Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
J Cell Physiol ; : e31388, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034451

ABSTRACT

Runt-related transcription factor 2 (Runx2) is a key regulator of osteoblast differentiation and bone formation. In Runx2-deficient embryos, skeletal development ceases at the cartilage anlage stage. These embryos die of respiratory failure upon birth and display a complete absence of bone and cartilage mineralization. Here, we identified Hakai, a type of E3 ubiquitin ligase as a potential Runx2 interacting partner through affinity pulldown-based proteomic approach. Subsequently, we observed that similar to Runx2, Hakai was downregulated in osteopenic ovariectomized rats, suggesting its involvement in bone formation. Consistent with this observation, Hakai overexpression significantly enhanced osteoblast differentiation in mesenchyme-like C3H10T1/2 as well as primary rat calvaria osteoblast (RCO) cells in vitro. Conversely, overexpression of a catalytically inactive Hakai mutant (C109A) exhibited minimal to no effect, whereas Hakai depletion markedly reduced endogenous Runx2 levels and impaired osteogenic differentiation in both C3H10T1/2 and RCOs. Mechanistically, Hakai physically interacts with Runx2 and enhances its protein turnover by rescuing it from Smad ubiquitination regulatory factor 2 (Smurf2)-mediated proteasome degradation. Wild-type Hakai but not Hakai-C109A inhibited Smurf2 protein levels through proteasome-mediated degradation. These findings underscore Hakai's functional role in bone formation, primarily through its positive modulation of Runx2 protein turnover by protecting it from Smurf2-mediated ubiquitin-proteasomal degradation. Collectively, our results demonstrate Hakai as a promising novel therapeutic target for osteoporosis.

2.
Clin Oral Investig ; 28(7): 360, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847917

ABSTRACT

OBJECTIVES: Lung cancer (LC) is the malignant tumor with the highest mortality rate worldwide, and precise early diagnosis can improve patient prognosis. The purpose of this study was to investigate whether alterations in the glycopatterns recognized by the Hippeastrum hybrid lectin (HHL) in salivary proteins are associated with the development of LC. MATERIALS AND METHODS: First, we collected saliva samples from LC (15 lung adenocarcinoma (ADC); 15 squamous cell carcinoma (SCC); 15 small cell lung cancer (SCLC)) and 15 benign pulmonary disease (BPD) for high-throughput detection of abundance levels of HHL-recognized glycopatterns using protein microarrays, and then validated the pooled samples from each group with lectin blotting analysis. Finally, the N-glycan profiles of salivary glycoproteins isolated from the pooled samples using HHL-magnetic particle conjugates were characterized separately using MALDI-TOF/TOF-MS. RESULTS: The results showed that the abundance level of glycopatterns recognized by HHL in salivary proteins was elevated in LC compared to BPD. The proportion of mannosylated N-glycans was notably higher in ADC (31.7%), SCC (39.0%), and SCLC (46.6%) compared to BPD (23.3%). CONCLUSIONS: The altered salivary glycopatterns such as oligomannose, Manα1-3Man, or Manα1-6Man N-glycans recognized by HHL might serve as potential biomarkers for the diagnosis of LC patients. CLINICAL RELEVANCE: This study provides crucial information for studying changes in salivary to differentiate between BPD and LC and facilitate the discovery of biomarkers for LC diagnosis based on precise alterations of mannosylated N-glycans in saliva.


Subject(s)
Lung Neoplasms , Saliva , Humans , Male , Saliva/chemistry , Female , Middle Aged , Aged , Protein Array Analysis , Polysaccharides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Glycoproteins , Biomarkers, Tumor , Salivary Proteins and Peptides/metabolism , Mannose , Plant Lectins/chemistry , Carcinoma, Squamous Cell
3.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612805

ABSTRACT

Canine osteosarcoma (OSA) is an aggressive bone neoplasia with high metastatic potential. Metastasis is the main cause of death associated with OSA, and there is no current treatment available for metastatic disease. Proteomic analyses, including matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI TOF/TOF MS), are widely used to select molecular targets and identify proteins that may play a key role in primary tumours and at various steps of the metastatic cascade. The main aim of this study was to identify proteins differently expressed in canine OSA cell lines with different malignancy phenotypes (OSCA-8 and OSCA-32) compared to canine osteoblasts (CnOb). The intermediate aim of the study was to compare canine OSA cell migration capacity and assess its correlation with the malignancy phenotypes of each cell line. Using MALDI-TOF/TOF MS analyses, we identified eight proteins that were significantly differentially expressed (p ≤ 0.05) in canine OSA cell lines compared to CnOb: cilia- and flagella-associated protein 298 (CFAP298), general transcription factor II-I (GTF2I), mirror-image polydactyly gene 1 protein (MIPOL1), alpha-2 macroglobulin (A2M), phosphoglycerate mutase 1 (PGAM1), ubiquitin (UB2L6), ectodysplasin-A receptor-associated adapter protein (EDARADD), and leucine-rich-repeat-containing protein 72 (LRRC72). Using the Simple Western technique, we confirmed high A2M expression in CnOb compared to OSCA-8 and OSCA-32 cell lines (with intermediate and low A2M expression, respectively). Then, we confirmed the role of A2M in cancer cell migration by demonstrating significantly inhibited OSA cell migration by treatment with A2M (both at 10 and 30 mM concentrations after 12 and 24 h) in a wound-healing assay. This study may be the first report indicating A2M's role in OSA cell metastasis; however, further in vitro and in vivo studies are needed to confirm its possible role as an anti-metastatic agent in this malignancy.


Subject(s)
Osteosarcoma , Proteomics , Animals , Dogs , Transcription Factors , Cell Movement , Leucine-Rich Repeat Proteins , Macroglobulins
4.
Viruses ; 16(2)2024 01 26.
Article in English | MEDLINE | ID: mdl-38399967

ABSTRACT

The cleavage of sialic acids by neuraminidase (NA) facilitates the spread of influenza A virus (IV) descendants. Understanding the enzymatic activity of NA aids research into the transmission of IVs. An effective method for purifying NA was developed using p-aminophenyloxamic acid-modified functionalized hydroxylated magnetic particles (AAMPs), and from 0.299 to 0.401 mg of NA from eight IV strains was isolated by 1 mg AAMP. A combination of lectin microarrays and MALDI-TOF/TOF-MS was employed to investigate the N-glycans of isolated NAs. We found that more than 20 N-glycans were identified, and 16 glycan peaks were identical in the strains derived from chicken embryo cultivation. Multi-antennae, bisected, or core-fucosylated N-glycans are common in all the NAs. The terminal residues of N-glycans are predominantly composed of galactose and N-acetylglucosamine residues. Meanwhile, sialic acid residue was uncommon in these N-glycans. Further computational docking analysis predicted the interaction mechanism between NA and p-aminophenyloxamic acid.


Subject(s)
Influenza A virus , Influenza, Human , Animals , Chick Embryo , Chickens , Lectins , Neuraminidase , Polysaccharides/chemistry
5.
Proteomics ; 24(1-2): e2300151, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37904306

ABSTRACT

The Cys-loop pentameric ligand-gated ion channels comprise a dynamic group of proteins that have been extensively studied for decades, yielding a wealth of findings at both the structural and functional levels. The nicotinic acetylcholine receptor (nAChR) is no exception, as it is part of this large protein family involved in proper organismal function. Our efforts have successfully produced a highly pure nAChR in detergent complex (nAChR-DC), enabling more robust studies to be conducted on it, including beginning to experiment with high-throughput crystallization. Our homogeneous product has been identified and extensively characterized with 100% identity using Nano Lc MS/MS and MALDI ToF/ToF for each nAChR subunit. Additionally, the N-linked glycans in the Torpedo californica-nAChR (Tc-nAChR) subunits have been identified. To study this, the Tc-nAChR subunits were digested with PNGase F and the released glycans were analyzed by MALDI-ToF. The MS results showed the presence of high-mannose N-glycan in all native Tc-nAChR subunits. Specifically, the oligommanose population Man8-9GlcNac2 with peaks at m/z 1742 and 1904 ([M + Na]+ ions) were observed.


Subject(s)
Nicotine , Receptors, Nicotinic , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Acetylcholine/metabolism , Torpedo/metabolism , Tandem Mass Spectrometry , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism
6.
Theriogenology ; 216: 69-81, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38159387

ABSTRACT

Liquid storage of turkey semen without the loss of fertilizing ability is of practical interest to the poultry industry. However, fertility rates from liquid-stored turkey semen decline within a few hours. A clear cause of the decline in spermatozoa quality remains unidentified. Therefore, the purpose of the present study was to monitor the dynamics of proteomic changes in spermatozoa during 48 h of liquid storage by 2-dimensional difference in-gel electrophoresis coupled with matrix-assisted laser desorption/ionization mass spectrometry. A total of 57 protein spots were differentially expressed between fresh and stored spermatozoa; 42 spots were more and 15 were less abundant after 48 h of semen storage. Raw proteomic data are available via ProteomeXchange with identifier PXD043050. The selected differentially expressed proteins (DEPs) were validated by western blotting and localized in specific spermatozoa structures by immunofluorescence, such as the head (acrosin and tubulin α), midpiece (acrosin, aconitate hydratase 2, and glycerol-3-phosphate dehydrogenase) and tail (tubulin α). Most of the DEPs that changed in response to liquid storage were related to flagellum-dependent cell motility, energy derivation through oxidation of organic compounds and induction of fertilization, suggesting the complexity of the processes leading to the decrease in stored semen quality. The damaging effect of liquid storage on spermatozoa flagellum manifested as more microtubule proteins, such as tubulins and tektins, most likely formed by posttranslational modifications, tubulin α relocation from the tail to the sperm head, which appeared after 48 h of semen storage, and decreases in fibrous shelf proteins at the same time. Motility could be affected by dysregulation of Ca2+-binding proteins and disturbances in energy metabolism in spermatozoa flagellum. Regarding sperm mitochondria, DEPs involved in energy derivation through the oxidation of organic compounds indicated disturbances in fatty acid beta oxidation and the tricarboxylic acid cycle as possible reasons for energy deficiency during liquid storage. Disturbances in acrosin and 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase zeta may be involved in rapid declines in the fertility potential of stored turkey spermatozoa. These results showed the complexity of the processes leading to a decrease in stored semen quality and broadened knowledge of the detrimental effects of liquid storage on turkey spermatozoa physiology.


Subject(s)
Semen Preservation , Semen , Male , Animals , Semen/physiology , Semen Analysis/veterinary , Acrosin/analysis , Tubulin , Proteomics , Sperm Motility/physiology , Semen Preservation/veterinary , Semen Preservation/methods , Spermatozoa/physiology , Turkeys/physiology
7.
Foods ; 12(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38002133

ABSTRACT

Shalgam is a traditional Turkish beverage derived from the natural fermentation of purple carrots (Daucus carota) that boasts valuable antioxidant and prebiotic properties. These features of shalgam increase efforts to enhance its shelf life and ensure safe consumption. In this study, the effects of three different preservatives (sodium benzoate, potassium sorbate, or natamycin) on the physicochemical and microbiological properties of shalgam produced at laboratory scale and stored at room temperature for six months were investigated. Each preservative was used in four different concentrations (25, 100, 400, and 800 mg/L) to assess their impacts on the population of lactic acid bacteria (LAB) and yeast. After determining the total acidity and pH of the samples, colorimetric measurements were performed. The isolated LAB were defined using the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) method. The addition of preservatives did not significantly affect the pH of the shalgam samples (3.44-3.52) compared to the control sample (3.43). However, a slight increase was observed in the total acidity of preservative-treated samples, with the highest level (5.61 g/L lactic acid) recorded in samples containing 100 mg/L sodium benzoate. Lacticaseibacillus paracasei subsp. paracasei, which has the potential to impart probiotic properties to shalgam, was the predominant LAB species in both non-treated and preservative-treated samples. The use of preservatives significantly reduced the total number of yeasts, which may cause spoilage in shalgam. The results indicate that using sodium benzoate at a concentration of 100 mg/L is the optimum method for shalgam production, resulting in the highest total acidity value obtained. Overall, the findings provide a significant contribution to prolonging the shelf life of shalgam, a beverage with immense production and consumption potential worldwide.

8.
Mol Nutr Food Res ; 67(12): e2200308, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36938670

ABSTRACT

SCOPE: Human milk (HM) has a wide range of proteins with biological and nutritional functions, essential for newborns. The roles of proteins and their proteoforms in HM are not fully understood. This study aims to assess, by 2-DE proteomics, the differential proteoforms in HM, present in colostrum (COL), transition (TRA), and mature milk (MAT), aiming to contribute to understanding neonates' protein needs. METHODS AND RESULTS: HM samples are collected from 39 healthy lactating women. COL presents the higher concentration of essential amino acids. After MALDI-MS/MS and bioinformatics analysis, proteoforms are differentially detected. Abundances of ß-casein (CSN2), α-s1 casein, and α-lactalbumin (LALBA) are higher in MAT; CSN2s are found in 11 spots and the isoforms increase in size as the pI becomes more acidic; regarding LALBA, two variant forms are found with different abundances in TRA and MAT; CSN2, LALBA, lactotransferrin (LTF), and serum albumin forms are present in all lactation phases. CONCLUSION: This study reveals differential proteoforms in COL involved in tissue growth and body development, besides essential amino acids, and, in MAT, involved in muscle mass gain, strengthening of the immune system, and energy production. The results provide new insight about proteoforms involved in maturation of the newborn's organs and systems.


Subject(s)
Caseins , Milk, Human , Infant, Newborn , Female , Humans , Animals , Milk, Human/chemistry , Caseins/analysis , Lactation , Lactalbumin , Lactoferrin , Serum Albumin/analysis , Proteomics , Tandem Mass Spectrometry , Milk/chemistry , Transcription Factors , Amino Acids, Essential , Milk Proteins/chemistry
9.
Biomedicines ; 11(2)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36831080

ABSTRACT

Diabetes mellitus (DM) is a pro-thrombotic state that can potentially cause serious cardiovascular complications. Platelet hyperactivation plays an important role in these pathological processes, however there is little or no information on the effect of hyperglycemia on platelet proteins. The aim of this study was to identify the molecular targets associated with platelet reactivity under hyperglycemia. Towards this goal, we examined the effects of the exposure of platelets to 1 and 2 h glucose (300 mg/dL) and control (vehicle and osmolality control using mannitol) on platelet proteins (n = 4 samples per group) using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF tandem mass spectrometry. Two-hour exposure to glucose significantly up-regulated the expression of ATP synthase subunit beta, filamin-A, and L-lactate dehydrogenase A chain in platelets. Pro-Q Diamond staining confirmed the effect of 2 h glucose on vinculin, heat shock protein HSP 90-alpha, filamin-A, and fructose-bisphosphate aldolase A (platelet phosphorylated proteins). The identified proteins are involved in various cellular processes and functions and possibly in platelet reactivity under hyperglycemic conditions.

10.
Proteomics Clin Appl ; 17(3): e2200012, 2023 05.
Article in English | MEDLINE | ID: mdl-36349801

ABSTRACT

PURPOSE: Lung cancer (LC) is the leading cause of cancer-related deaths worldwide, mainly due to late diagnosis and poor prognosis. Saliva is an important source for discovering biomarkers and contains an abundance of biological information. The purpose of this study was to determine whether galactosylation levels of salivary proteins are associated with LC. EXPERIMENTAL DESIGN: First, we analyzed the alterations of the glycopatterns recognized by Bandeiraea Simplicifolia Lectin I (BS-I) in five groups (healthy volunteers [HV]: 28, benign pulmonary disease [BPD]: 27, lung adenocarcinoma [ADC]: 39, squamous cell carcinoma [SCC]: 28, small-cell lung cancer [SCLC]: 22) of 144 saliva samples using lectin microarrays. Pooled samples from each group were subsequently validated by the lectin blotting technique. Finally, the N-glycan profiles of their salivary glycoproteins isolated by the BS-I-magnetic particle conjugates from pooled samples for each group were analyzed by MALDI-TOF/TOF-MS. RESULTS: The results showed that the expression level of galactosylated glycans recognized by BS-I was significantly increased in patients with LC compared with BPD and HV. Receiver operating characteristic (ROC) analysis indicated that the levels of salivary glycopattern recognized by BS-I could discriminate lung disease (BPD, ADC, SCC, and SCLC) and HV with an AUC of 0.700 (95% CI: 0.589-0.812), and discriminate LC and BPD with an AUC of 0.860 (95% CI: 0.763-0.956). Also, the proportion of galactosylated N-glycans in ADC (38.4%), SCC (43.1%), and SCLC (39.5%) increased compared to HV (30.1%) and BPD (33.7%), and two galactosylated N-glycan peaks (m/z 1828.683, 2418.853) could be identified only in the LC groups (ADC, SCC, and SCLC). CONCLUSIONS AND CLINICAL RELEVANCE: These findings could provide crucial information on galactosylated N-linked glycans associated with LC and facilitate the study of LC biomarkers based on precise alterations of galactosylated N-glycans in saliva.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Glycomics , Polysaccharides/metabolism , Lectins/metabolism , Biomarkers, Tumor/metabolism , Salivary Proteins and Peptides
11.
J. inborn errors metab. screen ; 11: e2022022, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1421994

ABSTRACT

Abstract Mucopolysaccharidosis IIIA (MPS IIIA) is a lysosomal storage disorder (LSD) caused by deficiency of lysosomal N-sulphoglucosamine sulphohydrolase, which is one of four enzymes involved in heparan sulfate degradation. Traditional methods used for MPS IIIA diagnostics usually constitute of selective screening, based on the analysis of urinary glycosaminoglycans, further enzymatic assays in leukocytes, and mutation analysis. Nowadays, some LSDs, including mucopolysaccharidoses, can be precisely diagnosed by mass spectrometry-based techniques. Up to this date, there are no comprehensive studies of MPS IIIA diagnostics by MALDI-TOF analysis of free oligosaccharides in urine published. In the presented work, MALDI-TOF/TOF analysis of permethylated oligosaccharides was performed to obtain the set of glyco-biomarkers that together form the specific fingerprint of this disease. Early and accurate diagnostics of MPS IIIA is crucial to stabilize the progressive cellular damage and improve the overall well-being of patients.

12.
J Mass Spectrom ; 57(12): e4896, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36426779

ABSTRACT

In this work, two Bacillus strains isolated from honey (Bacillus subtilis subsp. subtilis C4; access code HQ828992) and from a waste of an artisanal tannery (Bacillus amyloliquefaciens B31; access code KP893752) were evaluated in order to determine their antibacterial activity against five enteropathogenic Escherichia coli strains. The number of viable cultivable cells of the different strains of E. coli analyzed was determined by plate count. The crude cell-free supernatants of both Bacillus strains exerted anti-E. coli activities, whereas only the lipopeptide fraction of B31 had significant E. coli inhibition. The lipopeptides produced by the Bacillus were analyzed using matrix-assisted laser desorption-ionization mass spectrometry (MALDI MS). The analysis was conducted combining the profiles (fingerprints) of the lipopeptides mixture and the individual lipopeptide fragmentation (tandem mass spectrometry [MS/MS] mode), both obtained from the same lipopeptides mixture sample, for higher output. Data obtained from C4 and B31 revealed that surfactin homologues were the most abundant lipopeptides produced by both strains studied. Additionally, kurstakin, iturin, and fengycin homologues were detected. Using the MS/MS mode, it was demonstrated that isobar compounds belonging to different families were produced by each Bacillus strain (e.g., C-16 bacillomycin D was detected in B31 samples, meanwhile C-15 iturin C was detected in C4). MS/MS analysis contributed with relevant information about the type of lipopeptides synthesized by Bacillus strains studied in this work.


Subject(s)
Bacillus amyloliquefaciens , Bacillus , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Escherichia coli , Tandem Mass Spectrometry/methods , Lipopeptides/chemistry , Bacillus/chemistry , Anti-Bacterial Agents/pharmacology
13.
Molecules ; 27(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36234894

ABSTRACT

Background: Hemoglobin (Hb) variants arise due to point mutations in globin chains and their pathological treatments rely heavily on the identification of the nature and location of the mutation in the globin chains. Traditional methods for diagnosis such as HPLC and electrophoresis have their own limitations. Therefore, the present study aims to develop and optimize a specific method of sample processing that could lead to improved sequence coverage and analysis of Hb variants by nano LC-MALDI MS/MS. Methods: In our study, we primarily standardized various sample processing methods such as conventional digestion with trypsin followed by 10% acetonitrile treatment, digestion with multiple proteases like trypsin, Glu-C, Lys-C, and trypsin digestion subsequent to 2,2,2 trifluoroethanol (TFE) treatment. Finally, the peptides were identified by LC-MALDI MS/MS. All of these sample processing steps were primarily tested with recombinant Hb samples. After initial optimization, we found that the TFE method was the most suitable one and the efficiency of this method was applied in Hb variant identification based on high sequence coverage. Results: We developed and optimized a method using an organic solvent TFE and heat denaturation prior to digestion, resulting in 100% sequence coverage in the ß-chains and 95% sequence coverage in the α-chains, which further helped in the identification of Hb mutations. A Hb variant protein sequence database was created to specify the search and reduce the search time. Conclusion: All of the mutations were identified using a bottom-up non-target approach. Therefore, a sensitive, robust and reproducible method was developed to identify single substitution mutations in the Hb variants from the sequence of the entire globin chains. Biological Significance: Over 330,000 infants are born annually with hemoglobinopathies and it is the major cause of morbidity and mortality in early childhood. Hb variants generally arise due to point mutation in the globin chains. There is high sequence homology between normal Hb and Hb variant chains. Due to this high homology between the two forms, identification of variants by mass spectrometry is very difficult and requires the full sequence coverage of α- and ß-chains. As such, there is a need for a suitable method that provides 100% sequence coverage of globin chains for variant analysis by mass spectrometry. Our study provides a simple, robust, and reproducible method that is suitable for LC-MALDI and provides nearly complete sequence coverage in the globin chains. This method may be used in the near future in routine diagnosis for Hb variant analysis.


Subject(s)
Tandem Mass Spectrometry , Trifluoroethanol , Child, Preschool , Humans , Acetonitriles , Digestion , Hemoglobins/metabolism , Mutation , Peptides/genetics , Solvents , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Trypsin/genetics
14.
Med Oncol ; 39(12): 190, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36071279

ABSTRACT

Prostate cancer is the most common type of cancer among men, and there is still no definitively effective drug treatment. Thus, the search for novel drug agents that may be used for the effective treatment continues. Meclofenamic acid (MA), a non-steroidal anti-inflammatory drug, with anti-tumor effects in various types of cancers was used to investigate its effects on LNCaP cells, a prostate cancer cell line, at the proteome level. The cells were treated with 80 µM MA for 24 h and a comparative proteomic analysis was performed with their untreated control cells. Proteins were extracted from the cells and then were subjected to two-dimensional gel electrophoresis. Protein spots displaying changes in their regulation ratios for more than two-fold were excised from the gels and identified with MALDI-TOF/TOF mass spectrometry. Bioinformatics analysis of the differentially regulated proteins that we identified showed that they were all associated with and took part in related pathways. Glycolytic pathway, cytoskeletal formation, transport activity, protein metabolism, and most notably an mRNA processing pathway were affected by the MA treatment. In addition to presenting a detailed information for what is happening inside the cells upon MA treatment, the proteins affected by MA treatment hold the potential to be novel targets for prostate cancer treatment provided that further in vivo experiments are carried out.


Subject(s)
Prostatic Neoplasms , Proteome , Humans , Male , Meclofenamic Acid , Polyadenylation , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Proteome/analysis , Proteome/metabolism , Proteomics/methods
15.
Open Life Sci ; 17(1): 1117-1128, 2022.
Article in English | MEDLINE | ID: mdl-36133425

ABSTRACT

Selenium may influence the biosynthesis of individual proteins in the yeast cell cytosol. In this study, we used two-dimensional (2D) electrophoresis to identify proteins that are differentially expressed by the enrichment of selenium in Saccharomyces cerevisiae yeast cells. We chose eight protein fractions for further proteomic analysis. A detailed analysis was performed using the Ultraflextreme matrix-assisted laser desorption/ionisation time-of-flight/time-of-flight mass spectrometer, which enables fast and accurate measurement of the molecular weight of the analysed proteins. This study, for the first time, provides evidence that selenium-enriched yeast contains higher levels of mitochondria malate dehydrogenase, adenosine-5'-triphosphate (ATP)-dependent RNA helicase dbp3, and tryptophan dimethylallyltransferase, and alanyl-tRNA editing protein AlaX than yeast without the addition of selenium. It should be emphasised that the proteomic variability obtained reflects the high biological and complexity of yeast metabolism under control and selenium-enriched conditions and can be properly used in the future as a model for further research aimed at determining the expression of appropriate metabolic genes.

16.
Int J Mol Sci ; 23(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36142695

ABSTRACT

Seminal plasma (SP) mirrors the local pathophysiology of the male reproductive system and represents a non-invasive fluid for the study of infertility. Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) provides a high-throughput platform to rapidly extrapolate the diagnostic profiles of information-rich patterns. In this study, dispersive solid phase extraction (d-SPE) combined with MALDI-TOF-MS was applied for the first time to the human SP, with the aim of revealing a diagnostic signature for male infertility. Commercially available octadecyl (C18)-, octyl (C8)-bonded silica sorbents and hexagonal mesoporous silica (HMS) were tested and the robustness of MALDI-TOF peptide profiling was evaluated. Best performances were obtained for C18-bonded silica with the highest detection of peaks and the lowest variation of spectral features. To assess the diagnostic potential of the method, C18-bonded silica d-SPE and MALDI-TOF-MS were used to generate enriched endogenous peptide profiles of SP from 15 fertile and 15 non-fertile donors. Principal component analysis (PCA) successfully separated fertile from non-fertile men into two different clusters. An array of seven semenogelin-derived peptides was found to distinguish the two groups, with high statistical significance. These findings, while providing a rapid and convenient route to selectively enrich native components of SP peptidome, strongly reinforce the prominent role of semenogelins in male infertility.


Subject(s)
Infertility, Male , Semen , Humans , Infertility, Male/diagnosis , Male , Peptides/chemistry , Reproducibility of Results , Semen/chemistry , Silicon Dioxide/chemistry , Solid Phase Extraction/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
17.
Theriogenology ; 191: 77-95, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35964478

ABSTRACT

Cryoinjury and protein changes are a consequence of cryopreservation and may have a negative impact on sperm quality regarding motility, viability and fertilizing ability. However, potential proteomic changes in rabbit semen throughout the cryopreservation process have never been previously investigated. The aim of the present study was to compare the whole proteome of fresh and cryopreserved rabbit semen (spermatozoa and extracellular fluid), to examine the effects of freeze-thawing on proteins changes in semen. Comparative analysis and identification of proteins was carried out using 2-dimensional difference in-gel electrophoresis coupled with a matrix-assisted laser desorption/ionization mass spectrometry. Proteomic raw data are available via ProteomeXchange with identifier PXD034832 for spermatozoa and PXD034853 for extracellular fluid. Respectively, 107 and 28 proteins differed in abundance in spermatozoa and extracellular fluid between fresh and frozen groups. Most of these proteins were involved in pathways related to energy metabolism and protein quality control under stress conditions, reproductive processes and mechanisms of cell death/survival regulation, resulting in a significant decrease of motility and viability of post-thawing rabbit sperm and its potential fertilizing ability. These results broaden the understanding of the effects of cryopreservation on rabbit semen and represent a new starting point for the development of improved freezing procedures.


Subject(s)
Semen Preservation , Semen , Animals , Cryopreservation/methods , Cryopreservation/veterinary , Male , Proteomics/methods , Rabbits , Semen/metabolism , Semen Analysis/veterinary , Semen Preservation/methods , Semen Preservation/veterinary , Sperm Motility/physiology , Spermatozoa/physiology
18.
Appl Biochem Biotechnol ; 194(12): 5945-5962, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35849254

ABSTRACT

Oral carcinoma is one of the most vicious forms of cancer with a very low survival rate, as its patients often respond poorly to conventional chemotherapy. Presently several researchers are attempting to pursue an alternative to this therapy using natural products. Considering the promising strategy and induction of apoptosis to target the cancer cells, we evaluated the influence of a seaweed Padina gymnospora (15 µg/ml and 20 µg/ml) in enhancing apoptosis of oral cancer cells (KB-CHR-8-5) after 24-h incubation. The morphological changes indicating apoptosis were primarily assessed using a light microscope after which the apoptosis was confirmed by performing AO/EB staining method. Subsequently, MMP and ROS levels in the cells were assessed using Rh 123 and DCFH-DA staining procedures, respectively. All the above tests confirmed the ability of P. gymnospora to accelerate apoptosis in the oral cancer cells. As a next step, wide proteome analysis was performed where the proteins from P. gymnospora-treated cells were separated using the 2D electrophoresis technique and compared with that of control cells to isolate the differentially expressed proteins. This procedure resulted in the isolation of 10 proteins which were identified using MALDI-TOF/TOF MS, which established that most of the isolated proteins were part of the apoptotic process of the cell. The proteins identified are part of huge and complex pathways where it gets linked with many more genes which are also associated with apoptosis. Bioinformatics of these identified proteins was analyzed using STRING and PANTHER databases. These proteins contribute to cell apoptosis by affecting various functions, biological processes, and the synthesis of cellular components. PANTHER also demonstrated that these proteins belong to the classes of proteins that take part in several vital pathways of the cell among which the apoptotic pathway is the predominant one.


Subject(s)
Mouth Neoplasms , Phaeophyceae , Seaweed , Humans , Proteome , Mouth Neoplasms/drug therapy , Seaweed/metabolism , Apoptosis
19.
PeerJ ; 10: e12897, 2022.
Article in English | MEDLINE | ID: mdl-35228907

ABSTRACT

BACKGROUND: Animal models are significant for understanding human osteoarthritis (OA). This study compared the synovial fluid proteomics changes in surgical and chemical induced OA models. METHODS: Thirty rabbits either had anterior cruciate ligament transection (ACLT) procedure or injected intra-articularly with monosodium iodoacetate (MIA, 8 mg) into the right knee. The joints were anatomically assessed, and the synovial fluid proteins analyzed using two-dimensional polyacrylamide gel electrophoresis (2DGE) and MALDI TOF/TOF mass spectrometry analysis at 4, 8 and 12 weeks. The proteins' upregulation and downregulation were compared with control healthy knees. RESULTS: Seven proteins (histidine-rich glycoprotein, beta-actin-like protein 2 isoform X1, retinol-binding protein-4, alpha-1-antiproteinase, gelsolin isoform, serotransferrin, immunoglobulin kappa-b4 chain-C-region) were significantly expressed by the surgical induction. They characterized cellular process (27%), organization of cellular components or biogenesis (27%), localization (27%) and biological regulation (18%), which related to synovitis, increased cellularity, and subsequently cartilage damage. Three proteins (apolipoprotein I-IV precursor, serpin peptidase inhibitor and haptoglobin precursor) were significantly modified by the chemical induction. They characterized stimulus responses (23%), immune responses (15%), biological regulations (15%), metabolism (15%), organization of cellular components or biogenesis (8%), cellular process (8%), biological adhesions (8%) and localization (8%), which related to chondrocytes glycolysis/death, neovascularization, subchondral bone necrosis/collapse and inflammation. CONCLUSIONS: The surgical induced OA model showed a wider range of protein changes, which were most upregulated at week 12. The biological process proteins expressions showed the chemical induced joints had slower OA progression compared to surgical induced joints. The chemical induced OA joints showed early inflammatory changes, which later decreased.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Rabbits , Humans , Synovial Fluid/metabolism , Proteome/metabolism , Cartilage, Articular/metabolism , Osteoarthritis/chemically induced , Anterior Cruciate Ligament/surgery
20.
Molecules ; 27(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35268705

ABSTRACT

Trichosanthin (TCS) is a traditional Chinese herbal medicine used to treat some gynecological diseases. Its effective component has diverse biological functions, including antineoplastic activity. The human trophoblast cell line BeWo was chosen as an experimental model for in vitro testing of a drug screen for anticancer properties of TCS. The MTT method was used in this study to get a primary screen result. The result showed that 100 mM had the best IC50 value. Proteomics analysis was then performed for further investigation of the drug effect of TCS on the BeWo cell line. In this differential proteomic expression analysis, the total proteins extracted from the BeWo cell line and their protein expression level after the drug treatment were compared by 2DE. Then, 24 unique three-fold differentially expressed proteins (DEPs) were successfully identified by MALDI-TOF/TOF MS. Label-free proteomics was run as a complemental method for the same experimental procedure. There are two proteins that were identified in both the 2DE and label-free methods. Among those identified proteins, bioinformatics analysis showed the importance of pathway and signal transduction and gives us the potential possibility for the disease treatment hypothesis.


Subject(s)
Antineoplastic Agents , Trichosanthin , Antineoplastic Agents/pharmacology , Cell Line , Humans , Proteins , Proteomics/methods , Trichosanthin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...