Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.304
Filter
1.
BMC Microbiol ; 24(1): 238, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961393

ABSTRACT

OBJECTIVES: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is extensively employed for the identification of filamentous fungi on MALDI Biotyper (Bruker Daltonics) and Vitek MS (biomerieux), but the performance of fungi identification on new EXS2600 (Zybio) is still unknow. Our study aims to evaluate the new EXS2600 system's (Zybio) ability to rapidly identify filamentous fungi and determine its effect on turnaround time (TAT) in our laboratory. METHODS: We tested 117 filamentous fungi using two pretreatment methods: the formic acid sandwich (FA-sandwich) and a commercial mold extraction kit (MEK, Zybio). All isolates were confirmed via sequence analysis. Laboratory data were extracted from our laboratory information system over two 9-month periods: pre-EXS (April to December 2022) and post-EXS (April to December 2023), respectively. RESULTS: The total correct identification (at the species, genus, or complex/group level) rate of fungi was high, FA-sandwich (95.73%, 112/117), followed by MEK (94.02%, 110/117). Excluding 6 isolates not in the database, species-level identification accuracy was 92.79% (103/111) for FA-sandwich and 91.89% (102/111) for MEK; genus-level accuracy was 97.29% (108/111) and 96.39% (107/111), respectively. Both methods attained a 100% correct identification rate for Aspergillus, Lichtheimia, Rhizopus Mucor and Talaromyces species, and were able to differentiate between Fusarium verticillioides and Fusarium proliferatum within the Fusarium fujikuroi species complex. Notably, high confidence was observed in the species-level identification of uncommon fungi such as Trichothecium roseum and Geotrichum candidum. The TAT for all positive cultures decreased from pre EXS2600 to post (108.379 VS 102.438, P < 0.05), and the TAT for tissue decreased most (451.538 VS 222.304, P < 0.001). CONCLUSIONS: The FA-sandwich method is more efficient and accurate for identifying filamentous fungi with EXS2600 than the MEK. Our study firstly evaluated the performance of fungi identification on EXS2600 and showed it is suitable for clinical microbiology laboratories use.


Subject(s)
Formates , Fungi , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Fungi/classification , Fungi/isolation & purification , Fungi/chemistry , Fungi/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Formates/chemistry
2.
Int Microbiol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955904

ABSTRACT

The study aimed to investigate Candida albicans presence, antifungal resistance, biofilm formation, putative virulence genes, and molecular characterization in oral samples of dogs and cats. A total of 239 oral samples were collected from cats and dogs of various breeds and ages at Erciyes University, Faculty of Veterinary Medicine Clinics, between May 2017 and April 2018. Among 216 isolates obtained, 15 (6.95%) were identified as C. albicans, while 8 (3.7%) were non-albicans Candida species. Antifungal susceptibility testing revealed sensitivities to caspofungin, fluconazole, and flucytosine in varying proportions. Molecular analysis indicated the presence of fluconazole and caspofungin resistance genes in all C. albicans isolates. Additionally, virulence genes ALS1, HWP1, and HSP90 showed variable presence. Biofilm formation varied among isolates, with 46.7% strong, 33.3% moderate, and 20% weak producers. PCA analysis categorized isolates into two main clusters, with some dog isolates grouped separately. The findings underscore the significance of oral care and protective measures in pets due to C. albicans prevalence, biofilm formation, virulence factors, and antifungal resistance in their oral cavity, thereby aiding clinical diagnosis and treatment in veterinary medicine.

3.
J Microbiol Methods ; 223: 106984, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955305

ABSTRACT

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is the first-line method for the rapid identification of most cultured microorganisms. As for Streptomyces strains, MALDI-TOF MS identification is complicated by the characteristic incrustation of colonies in agar and the strong cell wall of Actinomycetes cells requiring the use of alternative protein extraction protocols. In this study, we developed a specific protocol to overcome these difficulties for the MALDI-TOF MS identification of Actinomycetes made on solid medium. This protocol includes incubation of colony removed from agar plate with the beta-agarase enzyme, followed by a mechanical lysis and two washes by phosphate buffer and ethanol. Twenty-four Streptomyces and two Lentzea strains isolated from Algerian desertic soils were first identified by 16S rRNA sequencing as gold standard method, rpoB gene was used as a secondary gene target when 16S rRNA did not allow species identification. In parallel the isolates were identified by using the MALDI-TOF MS protocol as reported. After the expansion of the database with the inclusion of this MSPS, the strains were analyzed again in MALDI Biotyper, and all were identified. This work demonstrates that the rapid identification of Actinomycetes can be obtained without protein extraction step frequently used in MALDI-TOF mass spectrometry with this type of microorganisms.

4.
Heliyon ; 10(12): e33000, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988516

ABSTRACT

A 91-year-old Chinese male was hospitalized on June 28, 2021, due to a sudden fever. The patient had a long history of smoking, a 10-year history of type 2 diabetes, a family history of hypertension, and a history of coronary heart disease and lower extremity arterial occlusive disease. He presented with cough, sputum, and dry and wet rales in both lungs. A computed tomography scan revealed multiple infectious lesions in both lungs and a small pleural effusion. His procalcitonin level was 1.75 ng/mL. Microscopic examination of the sputum revealed abundant fungal spores and hyphae. Sputum culture results revealed Aspergillus quadrilineatus, which was confirmed by matrix-assisted laser desorption/ionization time-of-flight and internal transcribed spacer gene sequencing. Fungal drug sensitivity testing revealed that azoles (excluding fluconazole) and echinocandins exhibited high activity against Aspergillus quadrilineatus. The patient's condition improved following intravenous voriconazole treatment for 2 weeks, after which he was discharged. Subsequently, the patient was hospitalized six times for pulmonary infections, with the most recent hospitalization being on March 8, 2024. The symptoms improved, and the patient was discharged on March 15, 2024.

5.
Methods Mol Biol ; 2821: 83-89, 2024.
Article in English | MEDLINE | ID: mdl-38997482

ABSTRACT

In the quality control of synthetic peptides, mass spectroscopy (MS) serves as an optimal method for evaluating authenticity and integrity. Typically, the sequence of a synthetic peptide is already established, thereby directing the focus of analysis towards validating its identity and purity. This chapter outlines straightforward methodologies for conducting MS analyses specifically tailored for synthetic peptides.


Subject(s)
Mass Spectrometry , Peptides , Peptides/chemistry , Peptides/analysis , Mass Spectrometry/methods , Quality Control , Amino Acid Sequence , Tandem Mass Spectrometry/methods
6.
Se Pu ; 42(7): 711-720, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-38966979

ABSTRACT

Protein citrullination is an irreversible post-translational modification process regulated by peptidylarginine deiminases (PADs) in the presence of Ca2+. This process is closely related to the occurrence and development of autoimmune diseases, cancers, neurological disorders, cardiovascular and cerebrovascular diseases, and other major diseases. The analysis of protein citrullination by biomass spectrometry confronts great challenges owing to its low abundance, lack of affinity tags, small mass-to-charge ratio change, and susceptibility to isotopic and deamidation interferences. The methods commonly used to study the protein citrullination mainly involve the chemical derivatization of the urea group of the guanine side chain of the peptide to increase the mass-to-charge ratio difference of the citrullinated peptide. Affinity-enriched labels are then introduced to effectively improve the sensitivity and accuracy of protein citrullination by mass spectrometry. 2,3-Butanedione or phenylglyoxal compounds are often used as derivatization reagents to increase the mass-to-charge ratio difference of the citrullinated peptide, and the resulting derivatives have been observed to contain α-dicarbonyl structures. To date, however, no relevant studies on the reactivity of dicarbonyl compounds with citrullinated peptides have been reported. In this study, we determined whether six α-dicarbonyl and two ß-dicarbonyl compounds undergo derivatization reactions with standard citrullinated peptides using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Among the α-dicarbonyl compounds, 2,3-butanedione and glyoxal reacted efficiently with several standard citrullinated peptides, but yielded a series of by-products. Phenylglyoxal, methylglyoxal, 1,2-cyclohexanedione, and 1,10-phenanthroline-5,6-dione also derivated efficiently with standard citrullinated peptides, generating a single derivative. Thus, a new derivatization method that could yield a single derivative was identified. Among the ß-dicarbonyl compounds, 1,3-cyclohexanedione and 2,4-pentanedione successfully reacted with the standard citrullinated peptides, and generated a single derivative. However, their reaction efficiency was very low, indicating that the ß-dicarbonyl compounds are unsuitable for the chemical derivatization of citrullinated peptides. The above results indicate that the α-dicarbonyl structure is necessary for realizing the efficient and specific chemical derivatization of citrullinated peptides. Moreover, the side chains of the α-dicarbonyl structure determine the structure of the derivatives, derivatization efficiency, and generation (or otherwise) of by-products. Therefore, the specific enrichment and precise identification of citrullinated peptides can be achieved by synthesizing α-dicarbonyl structured compounds containing affinity tags. The proposed method enables the identification of citrullinated proteins and their modified sites by MS, thereby providing a better understanding of the distribution of citrullinated proteins in different tissues. The findings will be beneficial for studies on the mechanism of action of citrullinated proteins in a variety of diseases.


Subject(s)
Citrullination , Peptides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Peptides/chemistry
7.
Infect Dis Clin Microbiol ; 6(2): 141-146, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39005699

ABSTRACT

This study aimed to assess the performance of the MALDI-TOF MS short incubation method for bacterial identification at short-term incubation times to improve the reporting of blood cultures. MALDI-TOF MS analysis was conducted at intervals of 2, 4, and 6 hours during the development of microbial biomass on solid media until successful identification was achieved, with a final assessment at 24 hours for conventional identification. Species-level identification rates at the 2nd, 4th, 6th, and 24th hours were 57.5%, 83.6%, 93.1%, and 93.1% for Gram-negative bacilli; 12.5%, 42.7%, 76.1%, 97.8% for Gram-positive cocci and 0%, 11.8%, 17.6%, 58.8% for Gram-positive bacilli, respectively. The species-level identification rate was 76.5% for all monomicrobial cultures at the 6th hour. Our results have led us to implement this method into our routine laboratory workflow, and we have started to report rapid identification results for Gram-negative bacteria on the day of blood culture positivity.

8.
Infect Drug Resist ; 17: 2899-2912, 2024.
Article in English | MEDLINE | ID: mdl-39005853

ABSTRACT

Purpose: The World Health Organization has identified Klebsiella pneumoniae (KP) as a significant threat to global public health. The rising threat of carbapenem-resistant Klebsiella pneumoniae (CRKP) leads to prolonged hospital stays and higher medical costs, necessitating faster diagnostic methods. Traditional antibiotic susceptibility testing (AST) methods demand at least 4 days, requiring 3 days on average for culturing and isolating the bacteria and identifying the species using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), plus an extra day for interpreting AST results. This lengthy process makes traditional methods too slow for urgent clinical situations requiring rapid decision-making, potentially hindering prompt treatment decisions, especially for fast-spreading infections such as those caused by CRKP. This research leverages a cutting-edge diagnostic method that utilizes an artificial intelligence-clinical decision support system (AI-CDSS). It incorporates machine learning algorithms for the swift and precise detection of carbapenem-resistant and colistin-resistant strains. Patients and Methods: We selected 4307 KP samples out of a total of 52,827 bacterial samples due to concerns about multi-drug resistance using MALDI-TOF MS and Vitek-2 systems for AST. It involved thorough data preprocessing, feature extraction, and machine learning model training fine-tuned with GridSearchCV and 5-fold cross-validation, resulting in high predictive accuracy, as demonstrated by the receiver operating characteristic and area under the curve (AUC) scores, laying the groundwork for our AI-CDSS. Results: MALDI-TOF MS analysis revealed distinct intensity profiles differentiating CRKP and susceptible strains, as well as colistin-resistant Klebsiella pneumoniae (CoRKP) and susceptible strains. The Random Forest Classifier demonstrated superior discriminatory power, with an AUC of 0.96 for detecting CRKP and 0.98 for detecting CoRKP. Conclusion: Integrating MALDI-TOF MS with machine learning in an AI-CDSS has greatly expedited the detection of KP resistance by approximately 1 day. This system offers timely guidance, potentially enhancing clinical decision-making and improving treatment outcomes for KP infections.

9.
J Agric Food Chem ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012169

ABSTRACT

The goal of the present study was to establish a rapid, simple method for simultaneous allergy testing of sera from multiple fish-allergic patients. Sera from fish-allergic patients were pooled and used for capturing allergens in fish muscle of crucian carp (Carassius auratus), which was studied as a fish model. Sarcoplasmic proteins of crucian carp (Carassius auratus) were extracted for the analysis of allergens. Anti-human IgE antibody-functionalized magnetic beads were utilized to collect IgE antibodies from human pooled sera. The isolation of allergenic proteins was immunomagnetically performed in microfluidic channels, and the elution of the captured allergenic proteins was done with 5% (v/v) acetic acid aqueous solution. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and peptide mass fingerprinting were used for the analysis of tryptic digests of eluted proteins. Ten potential allergenic proteins were identified from crucian carp (Carassius auratus). The present protocol provides a rapid, efficient, and simple method for simultaneous detection of multiple allergens, based on multitargeted antibodies from pooled sera of allergic patients. The constructed multiple antibody-modified MBs can be applied for the deallergenicity of food matrices. The efficiency of allergen detection can be greatly improved, with promising application in allergen discovery and filtration for other muscle-based foods.

10.
Front Mol Biosci ; 11: 1355448, 2024.
Article in English | MEDLINE | ID: mdl-38993837

ABSTRACT

Objectives: To evaluate the performance of Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectra (MALDI-TOF MS) for automated classification of GBS (Group B Streptococcus) into five major CCs (clonal complexes) during routine GBS identification. Methods: MALDI-TOF MS of 167 GBS strains belonging to five major CCs (CC10, CC12, CC17, CC19, CC23) were grouped into a reference set (n = 67) and a validation set (n = 100) for the creation and evaluation with GBS CCs subtyping main spectrum (MSP) and MSP-M using MALDI BioTyper and ClinProTools. GBS CCs subtyping MSPs-M was generated by resetting the discriminative peaks of GBS CCs subtyping MSP according to the informative peaks from the optimal classification model of five major CCs and the contribution of each peak to the model created by ClinProTools. Results: The PPV for the GBS CCs subtyping MSP-M was greater than the subtyping MSP for CC10 (99.21% vs. 93.65%), but similar for CC12 (79.55% vs. 81.06%), CC17 (93.55% vs. 94.09%), and CC19 (92.59% vs. 95.37%), and lower for CC23 (66.67% vs. 83.33%). Conclusion: MALDI-TOF MS could be a promising tool for the automated categorization of GBS into 5 CCs by both CCs subtyping MSP and MSP-M, GBS CCs subtyping MSP-M is preferred for the accurate prediction of CCs with highly discriminative peaks.

11.
Article in English | MEDLINE | ID: mdl-38909685

ABSTRACT

OBJECTIVES: The World Health Organization named Stenotrophomonas maltophilia a critical multi-drug resistant threat, necessitating rapid diagnostic strategies. Traditional culturing methods require up to 96 hours, including 72 hours for bacterial growth, identification with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) through protein profile analysis, and 24 hours for antibiotic susceptibility testing. In this study, we aimed at developing an artificial intelligence-clinical decision support system (AI-CDSS) by integrating MALDI-TOF MS and machine learning to quickly identify levofloxacin and trimethoprim/sulfamethoxazole resistance in S. maltophilia, optimizing treatment decisions. METHODS: We selected 8,662 S. maltophilia from 165,299 MALDI-TOF MS-analyzed bacterial specimens, collected from a major medical center and four secondary hospitals. We exported mass-to-charge values and intensity spectral profiles from MALDI-TOF MS .mzML files to predict antibiotic susceptibility testing results, obtained with the VITEK-2 system using machine learning algorithms. We optimized the models with GridSearchCV and 5-fold cross-validation. RESULTS: We identified distinct spectral differences between resistant and susceptible S. maltophilia strains, demonstrating crucial resistance features. The machine learning models, including random forest, light-gradient boosting machine, and XGBoost, exhibited high accuracy. We established an AI-CDSS to offer healthcare professionals swift, data-driven advice on antibiotic use. CONCLUSIONS: MALDI-TOF MS and machine learning integration into an AI-CDSS significantly improved rapid S. maltophilia resistance detection. This system reduced the identification time of resistant strains from 24 hours to minutes after MALDI-TOF MS identification, providing timely and data-driven guidance. Combining MALDI-TOF MS with machine learning could enhance clinical decision-making and improve S. maltophilia infection treatment outcomes.

12.
Sci Rep ; 14(1): 13191, 2024 06 08.
Article in English | MEDLINE | ID: mdl-38851786

ABSTRACT

Healthy cattle, sheep, and goats can be reservoirs for gastrointestinal pathogenic fecal enterococci, some of which could be multidrug-resistant to antimicrobials. The objective of this study was to determine the prevalence and diversity of Enterococcus species in healthy sheep, goat, and cattle carcasses, as well as to analyze the antimicrobial resistance phenotype/genotype and the virulence gene content. During 2019-2020, carcass surface samples were collected from 150 ruminants in a slaughterhouse. A total of 90 enterococci, comprising five species, were obtained. The overall prevalence of enterococci was found to be 60%, out of which 37.7% were identified as Enterococcus (E.) hirae, 33.3% as E. casseliflavus, 15.5% as E. faecium, 12.2% as E. faecalis, and 1.1% as E. gallinarum. Virulence-associated genes of efaA (12.2%) were commonly observed in the Enterococcus isolates, followed by gelE (3.3%), asaI (3.3%), and ace (2.2%). High resistance to quinupristin-dalfopristin (28.8%), tetracycline (21.1%), ampicillin (20%), and rifampin (15.5%) was found in two, four, four, and five of the Enterococcus species group, respectively. The resistance of Enterococcus isolates to 11 antibiotic groups was determined and multidrug resistant (MDR) strains were found in 18.8% of Enterococcus isolates. Characteristic resistance genes were identified by PCR with an incidence of 6.6%, 2.2%, 1.1%, 1.1%, 1.1%, and 1.1% for the tetM, ermB, ermA, aac(6')Ie-aph(2")-la, VanC1, and VanC2 genes in Enterococcus isolates, respectively. Efflux pump genes causing multidrug resistance were detected in Enterococcus isolates (34.4%). The results showed that there were enterococci in the slaughterhouse with a number of genes linked to virulence that could be harmful to human health.


Subject(s)
Abattoirs , Anti-Bacterial Agents , Enterococcus , Goats , Animals , Enterococcus/genetics , Enterococcus/pathogenicity , Enterococcus/drug effects , Enterococcus/isolation & purification , Sheep , Goats/microbiology , Virulence/genetics , Prevalence , Turkey/epidemiology , Cattle , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Food Microbiology , Drug Resistance, Multiple, Bacterial/genetics
13.
Anaerobe ; : 102881, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925221

ABSTRACT

OBJECTIVES: The genus Faecalibacterium is one of the most important butyrate producers in the human intestinal tract and has been widely linked to health. Recently, several different species are described, but still more phylogroups have been identified, suggesting that additional species may exist. Four strains HTF-FT, HTF-128, HTF-75HT and HTF-76H, representing two different phylogenetic clusters, are evaluated in this study. METHODS: Phylogenomic analysis was performed using whole-genome sequences and 16S rRNA gene sequences. Chemotaxonomic analysis was done based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Physiological and phenotypical characteristics of these strains were also determined. All characteristics of these strains were compared with other validly published species within the genus Faecalibacterium. RESULTS: On a genomic level, the four strains shared an average nucleotide identity (ANI) of <95.0% and digital DNA-DNA hybridization (dDDH) of <70.0 with other Faecalibacterium species, while between HTF-FT and HTF-128 the ANI-value was 97.18% and the dDDH was 76.8%. HTF-75HT and HTF-76H had an ANI and dDDH value of 100% (99.96%) and 100% (99.99%) respectively. 16S rRNA gene and chemotaxonomic analysis were in accordance with the genomic data, confirming that the four strains represent two different Faecalibacterium species. CONCLUSIONS: Faecalibacterium strains HTF-FT (=DSM 117771T =NCIMB 15531T), HTF-128, HTF-75HT (=DSM 17770T =NCIMB 15530T) and HTF-76H represent two novel species. The names Faecalibacterium wellingii with HTF-FT as type strain and Faecalibacterium langellae with HTF-75HT as type strain are proposed.

14.
Food Chem ; 456: 140070, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38917694

ABSTRACT

Food adulteration and illegal supplementations have always been one of the major problems in the world. The threat of food adulteration to the health of consumers cannot be ignored. Food of questionable origin causes economic losses to consumers, but the potential health risks cannot be ignored. However, the traditional detection methods are time-consuming and complex. This review mainly discusses the types of adulteration and technologies used to detect adulteration. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is also emphasized in the detection of adulteration and authenticity of origin analysis of various types of food (milk, meat, edible oil, etc.), and the future application direction and feasibility of this technology are analyzed. On this basis, MALDI-TOF MS was compared with other detection methods, highlighting the advantages of this technology in the detection of food adulteration. The future development prospect and direction of this technology are also emphasized.

15.
Se Pu ; 42(6): 564-571, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845517

ABSTRACT

Protein phosphorylation plays an important role in cellular signaling and disease development. Advances in mass spectrometry-based proteomics have enabled qualitative and quantitative phosphorylation studies as well as in-depth biological explorations for biomarker discovery and signaling pathway analysis. However, the dynamic changes that occur during phosphorylation and the low abundance of target analytes render direct analysis difficult because mass spectral detection offers no selectivity, unlike immunoassays such as Western blot and enzyme-linked immunosorbent assay (ELISA). The present study aimed to solve one of the key problems in the specific and efficient isolation of phosphorylated peptides. A method based on a magnetic carbon nitride composite coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was developed for the enrichment and analysis of phosphopeptides with low abundance in complex samples. Magnetic carbon nitride composite was synthesized and characterized by electron microscopy, infrared spectroscopy, and X-ray diffractometry. The composite showed a well-distributed two-dimensional layered structure and functional groups with excellent paramagnetic performance. Two classical phosphoproteins, namely, α- and ß-caseins, were selected as model phosphorylated samples to assess the performance of the proposed enrichment technique. The magnetic carbon nitride composite exhibited high selectivity and sensitivity for phosphopeptide enrichment. The limit of detection was determined by MALDI-TOF-MS analysis to be 0.1 fmol. The selectivity of the method was investigated using the digest mixtures of α-casein, ß-casein, and bovine serum albumin (BSA) with different mass ratios (1∶1∶1000, 1∶1∶2000, and 1∶1∶5000). Direct analysis of the samples revealed the dominance of spectral signals from the abundant peptides in BSA. After enrichment with the magnetic carbon nitride composite, the high concentration of background proteins was washed away and only the signals of the phosphopeptides were captured. The signals from the casein proteins were clearly observed with little background noise, indicating the high selectivity of the composite material. The robustness of the method was tested by assessing the reusability of the same batch of magnetic carbon nitride materials over 20 cycles of enrichment. The composite showed nearly the same enrichment ability even after several cycles of reuse, demonstrating its potential applicability for a large number of clinical samples. Finally, the method was applied to the analysis of phosphopeptides from several commonly used phosphoprotein-containing samples, including skimmed milk digest, human serum, and human saliva; these samples are significant in the analysis of food quality, disease biomarkers, and liquid biopsies for cancer. Without enrichment, no phosphopeptide was detected because of the high abundance of nonphosphopeptide materials dominating the spectral signals obtained. After pretreatment with the developed magnetic carbon nitride composite, most of the phosphosites were identified with high selectivity and sensitivity via MALDI-TOF-MS. These results revealed the practicality of the developed approach for clinical applications. In addition, our method may potentially be employed for phosphoproteomics with real complex biological samples.


Subject(s)
Nitriles , Phosphopeptides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Phosphopeptides/analysis , Phosphopeptides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Nitriles/chemistry , Caseins/chemistry , Caseins/analysis , Phosphorylation , Proteomics/methods , Magnetics
16.
Int J Food Microbiol ; 420: 110768, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38843647

ABSTRACT

The continuous detection of multi-drug-resistant enterococci in food source environments has aroused widespread concern. In this study, 198 samples from chicken products, animal feces, raw milk, and vegetables were collected in Japan and Egypt to investigate the prevalence of enterococci and virulence characterization. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was employed for species identification and taxonomic analysis of the isolates. The results showed that the rates of most virulence genes (efaA, gelE, asa1, ace, and hyl) in the Japanese isolates were slightly higher than those in the Egyptian isolates. The rate of efaA was the highest (94.9 %) among seven virulence genes detected, but the cylA gene was not detected in all isolates, which was in accordance with γ-type hemolysis phenotype. In Enterococcus faecalis, the rate of kanamycin-resistant strains was the highest (84.75 %) among the antibiotics tested. Moreover, 78 % of E. faecalis strains exhibited multi-drug resistance. Four moderately vancomycin-resistant strains were found in Egyptian isolates, but none were found in Japanese isolates. MALDI-TOF MS analysis correctly identified 98.5 % (68/69) of the Enterococcus isolates. In the principal component analysis dendrogram, strains isolated from the same region with the same virulence characteristics and similar biofilm-forming abilities were characterized by clustered distribution in different clusters. This finding highlights the potential of MALDI-TOF MS for classifying E. faecalis strains from food sources.


Subject(s)
Anti-Bacterial Agents , Biofilms , Enterococcus , Food Microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Virulence Factors , Biofilms/growth & development , Enterococcus/genetics , Enterococcus/pathogenicity , Enterococcus/drug effects , Enterococcus/isolation & purification , Virulence Factors/genetics , Animals , Egypt , Anti-Bacterial Agents/pharmacology , Vegetables/microbiology , Japan , Chickens , Milk/microbiology , Feces/microbiology , Microbial Sensitivity Tests , Drug Resistance, Bacterial , Drug Resistance, Multiple, Bacterial , Food Contamination/analysis
17.
Pathology ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38876816

ABSTRACT

Identifying organisms directly from positive blood culture bottles using matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry (MALDI-TOF MS) has many advantages to patients, clinical services, and laboratories. However, few published methods have demonstrated good performance using the current BioMérieux culture bottles and MALDI-TOF system: BacT/Alert FAN plus and Vitek MS. The effect of transporting bottles on test performance has not been assessed for any direct-from-bottle MS method. In this study, 802 positive blood culture bottles were analysed including 234 requiring inter-laboratory transport, using a method involving protein extraction with formic acid and acetonitrile. Correct identification rates were high for Staphylococcus aureus (58/58 of new diagnostic samples), Enterococcus faecalis (27/27), Gram-negative bacilli (160/176, 90.1%), and coagulase-negative Staphylococcus species (108/132, 81.8%). Three false identifications were made, none with clinical significance. For Gram-positive cocci in pairs or chains, more correct identifications were made from bottles analysed immediately compared to transported bottles (67% vs 44%, p=0.016), and longer transport time was associated with slightly lower probability of correct identification (OR 0.984 per additional hour, p=0.040). Transportation was not associated with a difference for other organism types. This technique is a vastly more cost-effective alternative to molecular techniques for rapid identification of bacteraemia isolates, and performance is minimally affected by inter-laboratory transport of bottles at ambient temperature.

18.
Anaerobe ; 88: 102879, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906317

ABSTRACT

Veillonella parvula is a non-motile Gram-negative coccus that forms part of the normal microbiota in several body sites and which has been rarely isolated as cause of infections in human population, particularly in bacteremias. Here we give the overview of characteristics of genus Veillonella and the summary of its role in infections, particularly in bacteremia. We additionally report two patients with bacteremia due to V. parvula. Two sets of blood cultures of each patient yielded a pure culture of an anaerobic microorganism identified as V. parvula by MALDI-TOF MS, and confirmed by 16S rRNA gene sequencing. The two patients were male and one of them had risk factors for anaerobic bacteremia. The isolates were susceptible to most antibiotics and the outcome was successful in both patients. Bacteremia due to V. parvula is still rare. MALDI-TOF MS appear to be an excellent tool for the correct identification of these species.

19.
Microb Pathog ; 193: 106765, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944215

ABSTRACT

Close contact between cats and humans increases the risk of transmission of zoonotic pathogens, through bites and scratches due to the complexity of microorganisms in the oral and nail microbiotas of felines. This study investigated the presence of bacteria and fungi in the oral cavity and claws of 100 apparently healthy cats using conventional and selective microbiological culture media, and next-generation sequencing (NGS) and mass spectrometry (MALDI-TOF MS). Furthermore, antimicrobial susceptibility testing of bacteria isolates was performed by disc diffusion method. In total, 671 bacteria and 33 yeasts were identified by MALDI-TOF MS. Neisseria animaloris (10.8 %), Staphylococcus felis (8.5 %), and Pasteurella multocida (7 %) were the most prevalent bacteria in oral cavity samples (n = 343), while the most common yeast (n = 19) was Candida albicans (68.4 %). Staphylococcus pettenkoferi (13.4 %), Staphylococcus felis (6.4 %), and Staphylococcus simulans (5.8 %) were the prevalent bacteria identified in the claw samples (n = 328), while Rhodotorula mucilaginosa (57.2 %) was the most common yeast (n = 14). NGS predominantly identified the genera Moraxella, Neisseria, Pasteurella, and Fusobacterium in oral cavity samples, whereas enterobacteria and staphylococci were prevalent in nail bed samples. In addition, the genera Capnocytophaga and Bartonella were identified, which have been described in serious human infections secondary to feline aggressions. Levofloxacin, marbofloxacin, and amoxicillin/clavulanic acid were the most effective drugs against the main groups of bacteria identified. Multidrug resistance was observed in 17 % of the bacterial isolates. Furthermore, three staphylococci harboring the methicillin resistance gene mecA were identified. We highlight the complexity of microorganisms inhabiting the oral/claw microbiotas of cats, the high resistance rate of the isolates to conventional antimicrobial agents, and the zoonotic risk of aggressions caused by bites and scratches from domestic cats.

20.
Food Chem X ; 22: 101509, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38883916

ABSTRACT

In this study, muscle exudates from five fishes belonging to the family Sciaenidae, in the order Perciformes, were analyzed as models for the discovery of biomarkers by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). MagSi-weak cation exchange magnetic beads (WCX-MBs) were utilized for the enrichment of proteins from fish exudate samples, allowing protein biomarkers to be identified and subsequently used for fish species differentiation. Buffers with pH ranging from 4.0 to 9.0 can provide an environment for proteins in fish muscle exudate to bind to the WCX-MBs. The optimal enrichment based on WCX-MBs can be achieved when the exudate samples are diluted 100folds. More species-specific biomarkers in mass spectra can be identified when using WCX-MBs. The number of ions that can be considered as peak markers and can differentiate the analyzed fishes increases from 38 to 121 when using WCX-MBs to isolate peptides/protein in fish muscle exudate. Particularly, eight peak markers in mass spectra were assigned to be specific to Nibea albiflora (NA), three peak markers specific to Larimichthys crocea (LC), two peak markers specific to Miichthys miiuy (MM), seven peak markers specific to Collichthys lucidus (CL), and six peak markers specific to Larimichthys polyactis (LP). Furthermore, five proteins were identified based on the characterization of tryptic peptides and their potential to be biomarkers, of which four proteins specific to CL and one specific to LC were identified. The single-blind samples analysis demonstrated that these species-specific peak markers and protein biomarkers can be successfully utilized for corresponding fish recognition. The utilization of WCX-MBs can improve the discovery of fish species-specific biomarkers in fish muscle exudate samples. The present protocol holds potential of being a rapid and accurate identification tool for recognition of fish species.

SELECTION OF CITATIONS
SEARCH DETAIL
...