Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 806
Filter
1.
Expert Opin Investig Drugs ; : 1-13, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967534

ABSTRACT

INTRODUCTION: Pulmonary involvement is one of the most common extra-articular manifestations of rheumatoid arthritis (RA), a systemic inflammatory disease characterized by joint swelling and tenderness. All lung compartments can be interested in the course of RA, including parenchyma, airways, and, more rarely, pleura and vasculature. AREAS COVERED: The aim of this paper is to review the main RA lung manifestations, focusing on pathogenesis, clinical and therapeutic issues of RA-related interstitial lung disease (ILD). Despite an increasing number of studies in the last years, pathogenesis of RA-ILD remains largely debated and the treatment of RA patients with lung involvement is still challenging in these patients. EXPERT OPINION: Management of RA-ILD is largely based on expert-opinion. Due to the broad clinical manifestations, including both joints and pulmonary involvement, multidisciplinary discussion, including rheumatologist and pulmonologist, is essential, not only for diagnosis, but also to evaluate the best therapeutic approach and follow-up. In fact, the coexistence of different lung manifestations may influence the treatment response and safety. The identification of biomarkers and risk-factors for an early identification of RA patients at risk of developing ILD remains a need that still needs to be fulfilled, and that will require further investigation in the next years.

2.
PeerJ ; 12: e17662, 2024.
Article in English | MEDLINE | ID: mdl-38993979

ABSTRACT

Background: miRNAs are small, conserved, single-stranded non-coding RNA that are typically transported by exosomes for their functional roles. The therapeutic potential of exosomal miRNAs has been explored in various diseases including breast cancer, pancreatic cancer, cholangiocarcinoma, skin diseases, Alzheimer's disease, stroke, and glioma. Pathophysiological processes such as cellular inflammation, apoptosis, necrosis, immune dysfunction, and oxidative stress are closely associated with miRNAs. Internal and external factors such as tissue ischemia, hypoxia, pathogen infection, and endotoxin exposure can trigger these reactions and are linked to miRNAs. Paraquat-induced fibrosis is a protracted process that may not manifest immediately after injury but develops during bodily recovery, providing insights into potential miRNA intervention treatments. Rationale: These findings could potentially be applied for further pharmaceutical research and clinical therapy of paraquat-induced pulmonary fibrosis, and are likely to be of great interest to clinicians involved in lung fibrosis research. Methodology: Through a literature review, we identified an association between miR-15a-5p and miR-152-3p and their involvement in the Wnt signaling pathway. This allowed us to deduce the molecular mechanisms underlying regulatory interactions involved in paraquat-induced lung fibrosis. Results: miR-15a-5p and miR-152-3p play roles in body repair processes, and pulmonary fibrosis can be considered a form of reparative response by the body. Although the initial purpose of fibrotic repair is to restore normal body function, excessive tissue fibrosis, unlike scar formation following external skin trauma, can significantly and adversely affect the body. Modulating the Wnt/ß-catenin signaling pathway is beneficial in alleviating tissue fibrosis in various diseases. Conclusions: In this study, we delineate the association between miR-15a-5p and miR-152-3p and the Wnt/ß-catenin signaling pathway, presenting a novel concept for addressing paraquat-induced pulmonary fibrosis.


Subject(s)
MicroRNAs , Paraquat , Pulmonary Fibrosis , Wnt Signaling Pathway , MicroRNAs/metabolism , MicroRNAs/genetics , Wnt Signaling Pathway/drug effects , Paraquat/toxicity , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Humans , Animals , beta Catenin/metabolism , beta Catenin/genetics
3.
Respir Med ; 231: 107721, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972608

ABSTRACT

BACKGROUND AND OBJECTIVE: Acute exacerbation of fibrosing interstitial lung disease (AE-FILD) is a serious condition with a high mortality rate. We aimed to comprehensively analyze cytokines in bronchoalveolar lavage fluid and their association with the clinical course of AE-FILD. METHODS: We retrospectively enrolled 60 patients with AE-FILD who underwent bronchoalveolar lavage. We comprehensively measured 44 cytokines and chemokines in the obtained bronchoalveolar lavage fluid using a Luminex analyzer. Patients were grouped into those who died within 90 days (non-survival group) and survived beyond 90 days (survival group) to investigate the association of the levels of cytokines and chemokines with mortality. RESULTS: The levels of matrix metalloproteinase 1 (p = 0.003), granulocyte-macrophage colony-stimulating factor (p = 0.040), interleukin 6 (p = 0.047), interleukin 8 (p = 0.050), monocyte chemoattractant protein-1 (p = 0.043), and eotaxin (p = 0.044) were significantly higher in the non-survival group than in the survival group. In the receiver operating characteristic analysis, their areas under the curve were 0.80, 0.68, 0.71, 0.70, 0.70, and 0.72, respectively. Using machine learning with these six cytokines and chemokines, the predictive accuracy for the survival group was 0.94. CONCLUSIONS: Our study demonstrated that several cytokines and chemokines in bronchoalveolar lavage fluid could be prognostic predictors in patients with AE-FILD.

4.
J Inflamm Res ; 17: 3983-3999, 2024.
Article in English | MEDLINE | ID: mdl-38911987

ABSTRACT

Background: Interstitial lung disease (ILD), characterized by pulmonary fibrosis (PF), represents the end-stage of various ILDs. The immune system plays an important role in the pathogenesis of PF. V-domain immunoglobulin suppressor of T-cell activation (VISTA) is an immune checkpoint with immune suppressive functions. However, its specific role in the development of PF and the underlying mechanisms remain to be elucidated. Methods: We assessed the expression of VISTA in CD4 T cells from patients with connective tissue disease-related interstitial lung disease (CTD-ILD). Spleen cells from wild-type (WT) or Vsir -/- mice were isolated and induced for cell differentiation in vitro. Additionally, primary lung fibroblasts were isolated and treated with interleukin-17A (IL-17A). Mice were challenged with bleomycin (BLM) following VISTA blockade or Vsir knockout. Moreover, WT or Vsir -/- CD4 T cells were transferred into Rag1 -/- mice, which were then challenged with BLM. Results: VISTA expression was decreased in CD4 T cells from patients with CTD-ILD. Vsir deficiency augmented T-helper 17 (Th17) cell differentiation in vitro. Furthermore, IL-17A enhanced the production of inflammatory cytokines, as well as the differentiation and migration of lung fibroblasts. Both VISTA blockade and knockout of Vsir increased the percentage of IL-17A-producing Th17 cells and promoted BLM-induced PF. In addition, mice receiving Vsir -/- CD4 T cells exhibited a higher percentage of Th17 cells and more severe PF compared to those receiving WT CD4 T cells. Conclusion: These findings demonstrate the significant role of VISTA in modulating the development of PF by controlling Th17 cell differentiation. These insights suggest that targeting VISTA could be a promising therapeutic strategy for PF.

5.
Article in English | MEDLINE | ID: mdl-38843440

ABSTRACT

Pulmonary fibrosis can be a fatal disease characterized by progressive lung scarring. It is still poorly understood how the pulmonary endothelium is involved in the disease pathogenesis. Differences of the pulmonary vasculature between patients and donors were analysed using transmission electron microscopy, immunohistochemistry and single-cell-RNA-sequencing. Vascular barrier resistance, endothelial-immune cell adhesion, and sensitivity to an inflammatory milieu were studied in-vitro. Integrity and activation markers were measured by ELISA in human plasma. Transmission electron microscopy demonstrated abnormally swollen endothelial cells in fibrotic lungs as compared to donors. A more intense CD31 and vWF and patchy VE-Cadherin staining in fibrotic lungs supported the presence of a dysregulated endothelium. Integrity markers CD31, VE-Cadherin, Thrombomodulin and VEGFR-2 and activation marker von-Willebrand-Factor gene expression was increased in different endothelial subpopulations (e.g. arterial, venous, gCap, aCap) in pulmonary fibrosis. This was associated with a heightened sensitivity of fibrotic endothelial cells to TNF-α or IFN-γ and elevated immune cell adhesion. The barrier strength was overall reduced in endothelial cells from fibrotic lungs. vWF and IL-8 were increased in the plasma of patients, while VE-Cadherin, Thrombomodulin and VEGFR-2 were decreased. VE-Cadherin staining was also patchy in biopsy tissue and was decreased in plasma samples of PF patients six months after the initial diagnosis. Our data demonstrate highly abnormal endothelial cells in PF. The vascular compartment is characterized by hyper-activation and increased immune cell adhesion, as well as dysfunctional endothelial barrier function. Re-establishing endothelial cell homeostasis and function might represent a new therapeutic option for fibrotic lung diseases.

6.
Biomed Pharmacother ; 177: 117016, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943992

ABSTRACT

Idiopathic pulmonary fibrosis is an aging-related, chronic lung disease, with unclear pathogenesis and no effective treatment. One of the triggering factors in cell aging is oxidative stress and it is known to have a role in idiopathic pulmonary fibrosis. In this paper, the protective effect of the E-CG-01 (3,4-lacto-cycloastragenol) molecule in terms of its antioxidant properties was evaluated in the bleomycin induced mice lung fibrosis model. Bleomycin sulfate was administered as a single dose (2.5 U/kg body weight) intratracheally to induce lung fibrosis. E-CG-01 was administered intraperitoneally in three different doses (2 mg/kg/day, 6 mg/kg/day, and 10 mg/kg/day) for 14 days, starting three days before the bleomycin administration. Fibrosis was examined by Hematoxylin-Eosin, Masson Trichrome, and immunohistochemical staining for TGF-beta1, Type I collagen Ki-67, and gama-H2AX markers. Activity analysis of catalase and Superoxide dismutase enzymes, measurement of total oxidant, total glutathione, and Malondialdehyde levels. In histological analysis, it was determined that all three different doses of the molecule provided a prophylactic effect against the progression of fibrosis compared to the bleomycin control group. However, it was observed that only the molecule applied in the high dose decreased the total oxidant stress level. Lung weight ratio increased in the BLM group but significantly reduced with high-dose E-CG-01. E-CG-01 at all doses reduced collagen deposition, TGF-ß expression, and Ki-67 expression compared to the BLM group. Intermediate and high doses of E-CG-01 also significantly reduced alveolar wall thickness and edema formation. These findings suggest that E-CG-01 has potential therapeutic effects in mitigating lung fibrosis through its antioxidant properties.

7.
J Transl Med ; 22(1): 600, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937794

ABSTRACT

BACKGROUND: Interstitial lung disease (ILD) is the primary cause of mortality in systemic sclerosis (SSc), an autoimmune disease characterized by tissue fibrosis. SSc-related ILD (SSc-ILD) occurs more frequently in females aged 30-55 years, whereas idiopathic pulmonary fibrosis (IPF) is more prevalent in males aged 60-75 years. SSc-ILD occurs earlier than IPF and progresses rapidly. FCN1, FABP4, and SPP1 macrophages are involved in the pathogenesis of lung fibrosis; SPP1 macrophages demonstrate upregulated expression in both SSc-ILD and IPF. To identify the differences between SSc-ILD and IPF using single-cell analysis, clarify their distinct pathogeneses, and propose directions for prevention and treatment. METHODS: We performed single-cell RNA sequencing on NCBI Gene Expression Omnibus (GEO) databases GSE159354 and GSE212109, and analyzed lung tissue samples across healthy controls, IPF, and SSc-ILD. The primary measures were the filtered genes integrated with batch correction and annotated cell types for distinguishing patients with SSc-ILD from healthy controls. We proposed an SSc-ILD pathogenesis using cell-cell interaction inferences, and predicted transcription factors regulating target genes using SCENIC. Drug target prediction of the TF gene was performed using Drug Bank Online. RESULTS: A subset of macrophages activates the MAPK signaling pathway under oxidative stress. Owing to the lack of inhibitory feedback from ANNEXIN and the autoimmune characteristics, this leads to an earlier onset of lung fibrosis compared to IPF. During initial lung injury, fibroblasts begin to activate the IL6 pathway under the influence of SPP1 alveolar macrophages, but IL6 appears unrelated to other inflammatory and immune cells. This may explain why tocilizumab (an anti-IL6-receptor antibody) only preserves lung function in patients with early SSc-ILD. Finally, we identified BCLAF1 and NFE2L2 as influencers of MAPK activation in macrophages. Metformin downregulates NFE2L2 and could serve as a repurposed drug candidate. CONCLUSIONS: SPP1 alveolar macrophages play a role in the profibrotic activity of IPF and SSc-ILD. However, SSc-ILD is influenced by autoimmunity and oxidative stress, leading to the continuous activation of MAPK in macrophages. This may result in an earlier onset of lung fibrosis than in IPF. Such differences could serve as potential research directions for early prevention and treatment.


Subject(s)
Lung Diseases, Interstitial , Macrophages , Scleroderma, Systemic , Humans , Scleroderma, Systemic/complications , Scleroderma, Systemic/pathology , Scleroderma, Systemic/genetics , Macrophages/metabolism , Lung Diseases, Interstitial/complications , Female , Male , Middle Aged , Adult , Idiopathic Pulmonary Fibrosis/complications , Idiopathic Pulmonary Fibrosis/pathology , Aged , Gene Expression Regulation , Single-Cell Analysis , Lung/pathology
8.
Sci Rep ; 14(1): 14792, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926490

ABSTRACT

Idiopathic Pulmonary Fibrosis (IPF) is a debilitating and fatal lung disease characterized by the excessive formation of scar tissue and decline of lung function. Despite extensive research, only two FDA-approved drugs exist for IPF, with limited efficacy and relevant side effects. Thus, there is an urgent need for new effective therapies, whose discovery strongly relies on IPF animal models. Despite some limitations, the Bleomycin (BLM)-induced lung fibrosis mouse model is widely used for antifibrotic drug discovery and for investigating disease pathogenesis. The initial acute inflammation triggered by BLM instillation and the spontaneous fibrosis resolution that occurs after 3 weeks are the major drawbacks of this system. In the present study, we applied micro-CT technology to a longer-lasting, triple BLM administration fibrosis mouse model to define the best time-window for Nintedanib (NINT) treatment. Two different treatment regimens were examined, with a daily NINT administration from day 7 to 28 (NINT 7-28), and from day 14 to 28 (NINT 14-28). For the first time, we automatically derived both morphological and functional readouts from longitudinal micro-CT. NINT 14-28 showed significant effects on morphological parameters after just 1 week of treatment, while no modulations of these biomarkers were observed during the preceding 7-14-days period, likely due to persistent inflammation. Micro-CT morphological data evaluated on day 28 were confirmed by lung histology and bronchoalveolar lavage fluid (BALF) cells; Once again, the NINT 7-21 regimen did not provide substantial benefits over the NINT 14-28. Interestingly, both NINT treatments failed to improve micro-CT-derived functional parameters. Altogether, our findings support the need for optimized protocols in preclinical studies to expedite the drug discovery process for antifibrotic agents. This study represents a significant advancement in pulmonary fibrosis animal modeling and antifibrotic treatment understanding, with the potential for improved translatability through the concurrent structural-functional analysis offered by longitudinal micro-CT.


Subject(s)
Bleomycin , Disease Models, Animal , X-Ray Microtomography , Animals , Bleomycin/adverse effects , Mice , Indoles/pharmacology , Indoles/therapeutic use , Antifibrotic Agents/pharmacology , Antifibrotic Agents/therapeutic use , Lung/pathology , Lung/drug effects , Lung/diagnostic imaging , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Mice, Inbred C57BL , Time Factors
9.
Biomedicines ; 12(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927528

ABSTRACT

BACKGROUND: The molecular pathways involved in the onset and progression of idiopathic pulmonary fibrosis (IPF) still need to be fully clarified as some are shared with lung cancer development. HOXB7, a member of the homeobox (Hox) gene family, has been found involved in various cancers. METHODS: Immunohistochemical (IHC) analysis was run on lung tissue samples from surgical lung biopsy (SLB) of 19 patients with IPF, retrospectively selected from the IPF database of the University Hospital of Modena. HOXB7 expression was analyzed and compared with that of five patients with no evidence of pulmonary fibrosis as controls. RESULTS: The semi-quantitative analysis of IHC showed that HOXB7 protein expression was higher in IPF patients compared to controls (difference between means = 6.2 ± 2.37, p = 0.0157). Further, HOXB7 expression was higher in IPF patients with a higher extent of fibrosis (50-75%)-measured with high-resolution computer tomography-compared to those with a lower extent (0-25%) (difference between means = 25.74 ± 6.72, p = 0.004). CONCLUSIONS: The expression of HOXB7 is higher in the lung of IPF patients compared to controls, and was represented in different cellular compartments within the lung niche. Further investigations are needed to clarify its role in the pathogenesis and progression of IPF.

10.
Biomed Pharmacother ; 176: 116823, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834008

ABSTRACT

Ancient Egyptians (including Bedouins and Nubians) have long utilized Ziziphus spina-christi (L.), a traditional Arabian medicinal herb, to alleviate swellings and inflammatory disorders. It is also mentioned in Christian and Muslim traditions. Ziziphus spina-christi L. (Family: Rhamnaceae) is a plentiful source of polyphenols, revealing free radical scavenging, antioxidant, metal chelating, cytotoxic, and anti-inflammatory activities. Herein, different classes of the existing bioactive metabolites in Z. spina-christi L. were detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the first time. The study also aimed to assess the anti-inflammatory and antifibrotic properties of Z. spina-christi L. extract against bleomycin-induced lung fibrosis in an experimental mouse model. 32 male Swiss Albino mice were assigned into 4 groups; the first and second were the normal control group and the bleomycin positive control (single 2.5 U/kg bleomycin intratracheal dose). The third and fourth groups received 100 and 200 mg/kg/day Z. spina-christi L. extract orally for 3 weeks, 2 weeks before bleomycin, and 1 week after. The bioactive metabolites in Z. spina-christi L. extract were identified as phenolic acids, catechins, flavonoids, chalcones, stilbenes, triterpenoid acids, saponins, and sterols. The contents of total phenolic compounds and flavonoids were found to be 196.62 mg GAE/gm and 33.29 mg QE/gm, respectively. In the experimental study, histopathological examination revealed that lung fibrosis was attenuated in both Z. spina-christi L.- treated groups. Z. spina-christi L. extract downregulated the expression of nuclear factor kappa B (NF-κB) p65 and decreased levels of the inflammatory markers tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and c-Jun N-terminal kinase (JNK) in lung tissue. Z. spina-christi L. also downregulated the expression of the fibrotic parameters collagen-1, alpha-smooth muscle actin (α-SMA), transforming growth factor-beta 1 (TGF-ß1), matrix metalloproteinase-9 (MMP-9) and SMAD3, with upregulation of the antifibrotic SMAD7 in lung tissue. Overall, the present study suggests a potential protective effect of Z. spina-christi L. extract against bleomycin-induced lung fibrosis through regulation of the TGF-ß1/SMAD pathway.


Subject(s)
Bleomycin , Plant Extracts , Pulmonary Fibrosis , Signal Transduction , Smad Proteins , Tandem Mass Spectrometry , Transforming Growth Factor beta1 , Ziziphus , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Male , Ziziphus/chemistry , Mice , Plant Extracts/pharmacology , Transforming Growth Factor beta1/metabolism , Smad Proteins/metabolism , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Signal Transduction/drug effects , Lung/drug effects , Lung/pathology , Lung/metabolism , Metabolomics/methods , Anti-Inflammatory Agents/pharmacology , Liquid Chromatography-Mass Spectrometry
11.
Biomed Pharmacother ; 176: 116896, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876049

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a severe disability due to progressive lung dysfunction. IPF has long been viewed as a non-immune form of pulmonary fibrosis, but nowadays it is accepted that a chronic inflammatory response can exacerbate fibrotic patterns. IL-1-like cytokines and ATP are highly detected in the lung and broncho-alveolar lavage fluid of IPF patients. Because ATP binds the purinergic receptor P2RX7 involved in the release of IL-1-like cytokines, we aimed to understand the role of P2RX7 in IPF. PBMCs from IPF patients were treated with nintedanib or pirfenidone in the presence of ATP. Under these conditions, PBMCs still released IL-1-like cytokines and the pro-fibrotic TGFß. Bulk and scRNAseq demonstrated that lung tissues of IPF patients had higher levels of P2RX7, especially on macrophages, which were correlated to T cell activity and inflammatory response with a TGFBI and IL-10 signature. A subcluster of macrophages in IPF lung tissues had 2055 genes that were not in common with the other subclusters, and that were involved in metabolic and PDGF, FGF and VEGF associated pathways. These data confirmed what observed on circulating cells that, although treated with anti-fibrotic agents, nintedanib or pirfenidone, they were still able to release IL-1 cytokines and the fibrogenic TGFß. In conclusion, these data imply that because nintedanib and pirfenidone do not block ATP-induced IL-1-like cytokines and TGFß induced during P2RX7 activation, it is plausible to consider P2RX7 on circulating cells and/or tissue biopsies as potential pharmacological tool for IPF patients.


Subject(s)
Adenosine Triphosphate , Idiopathic Pulmonary Fibrosis , Indoles , Pyridones , Receptors, Purinergic P2X7 , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Pyridones/pharmacology , Pyridones/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Adenosine Triphosphate/metabolism , Receptors, Purinergic P2X7/metabolism , Male , Lung/drug effects , Lung/pathology , Lung/metabolism , Female , Cytokines/metabolism , Aged , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Middle Aged , Transforming Growth Factor beta/metabolism , Macrophages/drug effects , Macrophages/metabolism , Signal Transduction/drug effects
12.
Diagnostics (Basel) ; 14(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928659

ABSTRACT

This paper presents a combined optical coherence tomography (OCT) imaging/machine learning (ML) technique for real-time analysis of lung tissue morphology to determine the presence and level of invasiveness of idiopathic lung fibrosis (ILF). This is an important clinical problem as misdiagnosis is common, resulting in patient exposure to costly and invasive procedures and substantial use of healthcare resources. Therefore, biopsy is needed to confirm or rule out radiological findings. Videoscopic-assisted thoracoscopic wedge biopsy (VATS) under general anesthesia is typically necessary to obtain enough tissue to make an accurate diagnosis. This kind of biopsy involves the placement of several tubes through the chest wall, one of which is used to cut off a piece of lung to send for evaluation. The removed tissue is examined histopathologically by microscopy to confirm the presence and the pattern of fibrosis. However, VATS pulmonary biopsy can have multiple side effects, including inflammation, tissue morbidity, and severe bleeding, which further degrade the quality of life for the patient. Furthermore, the results are not immediately available, requiring tissue processing and analysis. Here, we report an initial attempt of using ML-assisted polarization sensitive OCT (PS-OCT) imaging for lung fibrosis assessment. This approach has been preliminarily tested on a rat model of lung fibrosis. Our preliminary results show that ML-assisted PS-OCT imaging can detect the presence of ILF with an average of 77% accuracy and 89% specificity.

13.
Sci Rep ; 14(1): 13158, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849437

ABSTRACT

Patients with acute exacerbation of lung fibrosis with usual interstitial pneumonia (EUIP) pattern are at increased risk for ventilator-induced lung injury (VILI) and mortality when exposed to mechanical ventilation (MV). Yet, lack of a mechanical model describing UIP-lung deformation during MV represents a research gap. Aim of this study was to develop a constitutive mathematical model for UIP-lung deformation during lung protective MV based on the stress-strain behavior and the specific elastance of patients with EUIP as compared to that of acute respiratory distress syndrome (ARDS) and healthy lung. Partitioned lung and chest wall mechanics were assessed for patients with EUIP and primary ARDS (1:1 matched based on body mass index and PaO2/FiO2 ratio) during a PEEP trial performed within 24 h from intubation. Patient's stress-strain curve and the lung specific elastance were computed and compared with those of healthy lungs, derived from literature. Respiratory mechanics were used to fit a novel mathematical model of the lung describing mechanical-inflation-induced lung parenchyma deformation, differentiating the contributions of elastin and collagen, the main components of lung extracellular matrix. Five patients with EUIP and 5 matched with primary ARDS were included and analyzed. Global strain was not different at low PEEP between the groups. Overall specific elastance was significantly higher in EUIP as compared to ARDS (28.9 [22.8-33.2] cmH2O versus 11.4 [10.3-14.6] cmH2O, respectively). Compared to ARDS and healthy lung, the stress/strain curve of EUIP showed a steeper increase, crossing the VILI threshold stress risk for strain values greater than 0.55. The contribution of elastin was prevalent at lower strains, while the contribution of collagen was prevalent at large strains. The stress/strain curve for collagen showed an upward shift passing from ARDS and healthy lungs to EUIP lungs. During MV, patients with EUIP showed different respiratory mechanics, stress-strain curve and specific elastance as compared to ARDS patients and healthy subjects and may experience VILI even when protective MV is applied. According to our mathematical model of lung deformation during mechanical inflation, the elastic response of UIP-lung is peculiar and different from ARDS. Our data suggest that patients with EUIP experience VILI with ventilatory setting that are lung-protective for patients with ARDS.


Subject(s)
Lung , Respiration, Artificial , Respiratory Distress Syndrome , Humans , Male , Female , Middle Aged , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/physiopathology , Aged , Lung/physiopathology , Lung/pathology , Elasticity , Ventilator-Induced Lung Injury/physiopathology , Pulmonary Fibrosis/physiopathology , Pulmonary Fibrosis/metabolism , Respiratory Mechanics/physiology , Stress, Mechanical , Lung Diseases, Interstitial/physiopathology , Models, Theoretical
14.
Int Immunopharmacol ; 136: 112375, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38823182

ABSTRACT

Lung fibrosis is a critical interstitial lung disease with poor prognosis. There is an urgent need to develop a proper and cost-effective therapeutic modality that can reverse and/or ameliorate lung fibrosis. Vitamin E is one of the widely investigated dietary antioxidants which has been linked to improvement of many health problems. The current study was conducted to evaluate the possible roles of vitamin E in prevention and treatment of bleomycin (BLM) induced lung fibrosis. Physiological, anatomical, histopathological and immunohistochemical studies were done to assess and compare between the structure and function of the lung tissue in lung fibrosis model, early and late treated groups with vitamin E. Furthermore, measurement of transforming growth factor-ß(TGF-ß), E-cadherin, Smad-3, BAX, BCL2, malondialdehyde (MDA), and superoxide dismutase (SOD) were done. The study revealed that administration of vitamin E helped to improve signs of lung fibrosis, as reflected by amelioration of structure and functions of lungs as well as the decrease in TGF-ß levels and inhibition of α-SMA/collagen I profibrotic pathway. These findings highlight the importance of administration of vitamin E as a prophylactic agent prior to BLM therapy and as an adjuvant treatment in cases of lung fibrosis.


Subject(s)
Antioxidants , Bleomycin , Lung , Pulmonary Fibrosis , Transforming Growth Factor beta , Vitamin E , Animals , Vitamin E/therapeutic use , Vitamin E/pharmacology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Lung/pathology , Lung/drug effects , Rats , Transforming Growth Factor beta/metabolism , Male , Antioxidants/therapeutic use , Antioxidants/pharmacology , Smad3 Protein/metabolism , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Cadherins/metabolism , Rats, Wistar , Actins/metabolism , Disease Models, Animal , Humans
15.
Microsc Microanal ; 30(3): 539-551, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38758132

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown origin with limited treatment options and poor prognosis. The encouraging findings from preclinical investigations utilizing mesenchymal stem cells (MSCs) indicated that they could serve as a promising therapeutic alternative for managing chronic lung conditions, such as IPF. The objective of this study was to compare the efficiency of bone marrow-derived MSCs (BM-MSCs) versus prednisolone, the standard anti-inflammatory medication, in rats with bleomycin (BLM)-induced lung fibrosis. Four groups were created: a control group, a BLM group, a prednisolone-treated group, and a BM-MSCs-treated group. To induce lung fibrosis, 5 mg/kg of BLM was administered intratracheally. BLM significantly increased serum levels of pro-inflammatory cytokines and oxidative stress markers. The disturbed lung structure was also revealed by light and transmission electron microscopic studies. Upregulation in the immune expression of alpha-smooth muscle actin, transforming growth factor beta-1, and Bax was demonstrated. Interestingly, all findings significantly regressed on treatment with prednisolone and BM-MSCs. However, treatment with BM-MSCs showed better results than with prednisolone. In conclusion, BM-MSCs could be a promising approach for managing lung fibrosis.


Subject(s)
Bleomycin , Disease Models, Animal , Mesenchymal Stem Cells , Prednisolone , Pulmonary Fibrosis , Animals , Prednisolone/therapeutic use , Prednisolone/pharmacology , Rats , Pulmonary Fibrosis/therapy , Pulmonary Fibrosis/pathology , Lung/pathology , Immunohistochemistry , Male , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mesenchymal Stem Cell Transplantation/methods , Histocytochemistry , Bone Marrow Cells , Microscopy, Electron, Transmission
17.
Medicina (Kaunas) ; 60(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38792932

ABSTRACT

Background and Objectives: The influence of montelukast (MK), an antagonist of cysLT1 leukotriene receptors, on lung lesions caused by experimental diabetes was studied. Materials and Methods: The study was conducted on four groups of six adult male Wistar rats. Diabetes was produced by administration of streptozotocin 65 mg/kg ip. in a single dose. Before the administration of streptozotocin, after 72 h, and after 8 weeks, the serum values of glucose, SOD, MDA, and total antioxidant capacity (TAS) were determined. After 8 weeks, the animals were anesthetized and sacrificed, and the lungs were harvested and examined by optical microscopy. Pulmonary fibrosis, the extent of lung lesions, and the lung wet-weight/dry-weight ratio were evaluated. Results: The obtained results showed that MK significantly reduced pulmonary fibrosis (3.34 ± 0.41 in the STZ group vs. 1.73 ± 0.24 in the STZ+MK group p < 0.01) and lung lesion scores and also decreased the lung wet-weight/dry-weight (W/D) ratio. SOD and TAS values increased significantly when MK was administered to animals with diabetes (77.2 ± 11 U/mL in the STZ group vs. 95.7 ± 13.3 U/mL in the STZ+MK group, p < 0.05, and 25.52 ± 2.09 Trolox units in the STZ group vs. 33.29 ± 1.64 Trolox units in the STZ+MK group, respectively, p < 0.01), and MDA values decreased. MK administered alone did not significantly alter any of these parameters in normal animals. Conclusions: The obtained data showed that by blocking the action of peptide leukotrienes on cysLT1 receptors, montelukast significantly reduced the lung lesions caused by diabetes. The involvement of these leukotrienes in the pathogenesis of fibrosis and other lung diabetic lesions was also demonstrated.


Subject(s)
Acetates , Cyclopropanes , Diabetes Mellitus, Experimental , Lung , Quinolines , Rats, Wistar , Sulfides , Cyclopropanes/therapeutic use , Animals , Quinolines/therapeutic use , Quinolines/pharmacology , Acetates/therapeutic use , Acetates/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/physiopathology , Male , Rats , Lung/drug effects , Pulmonary Fibrosis/drug therapy , Leukotriene Antagonists/therapeutic use , Leukotriene Antagonists/pharmacology , Streptozocin , Blood Glucose/analysis , Blood Glucose/drug effects
18.
Ecotoxicol Environ Saf ; 278: 116412, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38691879

ABSTRACT

BACKGROUND: Bisphenol A (BPA) is an industrial chemical that is commonly found in daily consumer products. BPA is reportedly associated with lung diseases. However, the impact of BPA on pulmonary fibrosis (PF) and its possible mechanisms of action both remain unclear. METHODS: A PF mouse model was induced by bleomycin (BLM). Mouse lung fibroblasts (MLG 2908) and mouse alveolar epithelial cells (MLE-12) were treated with BPA to establish a PF cell model. Tissue staining, CCK-8 assays, western blot experiments and relevant indicator kits were used to detect and evaluate the effect of BPA on PF. RESULTS: BPA dose-dependently promoted oxidative stress and induced ferroptosis, leading to PF. The ferroptosis inhibitor Fer-1 partly attenuated the effect of BPA. In addition, among the two main cell types associated with the progression of PF, MLE-12 cells are more sensitive to BPA than are MLG 2908 cells, and BPA induces ferroptosis in MLE-12 cells. Furthermore, BPA promoted autophagy-mediated ferroptosis by activating the AMPK/mTOR signaling pathway, thereby exacerbating the progression of PF. The autophagy inhibitor CQ1 partly attenuated the effect of BPA. CONCLUSION: BPA promotes the progression of PF by promoting autophagy-dependent ferroptosis in alveolar epithelial cells, which provides a new theoretical basis for understanding BPA-induced PF.


Subject(s)
Alveolar Epithelial Cells , Autophagy , Benzhydryl Compounds , Ferroptosis , Phenols , Pulmonary Fibrosis , Animals , Ferroptosis/drug effects , Phenols/toxicity , Benzhydryl Compounds/toxicity , Mice , Autophagy/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Bleomycin/toxicity , Cell Line , Mice, Inbred C57BL , Oxidative Stress/drug effects , Male , Disease Models, Animal , Signal Transduction/drug effects
19.
Biochem Pharmacol ; : 116255, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705536

ABSTRACT

The lung is a biomechanically active organ, with multiscale mechanical forces impacting the organ, tissue and cellular responses within this microenvironment. In chronic lung diseases, such as chronic obstructive pulmonary disease, pulmonary fibrosis and others, the structure of the lung is drastically altered impeding gas exchange. These changes are, in part, reflected in alterations in the composition, amount and organization of the extracellular matrix within the different lung compartments. The transmission of mechanical forces within lung tissue are broadcast by this complex mix of extracellular matrix components, in particular the collagens, elastin and proteoglycans and the crosslinking of these components. At both a macro and a micro level, the mechanical properties of the microenvironment have a key regulatory role in ascertaining cellular responses and the function of the lung. Cells adhere to, and receive signals from, the extracellular matrix through a number of different surface receptors and complexes which are important for mechanotransduction. This review summarizes the multiscale mechanics in the lung and how the mechanical environment changes in lung disease and aging. We then examine the role of mechanotransduction in driving cell signaling events in lung diseases and finish with a future perspective of the need to consider how such forces may impact pharmacological responsiveness in lung diseases.

20.
Pathol Res Pract ; 258: 155334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718468

ABSTRACT

Placental transmogrification of the lung (PTL) is a rare pulmonary condition characterized by the presence of immature placental villous structures. The etiology and molecular mechanisms underlying this disease remain largely unknown. This functional study aimed to identify the molecular signatures in the pathogenesis of PTL via comprehensive transcriptome analysis. Comparative transcriptomic assessment of PTL tissue and stromal cells showed differential expression of 257 genes in PTL tissue and 189 genes in stromal cells. Notably, several transcription factors and regulators, including FOSB, FOS, JUN, and ATF3, were upregulated in PTL tissue. Additionally, genes associated with the extracellular matrix and connective tissue, such as COL1A1, MMP2, and SPARC, were significantly altered, indicating possible fibrotic changes. Gene set enrichment analysis highlighted the role of vascular development and extracellular matrix organization, and the Activator Protein-1 (AP-1) transcription factor was significantly activated in PTL tissue. Furthermore, the analysis highlighted an overlap of 25 genes between PTL tissue and stromal cells, underscoring the importance of shared molecular pathways in the pathogenesis of PTL. Among the shared genes, JUND, COL4A2, COL6A2, IGFBP5, and IGFBP7 were consistently upregulated, highlighting the possible involvement of AP-1-mediated signaling and fibrotic changes in the pathogenesis of PTL. The present findings pave the way for further research into the molecular mechanisms underlying PTL and offer novel insights for therapeutic interventions. Given the rarity of PTL, these molecular findings represent a significant step forward in our understanding this enigmatic disease.


Subject(s)
Gene Expression Profiling , Transcription Factor AP-1 , Humans , Female , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/genetics , Pregnancy , Transcriptome , Lung/pathology , Lung/metabolism , Fibrosis/pathology , Fibrosis/genetics , Placenta/pathology , Placenta/metabolism , Lung Diseases/genetics , Lung Diseases/pathology , Lung Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...