Serine-Threonine Kinases/metabolism , Lung/metabolism , Fibroblasts/metabolism , Silicosis/metabolism , Macrophages/metabolism , Autophagy
18.
Clin Exp Immunol ; 214(3): 260-274, 2023 12 13.
Article in English | MEDLINE | ID: mdl-37586814

ABSTRACT

Airway remodeling is a major feature of asthma. Interleukin (IL)-36γ is significantly upregulated and promotes airway hyper-responsiveness (AHR) in asthma, but its role in airway remodeling is unknown. Here, we aimed to investigate the role of IL-36γ in airway remodeling, and whether IL-38 can alleviate airway remodeling in chronic asthma by blocking the effects of IL-36γ. IL-36γ was quantified in mice inhaled with house dust mite (HDM). Extracellular matrix (ECM) deposition in lung tissues and AHR were assessed following IL-36γ administration to mice. Airway inflammation, AHR, and remodeling were evaluated after IL-38 or blocking IL-36 receptor (IL-36R) treatment in asthmatic mice. The effects of lung fibroblasts stimulated with IL-36γ and IL-38 were quantified in vitro. Increased expression of IL-36γ was detected in lung tissues of HDM-induced asthmatic mice. The intratracheal instillation of IL-36γ to mice significantly enhanced the ECM deposition, AHR, and the number of activated lung fibroblasts around the airways. IL-38 or blocking IL-36R treated asthmatic mice showed a significant alleviation in the airway inflammation, AHR, airway remodeling, and number of activated fibroblasts around airways as compared with the HDM group. In vitro, IL-36γ promoted the activation and migration of human lung fibroblasts (HFL-1). The administration of IL-38 can counteract these biological processes induced by IL-36γ in HFL-1cells. The results indicated that IL-38 can mitigate airway remodeling by blocking the profibrotic effects of IL-36γ in chronic asthma. IL-36γ may be a new therapeutic target, and IL-38 is a potential candidate agent for inhibiting airway remodeling in asthma.


Subject(s)
Airway Remodeling , Asthma , Animals , Humans , Mice , Asthma/metabolism , Interleukins/metabolism , Lung/metabolism , Inflammation/metabolism , Disease Models, Animal , Pyroglyphidae , Mice, Inbred BALB C
19.
Int J Mol Sci ; 24(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37510994

ABSTRACT

Pulmonary fibrosis (PF) associated with systemic sclerosis (SSc) results in significant morbidity and mortality. We previously reported that insulin-like growth factor-II (IGF-II) is overexpressed in lung tissues and fibroblasts from SSc patients, and IGF-II fosters fibrosis by upregulating collagen type I, fibronectin, and TGFß. We now show that IGF-II augments mRNA levels of profibrotic signaling molecules TGFß2 (p ≤ 0.01) and TGFß3 (p ≤ 0.05), collagen type III (p ≤ 0.01), and the collagen posttranslational modification enzymes P4HA2 (p ≤ 0.05), P3H2 (p ≤ 0.05), LOX (p = 0.065), LOXL2 (p ≤ 0.05), LOXL4 (p ≤ 0.05) in primary human lung fibroblasts. IGF-II increases protein levels of TGFß2 (p ≤ 0.01), as well as COL3A1, P4HA2, P4Hß, and LOXL4 (p ≤ 0.05). In contrast, IGF-II decreases mRNA levels of the collagen degradation enzymes cathepsin (CTS) K, CTSB, and CTSL and protein levels of CTSK (p ≤ 0.05). The SRY-box transcription factor 9 (SOX9) is overexpressed in SSc lung tissues at the mRNA (p ≤ 0.05) and protein (p ≤ 0.01) levels compared to healthy controls. IGF-II induces SOX9 in lung fibroblasts (p ≤ 0.05) via the IGF1R/IR hybrid receptor, and SOX9 regulates TGFß2 (p ≤ 0.05), TGFß3 (p ≤ 0.05), COL3A1 (p ≤ 0.01), and P4HA2 (p ≤ 0.001) downstream of IGF-II. Our results identify a novel IGF-II signaling axis and downstream targets that are regulated in a SOX9-dependent and -independent manner. Our findings provide novel insights on the role of IGF-II in promoting pulmonary fibrosis.


Subject(s)
Insulin-Like Growth Factor II , Pulmonary Fibrosis , Scleroderma, Systemic , Humans , Cells, Cultured , Collagen/metabolism , Fibroblasts/metabolism , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Lung/pathology , Protein-Lysine 6-Oxidase/metabolism , Pulmonary Fibrosis/metabolism , RNA, Messenger/metabolism , Scleroderma, Systemic/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism
20.
Heliyon ; 9(6): e16849, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37346334

ABSTRACT

Backgrounds: Liensinine (Lien), Neferine (Nef), Isoliensinine (Iso) and Tetrandrine (Tet), benzylisoquinoline alkaloids (BIAs), have been shown inhibitory effects on pulmonary fibrosis (PF) through anti-inflammatory, anti-oxidative activities, inhibition of cytokines and NF-κB. Effects of other similar BIAs, Dauricine (Dau), Papaverine (Pap) and lotusine (Lot), on PF remain unclear. Here, we explored the effects of five bisbenzylisoquinoline (Lien, Nef, Iso, Tet and Dau) and two monobenzylisoquinoline (Pap, Lot) alkaloids on normal and PF fibroblasts. Methods: Primary normal and PF lung fibroblasts were cultured and treated with these alkaloids. Proliferation, activation, migration and apoptosis changes were detected by MTT, wound healing assay, flow cytometry. Protein level was analyzed by Western blot. Results: All BIAs inhibited proliferation of normal and PF lung fibroblasts induced by TGF-ß. α-SMA protein level in normal and PF lung fibroblasts decreased after Lien, Nef, Iso, Tet and Dau treatment. Pap and Lot had no influence on α-SMA expression. Dau showed the strongest inhibitory effects on proliferation and activation among alkaloids. The migration rates of normal and PF lung fibroblasts were inhibited by Lien, Nef, Iso, and Dau. Lien, Nef, Iso and Dau significantly promoted apoptosis, while Tet had no effect on apoptosis. Pap and Lot had no influence on activation, migration and apoptosis. Dau significantly inhibited Smad3/4 and p-ERK1/2 protein overexpression induced by TGF-ß1. Conclusions: Bisbenzylisoquinoline alkaloids had stronger effects on inhibiting lung fibroblasts than monobenzylisoquinoline alkaloids. Dau expressed the strongest inhibitory effects, which may be related to its inhibition of TGF-ß1/Smad3/4 and p-ERK1/2 pathway proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...