Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.793
Filter
1.
Plant J ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990529

ABSTRACT

Mass spectrometry imaging (MSI) has become increasingly popular in plant science due to its ability to characterize complex chemical, spatial, and temporal aspects of plant metabolism. Over the past decade, as the emerging and unique features of various MSI techniques have continued to support new discoveries in studies of plant metabolism closely associated with various aspects of plant function and physiology, spatial metabolomics based on MSI techniques has positioned it at the forefront of plant metabolic studies, providing the opportunity for far higher resolution than was previously available. Despite these efforts, profound challenges at the levels of spatial resolution, sensitivity, quantitative ability, chemical confidence, isomer discrimination, and spatial multi-omics integration, undoubtedly remain. In this Perspective, we provide a contemporary overview of the emergent MSI techniques widely used in the plant sciences, with particular emphasis on recent advances in methodological breakthroughs. Having established the detailed context of MSI, we outline both the golden opportunities and key challenges currently facing plant metabolomics, presenting our vision as to how the enormous potential of MSI technologies will contribute to progress in plant science in the coming years.

2.
J Clin Tuberc Other Mycobact Dis ; 36: 100459, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38983443

ABSTRACT

Introduction: Pulmonary tuberculosis (PTB) remains a significant health concern, particularly in individuals infected with human immunodeficiency virus (HIV) who are more susceptible to developing active TB disease. Early and accurate diagnosis of TB is crucial for effective treatment and prevention of transmission. This study aims to evaluate the potential of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis of bronchoalveolar lavage fluid (BALF) for diagnosis of suspected PTB in HIV-infected patients. Methods: This retrospective study recruited 60 HIV-infected patients with suspected PTB presenting with respiratory symptoms and abnormal chest radiographs between January 2022 and June 2023. BALF samples were collected and subjected to analysis using MALDI-TOF MS, GeneXpert, acid-fast bacilli (AFB) smear and culture. And their diagnostic performance was compared. Results: The sensitivity of MALDI⁃TOFMS for diagnosing PTB was 83.3 %, which was better than that of smear 11.9 %, culture 40.5 % or Xpert38.1 % (all p < 0.01). The area under the curve (AUC) value of MALDI⁃TOFMS was 0.889, which was better than that of smear 0.532, culture 0.675 or Xpert 0.690 (all p < 0.01). The katG315 and rpoB-RRDR 511 mutations were detected by the MALDI⁃TOFMS in two patients. Conclusion: Nucleotide MALDI-TOFMS has a good clinical performance for rapid diagnosis of PTB from BALF samples in HIV infected patients, and detects mutations of TB simultaneously.

3.
Se Pu ; 42(7): 711-720, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-38966979

ABSTRACT

Protein citrullination is an irreversible post-translational modification process regulated by peptidylarginine deiminases (PADs) in the presence of Ca2+. This process is closely related to the occurrence and development of autoimmune diseases, cancers, neurological disorders, cardiovascular and cerebrovascular diseases, and other major diseases. The analysis of protein citrullination by biomass spectrometry confronts great challenges owing to its low abundance, lack of affinity tags, small mass-to-charge ratio change, and susceptibility to isotopic and deamidation interferences. The methods commonly used to study the protein citrullination mainly involve the chemical derivatization of the urea group of the guanine side chain of the peptide to increase the mass-to-charge ratio difference of the citrullinated peptide. Affinity-enriched labels are then introduced to effectively improve the sensitivity and accuracy of protein citrullination by mass spectrometry. 2,3-Butanedione or phenylglyoxal compounds are often used as derivatization reagents to increase the mass-to-charge ratio difference of the citrullinated peptide, and the resulting derivatives have been observed to contain α-dicarbonyl structures. To date, however, no relevant studies on the reactivity of dicarbonyl compounds with citrullinated peptides have been reported. In this study, we determined whether six α-dicarbonyl and two ß-dicarbonyl compounds undergo derivatization reactions with standard citrullinated peptides using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Among the α-dicarbonyl compounds, 2,3-butanedione and glyoxal reacted efficiently with several standard citrullinated peptides, but yielded a series of by-products. Phenylglyoxal, methylglyoxal, 1,2-cyclohexanedione, and 1,10-phenanthroline-5,6-dione also derivated efficiently with standard citrullinated peptides, generating a single derivative. Thus, a new derivatization method that could yield a single derivative was identified. Among the ß-dicarbonyl compounds, 1,3-cyclohexanedione and 2,4-pentanedione successfully reacted with the standard citrullinated peptides, and generated a single derivative. However, their reaction efficiency was very low, indicating that the ß-dicarbonyl compounds are unsuitable for the chemical derivatization of citrullinated peptides. The above results indicate that the α-dicarbonyl structure is necessary for realizing the efficient and specific chemical derivatization of citrullinated peptides. Moreover, the side chains of the α-dicarbonyl structure determine the structure of the derivatives, derivatization efficiency, and generation (or otherwise) of by-products. Therefore, the specific enrichment and precise identification of citrullinated peptides can be achieved by synthesizing α-dicarbonyl structured compounds containing affinity tags. The proposed method enables the identification of citrullinated proteins and their modified sites by MS, thereby providing a better understanding of the distribution of citrullinated proteins in different tissues. The findings will be beneficial for studies on the mechanism of action of citrullinated proteins in a variety of diseases.


Subject(s)
Citrullination , Peptides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Peptides/chemistry
4.
Clin Proteomics ; 21(1): 47, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961380

ABSTRACT

Amyloidosis is a disease characterized by local and systemic extracellular deposition of amyloid protein fibrils where its excessive accumulation in tissues and resistance to degradation can lead to organ failure. Diagnosis is challenging because of approximately 36 different amyloid protein subtypes. Imaging methods like immunohistochemistry and the use of Congo red staining of amyloid proteins for laser capture microdissection combined with liquid chromatography tandem mass spectrometry (LMD/LC-MS/MS) are two diagnostic methods currently used depending on the expertise of the pathology laboratory. Here, we demonstrate a streamlined in situ amyloid peptide spatial mapping by Matrix Assisted Laser Desorption Ionization-Mass Spectrometry Imaging (MALDI-MSI) combined with Trapped Ion Mobility Spectrometry for potential transthyretin (ATTR) amyloidosis subtyping. While we utilized the standard LMD/LC-MS/MS workflow for amyloid subtyping of 31 specimens from different organs, we also evaluated the potential introduction in the MS workflow variations in data acquisition parameters like dynamic exclusion, or testing Data Dependent Acquisition combined with High-Field Asymmetric Waveform Ion Mobility Spectrometry (DDA FAIMS) versus Data Independent Acquisition (DIA) for enhanced amyloid protein identification at shorter acquisition times. We also demonstrate the use of Mascot's Error Tolerant Search and PEAKS de novo sequencing for the sequence variant analysis of amyloidosis specimens.

5.
BMC Microbiol ; 24(1): 238, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961393

ABSTRACT

OBJECTIVES: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is extensively employed for the identification of filamentous fungi on MALDI Biotyper (Bruker Daltonics) and Vitek MS (biomerieux), but the performance of fungi identification on new EXS2600 (Zybio) is still unknow. Our study aims to evaluate the new EXS2600 system's (Zybio) ability to rapidly identify filamentous fungi and determine its effect on turnaround time (TAT) in our laboratory. METHODS: We tested 117 filamentous fungi using two pretreatment methods: the formic acid sandwich (FA-sandwich) and a commercial mold extraction kit (MEK, Zybio). All isolates were confirmed via sequence analysis. Laboratory data were extracted from our laboratory information system over two 9-month periods: pre-EXS (April to December 2022) and post-EXS (April to December 2023), respectively. RESULTS: The total correct identification (at the species, genus, or complex/group level) rate of fungi was high, FA-sandwich (95.73%, 112/117), followed by MEK (94.02%, 110/117). Excluding 6 isolates not in the database, species-level identification accuracy was 92.79% (103/111) for FA-sandwich and 91.89% (102/111) for MEK; genus-level accuracy was 97.29% (108/111) and 96.39% (107/111), respectively. Both methods attained a 100% correct identification rate for Aspergillus, Lichtheimia, Rhizopus Mucor and Talaromyces species, and were able to differentiate between Fusarium verticillioides and Fusarium proliferatum within the Fusarium fujikuroi species complex. Notably, high confidence was observed in the species-level identification of uncommon fungi such as Trichothecium roseum and Geotrichum candidum. The TAT for all positive cultures decreased from pre EXS2600 to post (108.379 VS 102.438, P < 0.05), and the TAT for tissue decreased most (451.538 VS 222.304, P < 0.001). CONCLUSIONS: The FA-sandwich method is more efficient and accurate for identifying filamentous fungi with EXS2600 than the MEK. Our study firstly evaluated the performance of fungi identification on EXS2600 and showed it is suitable for clinical microbiology laboratories use.


Subject(s)
Formates , Fungi , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Fungi/classification , Fungi/isolation & purification , Fungi/chemistry , Fungi/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Formates/chemistry
6.
Med Mycol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38986508

ABSTRACT

Despite severe impact of uncommon yeast fungal infections and the pressing need for more research on the topic, there are still few studies available on the identification, epidemiology, and susceptibility profile of those pathogens. The aims of the current study were to define the profile of uncommon yeast species at Fattouma Bourguiba university hospital using phenotypic, molecular and proteomic methods and to study their antifungal susceptibility profile. Pre-identified uncommon yeast species were collected from 2018 to 2021. These isolates were further identified using phenotypic methods (ID32C® system and Vitek2® YST), matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and sequencing. The antifungal susceptibility profile was studied using the reference CLSI broth microdilution method. In total, 30 strains were collected during the study period. Referring to the sequencing, the most isolated uncommon species were Saprochaete capitata, Candida lusitaniae, Candida kefyr, Candida inconspicua and Candida guilliermondii. Ninety % of isolates were correctly identified by MALDI-TOF MS compared to 76.7% and 63.3% by ID32® C and VITEK® 2 YST respectively. The isolated species showed variable responses to antifungals. Candida guilliermondii showed increased azole minimum inhibitory concentrations. Misidentification of uncommon yeast species was common using commercial phenotypic methods. The high percentage of concordance of MALDI-TOF results with sequencing highlights its high performance and usefulness as a routine diagnosis tool.


There is still little information on the epidemiology of uncommon emergent yeasts although their implication in severe diseases mainly invasive infections. Thus, the importance of an accurate identification and antifungal susceptibility testing for a better monitoring of related infections.

7.
J Mass Spectrom ; 59(8): e5073, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38989767

ABSTRACT

The fruits of Forsythia suspensa (F. suspensa) have been used as a traditional Chinese medicine for 2000 years. Currently, the quality control of F. suspensa strictly follows the instructions of Chinese Pharmacopeia, which mainly controls the content of forsythoside A, phillyrin, and volatile oil. In this study, air pressure MALDI mass spectrometry imaging (AP-MALDI MSI) was used to evaluate the quality of F. suspensa fruits and the distribution of dozens of active ingredients. The variation of active ingredients was measured for more than 30 batches of samples, regarding harvest time, cultivated environment, shelf-life, and habitat. Fifty-three active ingredients could be detected in F. suspensa fruits with AP-MALDI MSI. Seven active ingredients were upregulated, four ingredients downregulated, and 15 ingredients did not change in ripe fruits. A sharp variation of active ingredients in late September was observed for the Caochuan fruits harvested in 2019, which is closely related to the appearance of the ginger color of the pericarp under the microscope observation. The microscope observation is a reliable way to classify ripe and green fruits instead of outlook. Just considering forsythoside A and phillyrin, it is found that wild fruits are better than cultivated fruits, but cultivated fruits have high contents of other ingredients. The shelf-life of F. suspensa fruits is proposed to be 3 years, considering the 26 ingredients investigated. It was found that Luoning wild fruits are better than those from Caochuan with a new evaluation method. Mass spectrometry imaging is an easy, objective, and effective method to evaluate the quality of F. suspensa fruits.


Subject(s)
Forsythia , Fruit , Glycosides , Quality Control , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Forsythia/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Fruit/chemistry , Glycosides/analysis , Glucosides/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Oils, Volatile/analysis , Oils, Volatile/chemistry
8.
Front Mol Biosci ; 11: 1355448, 2024.
Article in English | MEDLINE | ID: mdl-38993837

ABSTRACT

Objectives: To evaluate the performance of Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectra (MALDI-TOF MS) for automated classification of GBS (Group B Streptococcus) into five major CCs (clonal complexes) during routine GBS identification. Methods: MALDI-TOF MS of 167 GBS strains belonging to five major CCs (CC10, CC12, CC17, CC19, CC23) were grouped into a reference set (n = 67) and a validation set (n = 100) for the creation and evaluation with GBS CCs subtyping main spectrum (MSP) and MSP-M using MALDI BioTyper and ClinProTools. GBS CCs subtyping MSPs-M was generated by resetting the discriminative peaks of GBS CCs subtyping MSP according to the informative peaks from the optimal classification model of five major CCs and the contribution of each peak to the model created by ClinProTools. Results: The PPV for the GBS CCs subtyping MSP-M was greater than the subtyping MSP for CC10 (99.21% vs. 93.65%), but similar for CC12 (79.55% vs. 81.06%), CC17 (93.55% vs. 94.09%), and CC19 (92.59% vs. 95.37%), and lower for CC23 (66.67% vs. 83.33%). Conclusion: MALDI-TOF MS could be a promising tool for the automated categorization of GBS into 5 CCs by both CCs subtyping MSP and MSP-M, GBS CCs subtyping MSP-M is preferred for the accurate prediction of CCs with highly discriminative peaks.

9.
Heliyon ; 10(12): e33000, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988516

ABSTRACT

A 91-year-old Chinese male was hospitalized on June 28, 2021, due to a sudden fever. The patient had a long history of smoking, a 10-year history of type 2 diabetes, a family history of hypertension, and a history of coronary heart disease and lower extremity arterial occlusive disease. He presented with cough, sputum, and dry and wet rales in both lungs. A computed tomography scan revealed multiple infectious lesions in both lungs and a small pleural effusion. His procalcitonin level was 1.75 ng/mL. Microscopic examination of the sputum revealed abundant fungal spores and hyphae. Sputum culture results revealed Aspergillus quadrilineatus, which was confirmed by matrix-assisted laser desorption/ionization time-of-flight and internal transcribed spacer gene sequencing. Fungal drug sensitivity testing revealed that azoles (excluding fluconazole) and echinocandins exhibited high activity against Aspergillus quadrilineatus. The patient's condition improved following intravenous voriconazole treatment for 2 weeks, after which he was discharged. Subsequently, the patient was hospitalized six times for pulmonary infections, with the most recent hospitalization being on March 8, 2024. The symptoms improved, and the patient was discharged on March 15, 2024.

10.
Int Microbiol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955904

ABSTRACT

The study aimed to investigate Candida albicans presence, antifungal resistance, biofilm formation, putative virulence genes, and molecular characterization in oral samples of dogs and cats. A total of 239 oral samples were collected from cats and dogs of various breeds and ages at Erciyes University, Faculty of Veterinary Medicine Clinics, between May 2017 and April 2018. Among 216 isolates obtained, 15 (6.95%) were identified as C. albicans, while 8 (3.7%) were non-albicans Candida species. Antifungal susceptibility testing revealed sensitivities to caspofungin, fluconazole, and flucytosine in varying proportions. Molecular analysis indicated the presence of fluconazole and caspofungin resistance genes in all C. albicans isolates. Additionally, virulence genes ALS1, HWP1, and HSP90 showed variable presence. Biofilm formation varied among isolates, with 46.7% strong, 33.3% moderate, and 20% weak producers. PCA analysis categorized isolates into two main clusters, with some dog isolates grouped separately. The findings underscore the significance of oral care and protective measures in pets due to C. albicans prevalence, biofilm formation, virulence factors, and antifungal resistance in their oral cavity, thereby aiding clinical diagnosis and treatment in veterinary medicine.

11.
J Microbiol Methods ; 223: 106984, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955305

ABSTRACT

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is the first-line method for the rapid identification of most cultured microorganisms. As for Streptomyces strains, MALDI-TOF MS identification is complicated by the characteristic incrustation of colonies in agar and the strong cell wall of Actinomycetes cells requiring the use of alternative protein extraction protocols. In this study, we developed a specific protocol to overcome these difficulties for the MALDI-TOF MS identification of Actinomycetes made on solid medium. This protocol includes incubation of colony removed from agar plate with the beta-agarase enzyme, followed by a mechanical lysis and two washes by phosphate buffer and ethanol. Twenty-four Streptomyces and two Lentzea strains isolated from Algerian desertic soils were first identified by 16S rRNA sequencing as gold standard method, rpoB gene was used as a secondary gene target when 16S rRNA did not allow species identification. In parallel the isolates were identified by using the MALDI-TOF MS protocol as reported. After the expansion of the database with the inclusion of this MSPS, the strains were analyzed again in MALDI Biotyper, and all were identified. This work demonstrates that the rapid identification of Actinomycetes can be obtained without protein extraction step frequently used in MALDI-TOF mass spectrometry with this type of microorganisms.

12.
Food Chem ; 457: 140102, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38905823

ABSTRACT

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been widely used for microbial analysis. However, due to the impenetrable shell of fungi the direct identification of fungi remains challenges. Targeting on this problem, the yeast Saccharomyces cerevisiae (S. cerevisiae) was selected as a model fungus, and a new fungal cell membrane disruption reagent C18-G1 was used before MALDI-MS detection. As a result, much more intensive peaks which distributed in wider m/z range of S. cerevisiae have been identified in comparison with the use of traditional fungal pretreatment methods. Furthermore, a differential peak at m/z 4993 between two subspecies of S. cerevisiae has been identified. The corresponding protein with exclusive sequence of the specific peak was obtained based on MS/MS fragments and database searching. In addition, the method was successfully applied for the discrimination of four commercial yeasts.

13.
J Pharm Biomed Anal ; 248: 116272, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38901156

ABSTRACT

Estimation of drug ingestion time (event time) and distinguishing between drug ingestion and external contamination are important for interpreting hair analysis results in forensics practice. Here, we present a matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) method for in situ analysis of intact hair. We applied a longitudinal cutting method for a single hair to analysis authentic hair samples from a victim of a drug-facilitated sexual assault (DFSA) case and zolpidem-soaked hair. MALDI-MSI showed that zolpidem-positive segments distributed at 4-6 mm or 6-8 mm from the root in three single hairs of a DFSA victim collected 25 days after the event, at concentrations ranging from 0.1 to 5.7 pg mm-1, in agreement with the results from segmental analysis using liquid chromatography tandem mass spectrometry (LC-MS/MS). The estimation of drug intake time was about 20-30 days before sampling, which was consistent with the known time of drug intake. This MALDI-MS method allows imaging analysis of trace substances in a single hair and can realize the intuitive reflection of drug taking time. In addition, zolpidem applied by soaking was mainly distributed on both sides of the longitudinal hair shaft, whereas ingested zolpidem was found only in the middle of the hair shaft of the DFSA victim. The MALDI-MS images of unwashed and washed hair suggested that the amount of externally applied drug was decreased by washing, it was still present on surface layer (cuticle) sides although. Visualization using MALDI-MSI could therefore distinguish between drug ingestion and contamination by reflecting the distribution and deposition site of the drug in hair.

14.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892117

ABSTRACT

While edible algae might seem low in fat, the lipids they contain are crucial for good health and preventing chronic diseases. This study introduces a binary matrix to analyze all the polar lipids in both macroalgae (Wakame-Undaria pinnatifida, Dulse-Palmaria palmata, and Nori-Porphyra spp.) and microalgae (Spirulina-Arthrospira platensis, and Chlorella-Chlorella vulgaris) using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The key lies in a new dual matrix made by combining equimolar amounts of 1,5-diaminonaphthalene (DAN) and 9-aminoacridine (9AA). This combination solves the limitations of single matrices: 9AA is suitable for sulfur-containing lipids and acidic phospholipids, while DAN excels as an electron-transfer secondary reaction matrix for intact chlorophylls and their derivatives. By employing the equimolar binary matrix, a wider range of algal lipids, including free fatty acids, phospholipids, glycolipids, pigments, and even rare arsenosugarphospholipids were successfully detected, overcoming drawbacks related to ion suppression from readily ionizable lipids. The resulting mass spectra exhibited a good signal-to-noise ratio at a lower laser fluence and minimized background noise. This improvement stems from the binary matrix's ability to mitigate in-source decay effects, a phenomenon often encountered for certain matrices. Consequently, the data obtained are more reliable, facilitating a faster and more comprehensive exploration of algal lipidomes using high-throughput MALDI-MS/MS analysis.


Subject(s)
Lipids , Microalgae , Seaweed , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Lipids/chemistry , Lipids/analysis , Seaweed/chemistry , Microalgae/chemistry , 2-Naphthylamine/analogs & derivatives , 2-Naphthylamine/chemistry , Aminacrine/chemistry , Pigments, Biological/analysis , Pigments, Biological/chemistry , Spirulina/chemistry
15.
Clin Chim Acta ; 561: 119758, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848898

ABSTRACT

BACKGROUND AND AIMS: Modern mass spectrometry imaging (MSI) enables single cells' metabolism exploration. Aims of this study were development of the single-cell MSI of human CD19+ lymphocytes and metabolic profiling of chronic lymphocytic leukemia (CLL). MATERIALS AND METHODS: Blood donor (BD) samples were used for the optimization of CD19+ lymphocyte isolation and single-cell matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) MSI. Independent set of 200 CD19+ lymphocytes coming from 5 CLL patients and 5 BD was used for the CD19+ lymphocytes classification assessment and the untargeted metabolic profiling. CLL vs BD lymphocyte classification was performed using partial least squares-discriminant analysis (PLS-DA) using normalized single-cell mass spectra recorded in 300-600 and 600-950 Da ranges was applied. RESULTS: Accuracy assessed by 10-fold cross-validation of CD19+ lymphocyte PLS-DA classification reached >90.0 %. Volcano plots showed 106 significantly altered m/z signals in CLL of which 9 were tentatively annotated. Among tentatively annotated m/z signals formaldehyde and glutathione metabolites and tetrahydrofolate stand out. CONCLUSION: A method for single-cell MALDI TOF MSI of CD19+ lymphocytes was successfully developed. The method confirmed the significance of oxidative stress and single-carbon metabolism, pyruvate and fatty acid metabolism and apoptosis in CLL and it provided metabolic candidates for diagnostic applications.

16.
Clin Oral Investig ; 28(7): 360, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847917

ABSTRACT

OBJECTIVES: Lung cancer (LC) is the malignant tumor with the highest mortality rate worldwide, and precise early diagnosis can improve patient prognosis. The purpose of this study was to investigate whether alterations in the glycopatterns recognized by the Hippeastrum hybrid lectin (HHL) in salivary proteins are associated with the development of LC. MATERIALS AND METHODS: First, we collected saliva samples from LC (15 lung adenocarcinoma (ADC); 15 squamous cell carcinoma (SCC); 15 small cell lung cancer (SCLC)) and 15 benign pulmonary disease (BPD) for high-throughput detection of abundance levels of HHL-recognized glycopatterns using protein microarrays, and then validated the pooled samples from each group with lectin blotting analysis. Finally, the N-glycan profiles of salivary glycoproteins isolated from the pooled samples using HHL-magnetic particle conjugates were characterized separately using MALDI-TOF/TOF-MS. RESULTS: The results showed that the abundance level of glycopatterns recognized by HHL in salivary proteins was elevated in LC compared to BPD. The proportion of mannosylated N-glycans was notably higher in ADC (31.7%), SCC (39.0%), and SCLC (46.6%) compared to BPD (23.3%). CONCLUSIONS: The altered salivary glycopatterns such as oligomannose, Manα1-3Man, or Manα1-6Man N-glycans recognized by HHL might serve as potential biomarkers for the diagnosis of LC patients. CLINICAL RELEVANCE: This study provides crucial information for studying changes in salivary to differentiate between BPD and LC and facilitate the discovery of biomarkers for LC diagnosis based on precise alterations of mannosylated N-glycans in saliva.


Subject(s)
Lung Neoplasms , Saliva , Humans , Male , Saliva/chemistry , Female , Middle Aged , Aged , Protein Array Analysis , Polysaccharides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Glycoproteins , Biomarkers, Tumor , Salivary Proteins and Peptides/metabolism , Mannose , Plant Lectins/chemistry , Carcinoma, Squamous Cell
17.
Sci Rep ; 14(1): 12719, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830875

ABSTRACT

Polypeptide-targeted MALDI-TOF MS for microbial species identification has revolutionized microbiology. However, no practical MALDI-TOF MS identification method for O-antigen polysaccharides, a major indicator for epidemiological classification within a species of gram-negative bacteria, is available. We describe a simple MALDI glycotyping method for O-antigens that simultaneously identifies the molecular mass of the repeating units and the monosaccharide composition of the O-antigen. We analyzed the Escherichia coli O1, O6, and O157-type strains. Conventional species identification based on polypeptide patterns and O-antigen polysaccharide typing can be performed in parallel from a single colony using our MALDI-TOF MS workflow. Moreover, subtyping within the same O-antigen and parallel colony-specific O-antigen determination from mixed strains, including the simultaneous identification of multiple strains-derived O-antigens within selected colony, were performed. In MALDI glycotyping of two Enterobacteriaceae strains, a Citrobacter freundii strain serologically cross-reactive with E. coli O157 gave a MALDI spectral pattern identical to E. coli O157. On the other hand, an Edwardsiella tarda strain with no reported O-antigen cross-reactivity gave a MALDI spectral pattern of unknown O-antigen repeating units. The method described in this study allows the parallel and rapid identification of microbial genera, species, and serotypes of surface polysaccharides using a single MALDI-TOF MS instrument.


Subject(s)
O Antigens , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , O Antigens/chemistry , O Antigens/immunology , O Antigens/analysis , Gram-Negative Bacteria/immunology , Gram-Negative Bacteria/classification , Escherichia coli
18.
Front Cell Infect Microbiol ; 14: 1394663, 2024.
Article in English | MEDLINE | ID: mdl-38873099

ABSTRACT

In this study, we report the first isolation of Hanseniaspora opuntiae obtained from four pregnant women in Brazil. Clinical isolates were obtained from four samples taken between 35 and 37 gestational weeks, as part of the routine antenatal care for maternal colonization screening for Streptococcus agalactiae group B. The patients were immunocompetent, with two of them diagnosed with gestational diabetes mellitus. Species identification was performed by MALDI-TOF MS and rDNA sequencing. While Hanseniaspora species have not traditionally been considered a typical opportunist pathogen, our findings emphasize the importance of investigating and screening for Hanseniaspora in pregnant populations, highlighting H. opuntiae as a potential agent of human infections.


Subject(s)
Pregnancy Complications, Infectious , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Female , Pregnancy , Brazil , Adult , Pregnancy Complications, Infectious/microbiology , Pregnancy Complications, Infectious/diagnosis , Vagina/microbiology , DNA, Ribosomal/genetics , Sequence Analysis, DNA , Streptococcus agalactiae/isolation & purification , Streptococcus agalactiae/genetics , Streptococcus agalactiae/classification , Diabetes, Gestational/microbiology , Diabetes, Gestational/diagnosis , Young Adult
19.
Pathology ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38876816

ABSTRACT

Identifying organisms directly from positive blood culture bottles using matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry (MALDI-TOF MS) has many advantages to patients, clinical services, and laboratories. However, few published methods have demonstrated good performance using the current BioMérieux culture bottles and MALDI-TOF system: BacT/Alert FAN plus and Vitek MS. The effect of transporting bottles on test performance has not been assessed for any direct-from-bottle MS method. In this study, 802 positive blood culture bottles were analysed including 234 requiring inter-laboratory transport, using a method involving protein extraction with formic acid and acetonitrile. Correct identification rates were high for Staphylococcus aureus (58/58 of new diagnostic samples), Enterococcus faecalis (27/27), Gram-negative bacilli (160/176, 90.1%), and coagulase-negative Staphylococcus species (108/132, 81.8%). Three false identifications were made, none with clinical significance. For Gram-positive cocci in pairs or chains, more correct identifications were made from bottles analysed immediately compared to transported bottles (67% vs 44%, p=0.016), and longer transport time was associated with slightly lower probability of correct identification (OR 0.984 per additional hour, p=0.040). Transportation was not associated with a difference for other organism types. This technique is a vastly more cost-effective alternative to molecular techniques for rapid identification of bacteraemia isolates, and performance is minimally affected by inter-laboratory transport of bottles at ambient temperature.

20.
Anaerobe ; 88: 102874, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848934

ABSTRACT

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can misidentify Cutibacterium namnetense and Cutibacterium modestum as Cutibacterium acnes. We now describe how such MALDI-TOF MS misidentification explains previous reports of C. acnes isolates that could not be characterised using a multiplex PCR phylotyping assay.

SELECTION OF CITATIONS
SEARCH DETAIL
...