Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters











Publication year range
1.
Gene ; 932: 148893, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39197797

ABSTRACT

Flowers of Crocus sativus L. are immensely important not only for arrangement of floral whorls but more because each floral organ is dominated by a different class of specialized compounds. Dried stigmas of C. sativus flowers form commercial saffron, and are known to accumulate unique apocarotenoids like crocin, picrocrocin and safranal. Inspite of being a high value crop, the molecular mechanism regulating flower development in Crocus remains largely unknown. Moreover, it would be very interesting to explore any co-regulatory mechanism which controls floral architecture and secondary metabolic pathways which exist in specific floral organs. Here we report transcriptome wide identification of MADS box genes in Crocus. A total of 39 full length MADS box genes were identified among which three belonged to type I and 36 to type II class. Phylogeny classified them into 11 sub-clusters. Expression pattern revealed some stigma up-regulated genes among which CstMADS19 encoding an AGAMOUS gene showed high expression. Transient over-expression of CstMADS19 in stigmas of Crocus resulted in increased crocin by enhancing expression of pathway genes. Yeast one hybrid assay demonstrated that CstMADS19 binds to promoters of phytoene synthase and carotenoid cleavage dioxygenase 2 genes. Yeast two hybrid and BiFC assays confirmed interaction of CstMADS19 with CstMADS26 which codes for a SEPALATA gene. Co-overexpression of CstMADS19 and CstMADS26 in Crocus stigmas enhanced crocin content more than was observed when genes were expressed individually. Collectively, these findings indicate that CstMADS19 functions as a positive regulator of stigma based apocarotenoid biosynthesis in Crocus.


Subject(s)
Carotenoids , Crocus , Flowers , Gene Expression Regulation, Plant , MADS Domain Proteins , Plant Proteins , Crocus/genetics , Crocus/metabolism , Carotenoids/metabolism , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Phylogeny , Gene Expression Profiling/methods , Cyclohexenes/metabolism , Transcriptome , Terpenes/metabolism , Glucosides/metabolism , Glucosides/biosynthesis
2.
Planta ; 260(5): 106, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39327272

ABSTRACT

MAIN CONCLUSION: In the early diverging angiosperm Trithuria submersa TsAG1 and TsAG2 are expressed in different flower organs, including bracts, while TsAG3 is more ovule-specific, probably functioning as a D-type gene. Species of Trithuria, the only genus of the family Hydatellaceae, represent ideal candidates to explore the biology and flower evolution of early diverging angiosperms. The life cycle of T. submersa is generally known, and the "reproductive units" are morphologically well described, but the availability of genetic and developmental data of T. submersa is still scarce. To fill this gap, a transcriptome analysis of the reproductive structures was performed and presented in this work. This analysis provided sequences of MADS-box transcription factors, a gene family known to be involved in flower and fruit development. In situ hybridization experiments on floral buds were performed to describe the spatiotemporal expression patterns of the AGAMOUS genes, revealing the existence of three AG genes with different expression domains in flower organs and in developing ovules. Trithuria may offer important clues to the evolution of reproductive function among early angiosperms and Nymphaeales in particular, and this study aims to broaden relevant knowledge regarding key genes of reproductive development in non-model angiosperms, shaping first flower appearance and evolution.


Subject(s)
Flowers , Gene Expression Regulation, Plant , MADS Domain Proteins , Flowers/genetics , Flowers/growth & development , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Reproduction/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Magnoliopsida/genetics , Magnoliopsida/growth & development , Gene Expression Profiling , Phylogeny , Transcriptome/genetics , Genes, Plant/genetics
3.
Sci Rep ; 14(1): 18635, 2024 08 11.
Article in English | MEDLINE | ID: mdl-39128921

ABSTRACT

Evolution of unisexual flowers involves extreme changes in floral development. Spinach is one of the species to discern the formation and evolution of dioecy. MADS-box gene family is involved in regulation of floral organ identity and development and in many other plant developmental processes. However, there is no systematic analysis of MADS-box family genes in spinach. A comprehensive genome-wide analysis and transcriptome profiling of MADS-box genes were undertaken to understand their involvement in unisexual flower development at different stages in spinach. In total, 54 MADS-box genes found to be unevenly located across 6 chromosomes and can be divided into type I and type II genes. Twenty type I MADS-box genes are subdivided into Mα, Mß and Mγ subgroups. While thirty-four type II SoMADSs consist of 3 MIKC*, and 31 MIKCC -type genes including sixteen floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in spinach. Gene structure, motif distribution, physiochemical properties, gene duplication and collinearity analyses for these genes are performed in detail. Promoters of both types of SoMADS genes contain mainly MeJA and ABA response elements. Expression profiling indicated that MIKCc genes exhibited more dynamic and intricate expression patterns compared to M-type genes and the majority of type-II genes AP1, SVP, and SOC1 sub-groups showed female flower-biased expression profiles, suggesting their role in carpel development, while PI showed male-biased expression throughout flower developmental stages, suggesting their role in stamen development. These results provide genomic resources and insights into spinach dioecious flower development and expedite spinach improvement.


Subject(s)
Flowers , Gene Expression Regulation, Plant , MADS Domain Proteins , Spinacia oleracea , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Spinacia oleracea/genetics , Spinacia oleracea/growth & development , Spinacia oleracea/metabolism , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Genome, Plant , Genome-Wide Association Study , Gene Duplication
4.
PeerJ ; 12: e17586, 2024.
Article in English | MEDLINE | ID: mdl-38974413

ABSTRACT

The development of floral organs, crucial for the establishment of floral symmetry and morphology in higher plants, is regulated by MADS-box genes. In sunflower, the capitulum is comprised of ray and disc florets with various floral organs. In the sunflower long petal mutant (lpm), the abnormal disc (ray-like) floret possesses prolongated petals and degenerated stamens, resulting in a transformation from zygomorphic to actinomorphic symmetry. In this study, we investigated the effect of MADS-box genes on floral organs, particularly on petals, using WT and lpm plants as materials. Based on our RNA-seq data, 29 MADS-box candidate genes were identified, and their roles on floral organ development, especially in petals, were explored, by analyzing the expression levels in various tissues in WT and lpm plants through RNA-sequencing and qPCR. The results suggested that HaMADS3, HaMADS7, and HaMADS8 could regulate petal development in sunflower. High levels of HaMADS3 that relieved the inhibition of cell proliferation, together with low levels of HaMADS7 and HaMADS8, promoted petal prolongation and maintained the morphology of ray florets. In contrast, low levels of HaMADS3 and high levels of HaMADS7 and HaMADS8 repressed petal extension and maintained the morphology of disc florets. Their coordination may contribute to the differentiation of disc and ray florets in sunflower and maintain the balance between attracting pollinators and producing offspring. Meanwhile, Pearson correlation analysis between petal length and expression levels of MADS-box genes further indicated their involvement in petal prolongation. Additionally, the analysis of cis-acting elements indicated that these three MADS-box genes may regulate petal development and floral symmetry establishment by regulating the expression activity of HaCYC2c. Our findings can provide some new understanding of the molecular regulatory network of petal development and floral morphology formation, as well as the differentiation of disc and ray florets in sunflower.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Helianthus , MADS Domain Proteins , Plant Proteins , Helianthus/genetics , Helianthus/growth & development , Helianthus/metabolism , Flowers/genetics , Flowers/growth & development , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Mol Hortic ; 4(1): 25, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898491

ABSTRACT

Prunus conradinae, a valuable flowering cherry belonging to the Rosaceae family subgenus Cerasus and endemic to China, has high economic and ornamental value. However, a high-quality P. conradinae genome is unavailable, which hinders our understanding of its genetic relationships and phylogenesis, and ultimately, the possibility of mining of key genes for important traits. Herein, we have successfully assembled a chromosome-scale P. conradinae genome, identifying 31,134 protein-coding genes, with 98.22% of them functionally annotated. Furthermore, we determined that repetitive sequences constitute 46.23% of the genome. Structural variation detection revealed some syntenic regions, inversions, translocations, and duplications, highlighting the genetic diversity and complexity of Cerasus. Phylogenetic analysis demonstrated that P. conradinae is most closely related to P. campanulata, from which it diverged ~ 19.1 million years ago (Mya). P. avium diverged earlier than P. cerasus and P. conradinae. Similar to the other Prunus species, P. conradinae underwent a common whole-genome duplication event at ~ 138.60 Mya. Furthermore, 79 MADS-box members were identified in P. conradinae, accompanied by the expansion of the SHORT VEGETATIVE PHASE subfamily. Our findings shed light on the complex genetic relationships, and genome evolution of P. conradinae and will facilitate research on the molecular breeding and functions of key genes related to important horticultural and economic characteristics of subgenus Cerasus.

6.
BMC Genomics ; 24(1): 447, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553575

ABSTRACT

BACKGROUND: Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. RESULTS: In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mß, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. CONCLUSION: This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica.


Subject(s)
Genome, Plant , Lonicera , Lonicera/genetics , Lonicera/metabolism , MADS Domain Proteins/metabolism , Transcription Factors/metabolism , Multigene Family , Phylogeny , Gene Expression Regulation, Plant , Flowers , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Gene ; 883: 147635, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37442304

ABSTRACT

Normal floral organ development in rice is necessary for grain formation. Many MADS-box family genes that belong to ABCDE model have been widely implicated in rice flower development. The LAX1 allele encodes a plant-specific basic helix-loop-helix (bHLH) transcription factor, which is the main regulator of axillary meristem formation in rice. However, the molecular mechanisms of LAX1 allele together with MADS-box family genes underlying palea development have not been reported. We found a short palea mutant plant in a population of indica rice variety 9311 treated with cobalt 60. We report the map-based cloning and characterization of lax1-7, identified as a new mutant allele of the LAX1 locus, and the role of its wild-type allele LAX1 in rice palea development. Through complementary experiments, combined with genetic and molecular biological analyses, the function of the LAX1 allele was determined. We showed that LAX1 allele is expressed specifically in young spikelets and encodes a nucleus-localized protein. In vitro and in vivo experiments revealed that the LAX1 protein physically interacts with OsMADS1, OsMADS6 and OsMADS7. The LAX1 allele is pleiotropic for the maintenance of rice palea identity via cooperation with MADS-box genes and other traits, including axillary meristem initiation, days to heading, plant height, panicle length and spikelet fertility.


Subject(s)
Oryza , Oryza/genetics , Oryza/growth & development , Membrane Transport Proteins/genetics , Plant Proteins/genetics , Mutation , Chromosomes, Plant , Alleles , Gene Expression Regulation, Plant
8.
Plants (Basel) ; 12(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37050050

ABSTRACT

MADS-box is a class of transcriptional regulators that are ubiquitous in plants and plays important roles in the process of plant growth and development. Identification and analysis of blueberry MADS-box genes can lay a foundation for their function investigations. In the present study, 249 putative MADS-box genes were identified in the blueberry genome. Those MADS-box genes were distributed on 47 out of 48 chromosomes. The phylogenetic and evolutionary analyses showed that blueberry MADS-box genes were divided into 131 type I members and 118 type II members. The type I genes contained an average of 1.89 exons and the type II genes contained an average of 7.83 exons. Motif analysis identified 15 conserved motifs, of which 4 were related to the MADS domain and 3 were related to the K-box domain. A variety of cis-acting elements were found in the promoter region of the blueberry MADS-box gene, indicating that the MADS-box gene responded to various hormones and environmental alterations. A total of 243 collinear gene pairs were identified, most of which had a Ka/Ks value of less than 1. Nine genes belonging to SEP, AP3/PI, and AGL6 subfamilies were screened based on transcriptomic data. The expression patterns of those nine genes were also verified using quantitative PCR, suggesting that VcMADS6, VcMADS35, VcMADS44, VcMADS58, VcMADS125, VcMADS188, and VcMADS212 had potential functions in blueberry fruit ripening. The results of this study provide references for an in-depth understanding of the biological function of the blueberry MADS-box genes and the mechanism of blueberry fruit ripening.

9.
Front Plant Sci ; 14: 1118363, 2023.
Article in English | MEDLINE | ID: mdl-37063180

ABSTRACT

Eucommia ulmoides Oliver is a typical dioecious plant endemic to China that has great medicinal and economic value. Here, we report a high-quality chromosome-level female genome of E. ulmoides obtained by PacBio and Hi-C technologies. The size of the female genome assembly was 1.01 Gb with 17 pseudochromosomes and 31,665 protein coding genes. In addition, Hi-C technology was used to reassemble the male genome released in 2018. The reassembled male genome was 1.24 Gb with the superscaffold N50 (48.30 Mb), which was increased 25.69 times, and the number of predicted genes increased by 11,266. Genome evolution analysis indicated that E. ulmoides has undergone two whole-genome duplication events before the divergence of female and male, including core eudicot γ whole-genome triplication event (γ-WGT) and a recent whole genome duplication (WGD) at approximately 27.3 million years ago (Mya). Based on transcriptome analysis, EuAP3 and EuAG may be the key genes involved in regulating the sex differentiation of E. ulmoides. Pathway analysis showed that the high expression of ω-3 fatty acid desaturase coding gene EU0103017 was an important reason for the high α-linolenic acid content in E. ulmoides. The genome of female and male E. ulmoides presented here is a valuable resource for the molecular biological study of sex differentiation of E. ulmoides and also will provide assistance for the breeding of superior varieties.

10.
Int J Mol Sci ; 23(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36233055

ABSTRACT

Japanese cultivated gentians are perennial plants that flower in early summer to late autumn in Japan, depending on the cultivar. Several flowering-related genes, including GtFT1 and GtTFL1, are known to be involved in regulating flowering time, but many such genes remain unidentified. In this study, we obtained transcriptome profiling data using the Gentiana triflora cultivar 'Maciry', which typically flowers in late July. We conducted deep RNA sequencing analysis using gentian plants grown under natural field conditions for three months before flowering. To investigate diurnal changes, the plants were sampled at 4 h intervals over 24 h. Using these transcriptome data, we determined the expression profiles of leaves based on homology searches against the Flowering-Interactive Database of Arabidopsis. In particular, we focused on transcription factor genes, belonging to the BBX and MADS-box families, and analyzed their developmental and diurnal variation. The expression levels of representative BBX genes were also analyzed under long- and short-day conditions using in-vitro-grown seedlings, and the expression patterns of some BBX genes differed. Clustering analysis revealed that the transcription factor genes were coexpressed with GtFT1. Overall, these expression profiles will facilitate further analysis of the molecular mechanisms underlying the control of flowering time in gentians.


Subject(s)
Flowers , Gentiana , Flowers/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Gentiana/genetics , Gentiana/physiology , Japan , Photoperiod , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcriptome
11.
Physiol Mol Biol Plants ; 28(7): 1359-1374, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36051235

ABSTRACT

MADS-box genes play vital roles in multiple biological processes of plants growth and development, especially inflorescence development. In the present study, a comprehensive investigation into the identification and classification of MADS-box genes in Kentucky bluegrass (Poa pratensis) has not been reported. Here, based on the transcriptome of inflorescence, we identified 44 PpMADS-box genes, and gave an overview of the physicochemical properties, phylogeny, protein structures, and potential functions of the proteins encoded by these genes through various bioinformatics software for the first time. Analysis of physicochemical properties revealed that most PpMADS-box were alkaline proteins and possessed similar conserved motifs. Additionally, it was demonstrated that 33 PpMADS-box proteins without signal peptide, leading peptide, transmembrane structure and located in the nucleus were not transported or secreted, so directly played transcriptional regulatory roles in the nucleus. Then, peptide sequences BLAST search and analysis of phylogenetic relationships with MADS-box proteins of P. pratensis, Arabidopsis thaliana, and Oryza sativa were performed. It was found that 44 PpMADS-box proteins were separated into 33 MIKC-type (3 BS, 1 AGL17, 8 AP3/P2, 3 AP1, 5 SEP, 6 SOC and 7 AG genes, respectvely) and 11 type I-type, which include 7 Mγ and 4 Mα. Furthermore, the relative expression levels of the selected 12 genes (MADS3, 15, 16, 17, 18, 20, 24, 27, 30, 36, 38 and 40) at the booting stage, pre-anthesis, anthesis, post-anthesis, and seed filling stage of inflorescences, as well as leaves and roots of the corresponding stages of inflorescences were analyzed, showing that most PpMADS-box genes were highly expressed mainly in young leaves and later inflorescences, and had complex patters in roots. Morever, except for PpMADS30 being highly expressed in the leaves, others were significantly highly expressed in inflorescence and/ or roots, demonstrating PpMADS-box genes also regulate leaves and roots development in plant. This study provides valuable insights into the MADS-box family genes in Kentucky bluegrass and its potential functional characteristics, expression pattern, and evolution in floral organogenesis and even reproduction development. @media print { .ms-editor-squiggler { display:none !important; } } .ms-editor-squiggler { all: initial; display: block !important; height: 0px !important; width: 0px !important; }. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01216-1.

12.
Front Plant Sci ; 13: 953445, 2022.
Article in English | MEDLINE | ID: mdl-36092432

ABSTRACT

Sex determination in dioecious plants has been broadly and progressively studied with the blooming of genome sequencing and editing techniques. This provides us with a great opportunity to explore the evolution and genetic mechanisms underlining the sex-determining system in dioecious plants. In this study, comprehensively reviewing advances in sex-chromosomes, sex-determining genes, and floral MADS-box genes in dioecious plants, we proposed a convergent model that governs plant dioecy across divergent species using a cascade regulation pathway connecting sex-determining genes and MADS-box genes e.g., B-class genes. We believe that this convergent mechanism of sex determination in dioecious plants will shed light on our understanding of gene regulation and evolution of plant dioecy. Perspectives concerning the evolutionary pathway of plant dioecy are also suggested.

13.
Front Plant Sci ; 13: 916081, 2022.
Article in English | MEDLINE | ID: mdl-35693163

ABSTRACT

Paphiopedilum (Orchidaceae) is one of the world's most popular orchids that is found in tropical and subtropical forests and has an enormous ornamental value. SEPALLATA-like (SEP-like) MADS-box genes are responsible for floral organ specification. In this study, three SEP-like MADS-box genes, PhSEP1, PhSEP2, and PhSEP3, were identified in Paphiopedilum henryanum. These genes were 732-916 bp, with conserved SEPI and SEPII motifs. Phylogenetic analysis revealed that PhSEP genes were evolutionarily closer to the core eudicot SEP3 lineage, whereas none of them belonged to core eudicot SEP1/2/4 clades. PhSEP genes displayed non-ubiquitous expression, which was detectable across all floral organs at all developmental stages of the flower buds. Furthermore, subcellular localization experiments revealed the localization of PhSEP proteins in the nucleus. Yeast two-hybrid assays revealed no self-activation of PhSEPs. The protein-protein interactions revealed that PhSEPs possibly interact with B-class DEFICIENS-like and E-class MADS-box proteins. Our study suggests that the three SEP-like genes may play key roles in flower development in P. henryanum, which will improve our understanding of the roles of the SEP-like MADS-box gene family and provide crucial insights into the mechanisms underlying floral development in orchids.

14.
Gene ; 836: 146666, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35690281

ABSTRACT

MADS box gene family is transcription factor gene family that is involved in growth and development of eukaryotes. In plants the MADS box gene family is mainly associated with floral meristem identity and flower development, apart from being involved in nearly all the phases of plant growth. The MADS box gene family has also been shown to be involved during fruit development and ripening. In this study the MADS box gene family from Musa balbisiana was identified and the divergence of this gene family between Musa balbisiana and Musa acuminata studied. A total of 97 MADS box genes were identified from the genome of Musa balbisiana. Phylogenetic analysis showed that the MbMADS box genes were categorised into type I (α and γ; the ß group was not distinguishable) and type II groups (MIKCc and MIKC* and MIKCc was further divided into 13 subfamilies). The typeII group has the largest number of genes and also showed the most expansion which could be correlated with the whole genome duplications. There were significant differences in the MADS box genes from Musa acuminata and Musa balbisiana during evolution that can be correlated with different floral phenotype and fruit ripening pattern. The divergence of the MADS RIN genes in Musa balbisiana as compared to Musa acuminata might play an important role in the slow ripening of Musa balbisiana fruits.


Subject(s)
Evolution, Molecular , Genome, Plant , MADS Domain Proteins/genetics , Musaceae , Amino Acid Sequence , Chromosomes, Plant , Fruit/genetics , Gene Duplication , Gene Expression Regulation, Plant , Gene Regulatory Networks , Genome-Wide Association Study , MADS Domain Proteins/chemistry , Musaceae/genetics , Phylogeny , Promoter Regions, Genetic , Sequence Homology, Amino Acid
15.
Gene ; 815: 146138, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34979233

ABSTRACT

Cotton is an important textile industry raw material crops, which plays a critical role in the development of society. MADS transcription factors (TFs) play a key role about the flowering time, flower development, and abiotic stress responses in plants, but little is known about their functions on abiotic stress in cotton. In this study, a MIKCC subfamily gene from cotton, GhFYF (FOREVER YOUNG FLOWER), was isolated and characterized. Our data showed that GhFYF localized to the nucleus. A ß-glucuronidase (GUS) activity assay revealed that the promoter of GhFYF was mainly expressed in the flower and seed of ProGhFYF::GUS transgenic A. thaliana plants. The GUS staining of flowers and seeds was deepened after drought, salt treatment, and the expression level of the GUS gene and corresponding stress genes AtERD10, AtAnnexin1 are up-regulated in the inflorescence. Overexpression GhFYF in A. thaliana could promote the seed germination and growth under different salt concentrations, and determin the proline content. Yeast two-hybrid (Y2H) assays showed that GhFYF interacted with the HAD-like protein GhGPP2, which has responds to abiotic stress. Our findings indicate that GhFYF is involved in abiotic stress responses, especially for salt stress. This work establishes a solid foundation for further functional analysis of the GhFYF gene in cotton.


Subject(s)
Gossypium/physiology , MADS Domain Proteins/genetics , Plant Proteins/genetics , Stress, Physiological/genetics , Arabidopsis/genetics , Cell Nucleus/metabolism , Crops, Agricultural/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Gossypium/genetics , MADS Domain Proteins/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Salt Stress
16.
J Exp Bot ; 73(8): 2385-2402, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35045165

ABSTRACT

Polycomb group (PcG) protein-mediated histone methylation (H3K27me3) controls the correct spatiotemporal expression of numerous developmental regulators in Arabidopsis. Epigenetic silencing of the stem cell factor gene WUSCHEL (WUS) in floral meristems (FMs) depends on H3K27me3 deposition by PcG proteins. However, the role of H3K27me3 in silencing of other meristematic regulator and pluripotency genes during FM determinacy has not yet been studied. To this end, we report the genome-wide dynamics of H3K27me3 levels during FM arrest and the consequences of strongly depleted PcG activity on early flower morphogenesis including enlarged and indeterminate FMs. Strong depletion of H3K27me3 levels results in misexpression of the FM identity gene AGL24, which partially causes floral reversion leading to ap1-like flowers and indeterminate FMs ectopically expressing WUS and SHOOT MERISTEMLESS (STM). Loss of STM can rescue supernumerary floral organs and FM indeterminacy in H3K27me3-deficient flowers, indicating that the hyperactivity of the FMs is at least partially a result of ectopic STM expression. Nonetheless, WUS remained essential for the FM activity. Our results demonstrate that PcG proteins promote FM determinacy at multiple levels of the floral gene regulatory network, silencing initially floral regulators such as AGL24 that promotes FM indeterminacy and, subsequently, meristematic pluripotency genes such as WUS and STM during FM arrest.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Histones/genetics , Histones/metabolism , Homeodomain Proteins/genetics , Meristem/genetics , Meristem/metabolism
17.
Front Plant Sci ; 13: 1115513, 2022.
Article in English | MEDLINE | ID: mdl-36714735

ABSTRACT

MADS-box transcription factors play an important role in regulating floral organ development and participate in environmental responses. To date, the MADS-box gene family has been widely identified in Brassica rapa (B. rapa), Brassica oleracea (B. oleracea), and Brassica napus (B. napus); however, there are no analogous reports in Brassica nigra (B. nigra), Brassica juncea (B. juncea), and Brassica carinata (B. carinata). In this study, a whole-genome survey of the MADS-box gene family was performed for the first time in the triangle of U species, and a total of 1430 MADS-box genes were identified. Based on the phylogenetic relationship and classification of MADS-box genes in Arabidopsis thaliana (A. thaliana), 1430 MADS-box genes were categorized as M-type subfamily (627 genes), further divided into Mα, Mß, Mγ, and Mδ subclades, and MIKC-type subfamily (803 genes), further classified into 35 subclades. Gene structure and conserved protein motifs of MIKC-type MADS-box exhibit diversity and specificity among different subclades. Comparative analysis of gene duplication events and syngenic gene pairs among different species indicated that polyploidy is beneficial for MIKC-type gene expansion. Analysis of transcriptome data within diverse tissues and stresses in B. napus showed tissue-specific expression of MIKC-type genes and a broad response to various abiotic stresses, particularly dehydration stress. In addition, four representative floral organ mutants (wtl, feml, aglf-2, and aglf-1) in the T0 generation were generated by editing four AGAMOUS (BnaAG) homoeologs in B. napus that enriched the floral organ variant phenotype. In brief, this study provides useful information for investigating the function of MADS-box genes and contributes to revealing the regulatory mechanisms of floral organ development in the genetic improvement of new varieties.

18.
Genes (Basel) ; 12(12)2021 12 17.
Article in English | MEDLINE | ID: mdl-34946960

ABSTRACT

Members of AP1/FUL subfamily genes play an essential role in the regulation of floral meristem transition, floral organ identity, and fruit ripping. At present, there have been insufficient studies to explain the function of the AP1/FUL-like subfamily genes in Asteraceae. Here, we cloned two euAP1 clade genes TeAP1-1 and TeAP1-2, and three euFUL clade genes TeFUL1, TeFUL2, and TeFUL3 from marigold (Tagetes erecta L.). Expression profile analysis demonstrated that TeAP1-1 and TeAP1-2 were mainly expressed in receptacles, sepals, petals, and ovules. TeFUL1 and TeFUL3 were expressed in flower buds, stems, and leaves, as well as reproductive tissues, while TeFUL2 was mainly expressed in flower buds and vegetative tissues. Overexpression of TeAP1-2 or TeFUL2 in Arabidopsis resulted in early flowering, implying that these two genes might regulate the floral transition. Yeast two-hybrid analysis indicated that TeAP1/FUL proteins only interacted with TeSEP proteins to form heterodimers and that TeFUL2 could also form a homodimer. In general, TeAP1-1 and TeAP1-2 might play a conserved role in regulating sepal and petal identity, similar to the functions of MADS-box class A genes, while TeFUL genes might display divergent functions. This study provides a theoretical basis for the study of AP1/FUL-like genes in Asteraceae species.


Subject(s)
Cloning, Molecular/methods , Gene Expression Profiling/methods , MADS Domain Proteins/genetics , Tagetes/growth & development , Arabidopsis/genetics , Arabidopsis/growth & development , Evolution, Molecular , Flowers/genetics , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plants, Genetically Modified/growth & development , Tagetes/genetics , Tagetes/metabolism , Two-Hybrid System Techniques
19.
Am J Bot ; 108(10): 1838-1860, 2021 10.
Article in English | MEDLINE | ID: mdl-34699609

ABSTRACT

PREMISE: The Rubiaceae are ideal for studying the diversity of fruits that develop from flowers with inferior ovary. We aimed to identify morpho-anatomical changes during fruit development that distinguish those derived from the carpel versus the extra-carpellary tissues. In addition, we present the fruit genetic core regulatory network in selected Rubiaceae species and compare it in terms of copy number and expression patterns to model core eudicots in the Brassicaceae and the Solanaceae. METHODS: We used light microscopy to follow morphoanatomical changes in four selected species with different fruit types. We generated reference transcriptomes for seven selected Rubiaceae species and isolated homologs of major transcription factors involved in fruit development histogenesis, assessed their homology, identified conserved and new protein motifs, and evaluated their expression in three species with different fruit types. RESULTS: Our studies revealed ovary-derived pericarp tissues versus floral-cup-derived epicarp tissues. Gene evolution analyses of FRUITFULL, SHATTERPROOF, ALCATRAZ, INDEHISCENT and REPLUMLESS homologs suggest that the gene complement in Rubiaceae is simpler compared to that in Brassicaceae or Solanaceae. Expression patterns of targeted genes vary in response to the fruit type and the developmental stage evaluated. CONCLUSIONS: Morphologically similar fruits can have different anatomies as a result of convergent tissues developed from the epicarps covering the anatomical changes from the pericarps. Expression analyses suggest that the fruit patterning regulatory network established in model core eudicots cannot be extrapolated to asterids with inferior ovaries.


Subject(s)
Gentianales , Rubiaceae , Anatomy, Comparative , Flowers/genetics , Flowers/metabolism , Fruit/genetics , Gene Expression Regulation, Plant , Gentianales/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Rubiaceae/genetics
20.
Plants (Basel) ; 10(10)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34685951

ABSTRACT

Litchi possesses unique flower morphology and adaptive reproduction strategies. Although previous attention has been intensively devoted to the mechanisms underlying its floral induction, the molecular basis of flower sex determination remains largely unknown. MADS-box genes are promising candidates for this due to their significant roles in various aspects of inflorescence and flower organogenesis. Here, we present a detailed overview of phylogeny and expression profiles of 101 MADS-box genes that were identified in litchi. These LcMADSs are unevenly located across the 15 chromosomes and can be divided into type I and type II genes. Fifty type I MADS-box genes are subdivided into Mα, Mß and Mγ subgroups, while fifty-one type II LcMADSs consist of 37 MIKCC -type and 14 MIKC *-type genes. Promoters of both types of LcMADS genes contain mainly ABA and MeJA response elements. Tissue-specific and development-related expression analysis reveal that LcMADS51 could be positively involved in litchi carpel formation, while six MADS-box genes, including LcMADS42/46/47/75/93/100, play a possible role in stamen development. GA is positively involved in the sex determination of litchi flowers by regulating the expression of LcMADS51 (LcSTK). However, JA down-regulates the expression of floral organ identity genes, suggesting a negative role in litchi flower development.

SELECTION OF CITATIONS
SEARCH DETAIL