Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 376
Filter
1.
Orphanet J Rare Dis ; 19(1): 262, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987844

ABSTRACT

People with rare lysosomal storage diseases face challenges in their care that arise from disease complexity and heterogeneity, compounded by many healthcare professionals being unfamiliar with these diseases. These challenges can result in long diagnostic journeys and inadequate care. Over 30 years ago, the Rare Disease Registries for Gaucher, Fabry, Mucopolysaccharidosis type I and Pompe diseases were established to address knowledge gaps in disease natural history, clinical manifestations of disease and treatment outcomes. Evidence generated from the real-world data collected in these registries supports multiple stakeholders, including patients, healthcare providers, drug developers, researchers and regulators. To maximise the impact of real-world evidence from these registries, engagement and collaboration with the patient communities is essential. To this end, the Rare Disease Registries Patient Council was established in 2019 as a partnership between the Rare Disease Registries and global and local patient advocacy groups to share perspectives on how registry data are used and disseminated. The Patient Council has resulted in a number of patient initiatives including patient representation at Rare Disease Registries advisory boards; development of plain language summaries of registry publications to increase availability of real-world evidence to patient communities; and implementation of digital innovations such as electronic patient-reported outcomes, and patient-facing registry reports and electronic consent (in development), all to enhance patient engagement. The Patient Council is building on the foundations of industry-patient advocacy group collaboration to fully integrate patient communities in decision-making and co-create solutions for the rare disease community.


Subject(s)
Rare Diseases , Registries , Humans , Lysosomal Storage Diseases
2.
J Extracell Vesicles ; 13(7): e12464, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961538

ABSTRACT

MPS IIIC is a lysosomal storage disease caused by mutations in heparan-α-glucosaminide N-acetyltransferase (HGSNAT), for which no treatment is available. Because HGSNAT is a trans-lysosomal-membrane protein, gene therapy for MPS IIIC needs to transduce as many cells as possible for maximal benefits. All cells continuously release extracellular vesicles (EVs) and communicate by exchanging biomolecules via EV trafficking. To address the unmet need, we developed a rAAV-hHGSNATEV vector with an EV-mRNA-packaging signal in the 3'UTR to facilitate bystander effects, and tested it in an in vitro MPS IIIC model. In human MPS IIIC cells, rAAV-hHGSNATEV enhanced HGSNAT mRNA and protein expression, EV-hHGSNAT-mRNA packaging, and cleared GAG storage. Importantly, incubation with EVs led to hHGSNAT protein expression and GAG contents clearance in recipient MPS IIIC cells. Further, rAAV-hHGSNATEV transduction led to the reduction of pathological EVs in MPS IIIC cells to normal levels, suggesting broader therapeutic benefits. These data demonstrate that incorporating the EV-mRNA-packaging signal into a rAAV-hHGSNAT vector enhances EV packaging of hHGSNAT-mRNA, which can be transported to non-transduced cells and translated into functional rHGSNAT protein, facilitating cross-correction of disease pathology. This study supports the therapeutic potential of rAAVEV for MPS IIIC, and broad diseases, without having to transduce every cell.


Subject(s)
Bystander Effect , Dependovirus , Extracellular Vesicles , Genetic Therapy , RNA, Messenger , Humans , Genetic Therapy/methods , Dependovirus/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Extracellular Vesicles/metabolism , Mucopolysaccharidosis III/therapy , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/genetics , Genetic Vectors , Acetyltransferases/metabolism , Acetyltransferases/genetics
3.
Mol Ther Nucleic Acids ; 35(2): 102220, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38948331

ABSTRACT

Infantile-onset Pompe disease (IOPD) results from pathogenic variants in the GAA gene, which encodes acid α-glucosidase. The correction of pathogenic variants through genome editing may be a valuable one-time therapy for PD and improve upon the current standard of care. We performed adenine base editing in human dermal fibroblasts harboring three transition nonsense variants, c.2227C>T (p.Q743∗; IOPD-1), c.2560C>T (p.R854∗; IOPD-2), and c.2608C>T (p.R870∗; IOPD-3). Up to 96% adenine deamination of target variants was observed, with minimal editing across >50 off-target sites. Post-base editing, expressed GAA protein was up to 0.66-fold normal (unaffected fibroblasts), an improvement over affected fibroblasts wherein GAA was undetectable. GAA enzyme activity was between 81.91 ± 13.51 and 129.98 ± 9.33 units/mg protein at 28 days post-transfection, which falls within the normal range (50-200 units/mg protein). LAMP2 protein was significantly decreased in the most robustly edited cell line, IOPD-3, indicating reduced lysosomal burden. Taken together, the findings reported herein demonstrate that base editing results in efficacious adenine deamination, restoration of GAA expression and activity, and reduction in lysosomal burden in the most robustly edited cells. Future work will assess base editing outcomes and the impact on Pompe pathology in two mouse models, Gaa c.2227C>T and Gaa c.2560C>T.

4.
Children (Basel) ; 11(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38929247

ABSTRACT

Pulmonologists may be involved in managing pulmonary diseases in children with complex clinical pictures without a diagnosis. Moreover, they are routinely involved in the multidisciplinary care of children with rare diseases, at baseline and during follow-up, for lung function monitoring. Lysosomal storage diseases (LSDs) are a group of genetic diseases characterised by a specific lysosomal enzyme deficiency. Despite varying pathogen and organ involvement, they are linked by the pathological accumulation of exceeding substrates, leading to cellular toxicity and subsequent organ damage. Less severe forms of LSDs can manifest during childhood or later in life, sometimes being underdiagnosed. Respiratory impairment may stem from different pathogenetic mechanisms, depending on substrate storage in bones, with skeletal deformity and restrictive pattern, in bronchi, with obstructive pattern, in lung interstitium, with altered alveolar gas exchange, and in muscles, with hypotonia. This narrative review aims to outline different pulmonary clinical findings and a diagnostic approach based on key elements for differential diagnosis in some treatable LSDs like Gaucher disease, Acid Sphingomyelinase deficiency, Pompe disease and Mucopolysaccharidosis. Alongside their respiratory clinical aspects, which might overlap, we will describe radiological findings, lung functional patterns and associated symptoms to guide pediatric pulmonologists in differential diagnosis. The second part of the paper will address follow-up and management specifics. Recent evidence suggests that new therapeutic strategies play a substantial role in preventing lung involvement in early-treated patients and enhancing lung function and radiological signs in others. Timely diagnosis, driven by clinical suspicion and diagnostic workup, can help in treating LSDs effectively.

5.
Front Pharmacol ; 15: 1398320, 2024.
Article in English | MEDLINE | ID: mdl-38903991

ABSTRACT

MFSD12 protein has recently risen as a key factor in malignancy and plays a potential role in a variety of complex oncogenic signaling cascades. Current studies suggest that MFSD12 has a positive complex role in the growth and progression of tumors such as melanoma, breast cancer, and lung cancer. At the same time, as a transporter of cysteine, MFSD12 is also involved in the development of lysosomal storage diseases. Therefore, MFSD12 may be an effective target to inhibit tumor development, block metastasis, and expand the therapeutic effect. This article reviews the molecular mechanisms of MFSD12 in a variety of cancers and lysosomal storage diseases.

6.
Cell Biochem Funct ; 42(4): e4028, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38715125

ABSTRACT

Niemann-Pick disease (NPD) is another type of metabolic disorder that is classified as lysosomal storage diseases (LSDs). The main cause of the disease is mutation in the SMPD1 (type A and B) or NPC1 or NPC2 (type C) genes, which lead to the accumulation of lipid substrates in the lysosomes of the liver, brain, spleen, lung, and bone marrow cells. This is followed by multiple cell damage, dysfunction of lysosomes, and finally dysfunction of body organs. So far, about 346, 575, and 30 mutations have been reported in SMPD1, NPC1, and NPC2 genes, respectively. Depending on the type of mutation and the clinical symptoms of the disease, the treatment will be different. The general aim of the current study is to review the clinical and molecular characteristics of patients with NPD and study various treatment methods for this disease with a focus on gene therapy approaches.


Subject(s)
Genetic Therapy , Mutation , Niemann-Pick C1 Protein , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Niemann-Pick Disease, Type C/therapy , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/pathology , Niemann-Pick Diseases/genetics , Niemann-Pick Diseases/metabolism , Niemann-Pick Diseases/therapy , Niemann-Pick Diseases/pathology , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics
7.
Front Cell Dev Biol ; 12: 1386149, 2024.
Article in English | MEDLINE | ID: mdl-38721528

ABSTRACT

The Golgi apparatus plays a crucial role in lysosome biogenesis and the delivery of lysosomal enzymes, essential for maintaining cellular homeostasis and ensuring cell survival. Deficiencies in Golgi structure and function can profoundly impact lysosomal homeostasis, leading to various lysosomal storage diseases and neurodegenerative disorders. In this review, we highlight the role of the Golgi Reassembly Stacking Proteins (GRASPs) in the formation and function of the Golgi apparatus, emphasizing the current understanding of the association between the Golgi apparatus, lysosomes, and lysosomal storage diseases. Additionally, we discuss how Golgi dysfunction leads to the secretion of lysosomal enzymes. This review aims to serve as a concise resource, offering insights into Golgi structure, function, disease-related defects, and their consequential effects on lysosomal biogenesis and function. By highlighting Golgi defects as an underappreciated contributor to lysosomal dysfunction across various diseases, we aim to enhance comprehension of these intricate cellular processes.

8.
Int J Paediatr Dent ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803013

ABSTRACT

BACKGROUND: Lysosomal storage diseases (LSDs), a group of inborn errors of metabolism, include various subtypes, for example, mucopolysaccharidosis (MPS) and Gaucher disease (GD). Besides the physical/mental disabilities, they suffer from several oral deteriorations. AIM: To evaluate the oral health status of Egyptian children with LSD. DESIGN: Thirty LSD children and thirty non-LSD children were enrolled for this study according to the inclusion and exclusion criteria. Dental indices were used to assess caries prevalence and periodontal status. Saliva samples were collected from all enrolled children to estimate interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and protein levels as well as Streptococcus mutans and Lactobacilli colony counts. RESULTS: Children with MPS and GD showed non-significant differences in decayed, missing, or filled teeth (DMFT) scores (p = .115). Scores of dmft showed a significant increase in MPS, but not in GD children (p = .020, p = .127). Children with LSD showed significantly increased Modified Gingival Index (MGI), Plaque Index (PI), Oral Hygiene Index (OHI-s) scores (p < .001) and salivary IL-6 and TNF-α (p = .007, p = .001, p < .0001, p = .002, respectively) and salivary total proteins (p = .001) levels. Unexpectedly, non-significant differences were observed in salivary Streptococcus mutans or Lactobacilli counts in children with MPS and GD (p = .058, p = .420, p = .502, p = .053, respectively). CONCLUSION: To our knowledge, this is the first article that evaluates Egyptian children with LSD. We demonstrated high caries prevalence in primary teeth, not permanent teeth, in children with MPS and poor gingival/hygiene status in children with MPS and GD, which triggered a state of inflammation. The daily supplement intake prevented oral bacterial growth. The most probable cause of oral alterations is decreased salivary flow rate, as deduced from a significantly increased salivary protein.

9.
Diseases ; 12(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38785757

ABSTRACT

Fabry disease (FD) is an X-linked lysosomal storage disorder, characterised by the cellular accumulation of globotriaosylceramide due to impaired alpha-galactosidase A enzyme activity. FD may manifest with multisystem pathology, including reduced bone mineral density (BMD). Registry data suggest that the introduction of Fabry-specific therapies (enzyme replacement therapy or chaperone therapy) has led to significant improvements in overall patient outcomes; however, there are limited data on the impact on bone density. The aim of this study was to describe the effect of Fabry-specific therapies on longitudinal changes in bone mineral density (BMD) in FD. We performed a retrospective observational study analysing bone densitometry (DXA) in patients with genetically confirmed FD. Patients were grouped based on the use of Fabry-specific therapies. The between-group longitudinal change in BMD Z-score was analysed using linear mixed effects models. A total of 88 FD patients were analysed (50 untreated; 38 treated). The mean age at first DXA was 38.5 years in the untreated group (84% female) and 43.7 years in the treated group (34% female). There was no significant longitudinal between-group difference in the BMD Z-score at the lumbar spine. However, the Z-score per year at the total hip (ß = -0.105, p < 0.001) and femoral neck (ß = -0.081, p = 0.001) was significantly lower over time in the treated than the untreated group. This may reflect those receiving therapy having a more severe underlying disease. Nevertheless, this suggests that Fabry-specific therapies do not reverse all disease mechanisms and that the additional management of BMD may be required in this patient population.

10.
Cureus ; 16(4): e58922, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38800253

ABSTRACT

Alpha-mannosidosis is a rare lysosomal storage disorder with progressive impairments in motor functions, skeletal deformities, and immunodeficiency. Enzyme replacement therapy (ERT) should be initiated early to achieve optimal outcomes. This report describes how alpha-mannosidosis diagnosis in a seven-year-old girl led to a successful prenatal diagnosis in the subsequent pregnancy and pre-symptomatic treatment at the early disease stage. The index patient was a seven-year-old girl who was referred with a confirmed diagnosis of alpha-mannosidosis based on the presence of homozygous c.437-1G>A mutation in the MAN2B1 gene. A prenatal diagnosis was made in the subsequent pregnancy through molecular analysis, which revealed the same homozygous variant. The patient was treated at the fifth week of age and showed mild skeletal involvement and normal development at ERT initiation. At 11 months of age, the ERT level increased to 15.8 µmol/l/h. The motor assessment showed that the patient was developmentally normal and was able to maintain her sitting and walking for a few steps only. Prenatal molecular screening in affected families can allow for the early identification and implementation of appropriate management strategies for alpha-mannosidosis.

11.
J Pediatr Endocrinol Metab ; 37(5): 413-418, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38624096

ABSTRACT

OBJECTIVES: Gaucher disease (GD) is a lysosomal storage disease caused by glucocerebrosidase (GCase) enzyme deficiency. Gaucher cells transformed from the macrophages by progressive sphingolipid accumulation and infiltrate bone marrow, spleen, liver, and other organs. The accumulation of substrate causes inflammation, compromised cellular homeostasis, and disturbed autophagy. It has been hypothesized that this proinflammatory state of GD leads cytokines and chemokines release. As a result of inflammatory process, the cellular dysfunction caused by disruption of cellular signaling, organelle dysfunction, or autoimmune antibodies may affect endocrine profile of GD patients such as hormone levels, lipid profile, and bone mineral density status. METHODS: A total of 13 patients confirmed to have GD, 12 non-neuronopathic type and one subacute neuronopathic type, were enrolled in our study. RESULTS: The median treatment duration in the enzyme therapy was 13.33 years (9-26 years). At least one endocrinological abnormality was detected in blood tests of nine patients. Hyperinsulinism was the most common finding although fasting blood glucose levels HgbA1c levels were normal in all patients. Two patients had osteopenia, and osteoporosis was detected in two patients. Low HDL levels were detected in six patients, but HDL levels below 23 mg/dL associated with disease severity have been detected in two patients who have not receiving enzyme replacement therapy. None of patients had thyroidal dysfunction. CONCLUSIONS: This study had revealed endocrinological abnormalities in GD patients that have not led any severe morbidity in our patients. However, thyroid hormone abnormalities, insulin resistance, or lipid profile abnormalities may cause unpredictable comorbidities. Endocrinological assessment in GD patients in routine follow-up may prevent possible clinical manifestation in long term as well as can define efficacy of ERT on endocrine abnormalities.


Subject(s)
Enzyme Replacement Therapy , Gaucher Disease , Glucosylceramidase , Humans , Gaucher Disease/drug therapy , Gaucher Disease/blood , Male , Female , Adult , Child , Adolescent , Young Adult , Glucosylceramidase/therapeutic use , Follow-Up Studies , Bone Density/drug effects , Endocrine System Diseases/etiology , Prognosis , Biomarkers/blood , Biomarkers/analysis
12.
Mol Ther ; 32(6): 1643-1657, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38582963

ABSTRACT

Gene therapy in hematopoietic stem and progenitor cells (HSPCs) shows great potential for the treatment of inborn metabolic diseases. Typical HSPC gene therapy approaches rely on constitutive promoters to express a therapeutic transgene, which is associated with multiple disadvantages. Here, we propose a novel promoterless intronic gene editing approach that triggers transgene expression only after cellular differentiation into the myeloid lineage. We integrated a splicing-competent eGFP cassette into the first intron of CD11b and observed expression of eGFP in the myeloid lineage but minimal to no expression in HSPCs or differentiated non-myeloid lineages. In vivo, edited HSPCs successfully engrafted in immunodeficient mice and displayed transgene expression in the myeloid compartment of multiple tissues. Using the same approach, we expressed alpha-L-iduronidase (IDUA), the defective enzyme in Mucopolysaccharidosis type I, and observed a 10-fold supraendogenous IDUA expression exclusively after myeloid differentiation. Edited cells efficiently populated bone marrow, blood, and spleen of immunodeficient mice, and retained the capacity to secrete IDUA ex vivo. Importantly, cells edited with the eGFP and IDUA transgenes were also found in the brain. This approach may unlock new therapeutic strategies for inborn metabolic and neurological diseases that require the delivery of therapeutics in brain.


Subject(s)
Gene Editing , Hematopoietic Stem Cells , Introns , Myeloid Cells , Transcription Activator-Like Effector Nucleases , Transgenes , Animals , Gene Editing/methods , Mice , Hematopoietic Stem Cells/metabolism , Humans , Myeloid Cells/metabolism , Transcription Activator-Like Effector Nucleases/genetics , Transcription Activator-Like Effector Nucleases/metabolism , Cell Differentiation/genetics , Genetic Therapy/methods , Iduronidase/genetics , Iduronidase/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Gene Expression , Cell Lineage/genetics , CD11b Antigen/genetics , CD11b Antigen/metabolism , Hematopoietic Stem Cell Transplantation/methods , Mucopolysaccharidosis I/therapy , Mucopolysaccharidosis I/genetics
13.
Elife ; 132024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660940

ABSTRACT

Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.


Subject(s)
Blood-Brain Barrier , Carboxylic Ester Hydrolases , Fatty Acids , Inflammation , Neuroglia , Animals , Blood-Brain Barrier/metabolism , Fatty Acids/metabolism , Inflammation/metabolism , Neuroglia/metabolism , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Lysosomal Storage Diseases/metabolism , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/pathology , Humans , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics
14.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612616

ABSTRACT

Niemann-Pick Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 150,000 live births, classified within lysosomal storage diseases (LSDs). The abnormal accumulation of unesterified cholesterol characterizes the pathophysiology of NPC. This phenomenon is not unique to NPC, as analogous accumulations have also been observed in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. Interestingly, disturbances in the folding of the mutant protein NPC1 I1061T are accompanied by the aggregation of proteins such as hyperphosphorylated tau, α-synuclein, TDP-43, and ß-amyloid peptide. These accumulations suggest potential disruptions in proteostasis, a regulatory process encompassing four principal mechanisms: synthesis, folding, maintenance of folding, and protein degradation. The dysregulation of these processes leads to excessive accumulation of abnormal proteins that impair cell function and trigger cytotoxicity. This comprehensive review delineates reported alterations across proteostasis mechanisms in NPC, encompassing changes in processes from synthesis to degradation. Additionally, it discusses therapeutic interventions targeting pharmacological facets of proteostasis in NPC. Noteworthy among these interventions is valproic acid, a histone deacetylase inhibitor (HDACi) that modulates acetylation during NPC1 synthesis. In addition, various therapeutic options addressing protein folding modulation, such as abiraterone acetate, DHBP, calnexin, and arimoclomol, are examined. Additionally, treatments impeding NPC1 degradation, exemplified by bortezomib and MG132, are explored as potential strategies. This review consolidates current knowledge on proteostasis dysregulation in NPC and underscores the therapeutic landscape targeting diverse facets of this intricate process.


Subject(s)
Lysosomal Storage Diseases , Niemann-Pick Disease, Type C , Humans , Proteostasis , Niemann-Pick Disease, Type C/drug therapy , Protein Folding , Proteolysis
15.
J Clin Med ; 13(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38592278

ABSTRACT

Clinical findings of hepatomegaly and splenomegaly, the abnormal enlargement of the liver and spleen, respectively, should prompt a broad differential diagnosis that includes metabolic, congestive, neoplastic, infectious, toxic, and inflammatory conditions. Among the metabolic diseases, lysosomal storage diseases (LSDs) are a group of rare and ultrarare conditions with a collective incidence of 1 in 5000 live births. LSDs are caused by genetic variants affecting the lysosomal enzymes, transporters, or integral membrane proteins. As a result, abnormal metabolites accumulate in the organelle, leading to dysfunction. Therapeutic advances, including early diagnosis and disease-targeted management, have improved the life expectancy and quality of life of people affected by certain LSDs. To access these new interventions, LSDs must be considered in patients presenting with hepatomegaly and splenomegaly throughout the lifespan. This review article navigates the diagnostic approach for individuals with hepatosplenomegaly particularly focusing on LSDs. We provide hints in the history, physical exam, laboratories, and imaging that may identify LSDs. Additionally, we discuss molecular testing, arguably the preferred confirmatory test (over biopsy), accompanied by enzymatic testing when feasible.

16.
Cureus ; 16(3): e55883, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38595885

ABSTRACT

Niemann-Pick disease (NPD) encompasses a minimum of three lysosomal storage diseases, all of which are inherited in an autosomal recessive manner. Acid sphingomyelinase (ASM) deficiency is the cause of NPD types A and B. ASM is the enzyme that hydrolyzes the sphingolipid sphingomyelin. An 18-month-old patient with progressive painless abdominal distension with organomegaly and neurological deficits presented to our hospital. Brain imaging and laboratory findings did not show anything, but there was a millstone growth delay. The diagnosis of NPD type A was confirmed by a genetic examination, which revealed a twofold change on chromosome 11p15.4 in the region encoding the sphingomyelin phosphodiesterase-1 (SMPD1) gene. The patient was followed up with no specific treatment, and signs of respiratory infections were later reported.

17.
Adv Rheumatol ; 64(1): 22, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38520029

ABSTRACT

Gaucher and Fabry diseases are lysosomal storage disorders in which deficient enzyme activity leads to pathological accumulation of sphingolipids. These diseases have a broad phenotypic presentation. Musculoskeletal symptoms and pain complaints are frequently reported by patients. Thus, rheumatologists can be contacted by these patients, contributing to the correct diagnosis, earlier indication of appropriate treatment and improvement of their prognosis. This review describes important concepts about Gaucher and Fabry diseases that rheumatologists should understand to improve patients' quality of life and change the natural history of these diseases.


Subject(s)
Eye Diseases , Fabry Disease , Gaucher Disease , Lysosomal Storage Diseases , Humans , Fabry Disease/complications , Fabry Disease/diagnosis , Gaucher Disease/complications , Gaucher Disease/diagnosis , Rheumatologists , Quality of Life , Lysosomal Storage Diseases/diagnosis
18.
JIMD Rep ; 65(2): 63-84, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444574

ABSTRACT

Canadian patients and families affected by rare genetic lysosomal storage diseases (LSDs) suffer from numerous challenges related to disease management, including issues navigating healthcare and social support services, access to orphan drugs, and intensive treatment regimens. These challenges significantly impact people's quality of life, yet they remain obscure and have not been the subject of comprehensive analysis. Thus, we conducted qualitative interviews with Canadian patients and caregivers living with LSDs to advance current understanding of their experiences with rare-disease (RD) management and health systems navigation to support patient-focused RD policies and programs and improve the health outcomes of the 2.8 million Canadians affected by RDs. This study employed a qualitative descriptive research design with inductive thematic analysis. The study data were collected using semi-structured interviews. Thirty Canadian participants were interviewed in person or remotely via video chat to allow for an interactive discussion and the acquisition of rich data related to the insights and perceptions of people with LSDs. Between April and November 2019, 30 participants (16 patients and 14 caregivers) with experiences with nine types of LSDs and living in seven Canadian provinces were interviewed. Five themes were identified using comprehensive thematic analysis. These themes were the complexity of the diagnosis process; navigation of healthcare systems; psychological, social, and financial implications of LSDs; access to social support services; and access to orphan drugs. Our findings reveal that patients' access to appropriate healthcare and social services is subject to significant delays and lacks care coordination. The process of accessing orphan drugs in Canada is extremely complex and convoluted. The study results also illuminate experiences of RD stigma when navigating healthcare and social support systems. Our study offers new insights into the complex nature and extensive needs of Canadians with LSDs that are currently unmet. The management of these complex diseases requires holistic patient care and support beyond having access to orphan drugs. Our findings highlight the importance of bridging existing gaps between health and social care for RD patients. Policymakers should utilize these results when developing the forthcoming national RD strategy.

19.
Cytometry A ; 105(5): 323-331, 2024 05.
Article in English | MEDLINE | ID: mdl-38420869

ABSTRACT

Lysosomes are the terminal end of catabolic pathways in the cell, as well as signaling centers performing important functions such as the recycling of macromolecules, organelles, and nutrient adaptation. The importance of lysosomes in human health is supported by the fact that the deficiency of most lysosomal genes causes monogenic diseases called as a group Lysosomal Storage Diseases (LSDs). A common phenotypic hallmark of LSDs is the expansion of the lysosomal compartment that can be detected by using conventional imaging methods based on immunofluorescence protocols or overexpression of tagged lysosomal proteins. These methods require the alteration of the cellular architecture (i.e., due to fixation methods), can alter the behavior of cells (i.e., by the overexpression of proteins), and require sample preparation and the accurate selection of compatible fluorescent markers in relation to the type of analysis, therefore limiting the possibility of characterizing cellular status with simplicity. Therefore, a quantitative and label-free methodology, such as Quantitative Phase Imaging through Digital Holographic (QPI-DH), for the microscopic imaging of lysosomes in health and disease conditions may represent an important advance to study and effectively diagnose the presence of lysosomal storage in human disease. Here we proof the effectiveness of the QPI-DH method in accomplishing the detection of the lysosomal compartment using mouse embryonic fibroblasts (MEFs) derived from a Mucopolysaccharidosis type III-A (MSP-IIIA) mouse model, and comparing them with wild-type (WT) MEFs. We found that it is possible to identify label-free biomarkers able to supply a first pre-screening of the two populations, thus showing that QPI-DH can be a suitable candidate to surpass fluorescent drawbacks in the detection of lysosomes dysfunction. An appropriate numerical procedure was developed for detecting and evaluate such cellular substructures from in vitro cells cultures. Results reported in this study are encouraging about the further development of the proposed QPI-DH approach for such type of investigations about LSDs.


Subject(s)
Lysosomes , Lysosomes/metabolism , Animals , Mice , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Lysosomal Storage Diseases/metabolism , Lysosomal Storage Diseases/pathology , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/diagnosis , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/pathology , Mucopolysaccharidosis III/genetics , Quantitative Phase Imaging
20.
Mol Genet Metab ; 141(3): 108145, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301529

ABSTRACT

Mucopolysaccharidosis type VII (MPS VII) is an ultra-rare, life-threatening, progressive disease caused by genetic mutations that affect lysosomal storage/function. MPS VII has an estimated prevalence of <1:1,000,000 and accounts for <3% of all MPS diagnoses. Given the rarity of MPS VII, comprehensive information on the disease is limited and we present a review of the current understanding. In MPS VII, intracellular glycosaminoglycans accumulate due to a deficiency in the lysosomal enzyme that is responsible for their degradation, ß-glucuronidase, which is encoded by the GUSB gene. MPS VII has a heterogeneous presentation. Features can manifest across multiple systems and can vary in severity, age of onset and progression. The single most distinguishing clinical feature of MPS VII is non-immune hydrops fetalis (NIHF), which presents during pregnancy. MPS VII usually presents within one month of life and become more prominent at 3 to 4 years of age; key features are skeletal deformities, hepatosplenomegaly, coarse facies, and cognitive impairment, although phenotypic variation is a hallmark. Current treatments include hematopoietic stem cell transplantation and enzyme replacement therapy with vestronidase alfa. Care should be individualized for each patient. Development of consensus guidelines for MPS VII management and treatment is needed, as consolidation of expert knowledge and experience (for example, through the MPS VII Disease Monitoring Program) may provide a significant positive impact to patients.


Subject(s)
Hematopoietic Stem Cell Transplantation , Mucopolysaccharidosis VII , Pregnancy , Female , Humans , Mucopolysaccharidosis VII/diagnosis , Mucopolysaccharidosis VII/genetics , Mucopolysaccharidosis VII/therapy , Glucuronidase/metabolism , Hepatomegaly , Splenomegaly , Glycosaminoglycans , Rare Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...