Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 272
Filter
1.
World J Surg Oncol ; 22(1): 184, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39010072

ABSTRACT

BACKGROUND: The prognosis of advanced gastric cancer (AGC) is relatively poor, and long-term survival depends on timely intervention. Currently, predicting survival rates remains a hot topic. The application of radiomics and immunohistochemistry-related techniques in cancer research is increasingly widespread. However, their integration for predicting long-term survival in AGC patients has not been fully explored. METHODS: We Collected 150 patients diagnosed with AGC at the Affiliated Zhongshan Hospital of Dalian University who underwent radical surgery between 2015 and 2019. Following strict inclusion and exclusion criteria, 90 patients were included in the analysis. We Collected postoperative pathological specimens from enrolled patients, analyzed the expression levels of MAOA using immunohistochemical techniques, and quantified these levels as the MAOAHScore. Obtained plain abdominal CT images from patients, delineated the region of interest at the L3 vertebral body level, and extracted radiomics features. Lasso Cox regression was used to select significant features to establish a radionics risk score, convert it into a categorical variable named risk, and use Cox regression to identify independent predictive factors for constructing a clinical prediction model. ROC, DCA, and calibration curves validated the model's performance. RESULTS: The enrolled patients had an average age of 65.71 years, including 70 males and 20 females. Multivariate Cox regression analysis revealed that risk (P = 0.001, HR = 3.303), MAOAHScore (P = 0.043, HR = 2.055), and TNM stage (P = 0.047, HR = 2.273) emerged as independent prognostic risk factors for 3-year overall survival (OS) and The Similar results were found in the analysis of 3-year disease-specific survival (DSS). The nomogram developed could predict 3-year OS and DSS rates, with areas under the ROC curve (AUCs) of 0.81 and 0.797, respectively. Joint calibration and decision curve analyses (DCA) confirmed the nomogram's good predictive performance and clinical utility. CONCLUSION: Integrating immunohistochemistry and muscle fat features provides a more accurate prediction of long-term survival in gastric cancer patients. This study offers new perspectives and methods for a deeper understanding of survival prediction in AGC.


Subject(s)
Gastrectomy , Monoamine Oxidase , Stomach Neoplasms , Subcutaneous Fat , Humans , Male , Female , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Stomach Neoplasms/metabolism , Aged , Survival Rate , Prognosis , Subcutaneous Fat/diagnostic imaging , Subcutaneous Fat/pathology , Subcutaneous Fat/metabolism , Middle Aged , Follow-Up Studies , Monoamine Oxidase/metabolism , Monoamine Oxidase/analysis , Retrospective Studies , Nomograms , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Tomography, X-Ray Computed/methods
2.
BMC Chem ; 18(1): 130, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003489

ABSTRACT

A series of new 1,2,4-oxadiazole-based derivatives were synthesized and evaluated for their anti-AD potential. The results revealed that eleven compounds (1b, 2a-c, 3b, 4a-c, and 5a-c) exhibited excellent inhibitory potential against AChE, with IC50 values ranging from 0.00098 to 0.07920 µM. Their potency was 1.55 to 125.47 times higher than that of donepezil (IC50 = 0.12297 µM). In contrast, the newly synthesized oxadiazole derivatives with IC50 values in the range of 16.64-70.82 µM exhibited less selectivity towards BuChE when compared to rivastigmine (IC50 = 5.88 µM). Moreover, oxadiazole derivative 2c (IC50 = 463.85 µM) was more potent antioxidant than quercetin (IC50 = 491.23 µM). Compounds 3b (IC50 = 536.83 µM) and 3c (IC50 = 582.44 µM) exhibited comparable antioxidant activity to that of quercetin. Oxadiazole derivatives 3b (IC50 = 140.02 µM) and 4c (IC50 = 117.43 µM) showed prominent MAO-B inhibitory potential. They were more potent than biperiden (IC50 = 237.59 µM). Compounds 1a, 1b, 3a, 3c, and 4b exhibited remarkable MAO-A inhibitory potential, with IC50 values ranging from 47.25 to 129.7 µM. Their potency was 1.1 to 3.03 times higher than that of methylene blue (IC50 = 143.6 µM). Most of the synthesized oxadiazole derivatives provided significant protection against induced HRBCs lysis, revealing the nontoxic effect of the synthesized compounds, thus making them safe drug candidates. The results unveiled oxadiazole derivatives 2b, 2c, 3b, 4a, 4c, and 5a as multitarget anti-AD agents. The high AChE inhibitory potential can be computationally explained by the synthesized oxadiazole derivatives' significant interactions with the AChE active site. Compound 2b showed good physicochemical properties. All these data suggest that 2b could be considered as a promising candidate for future development.

3.
Life Sci ; 352: 122857, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914305

ABSTRACT

AIM: AMPK can be considered as an important target molecule for cancer for its unique ability to directly recognize cellular energy status. The main aim of this study is to explore the role of different AMPK activators in managing cancer cell aggressiveness and to understand the mechanistic details behind the process. MAIN METHODS: First, we explored the AMPK expression pattern and its significance in different subtypes of lung cancer by accessing the TCGA data sets for LUNG, LUAD and LUSC patients and then established the correlation between AMPK expression pattern and overall survival of lung cancer patients using Kaplan-Meire plot. We further carried out several cell-based assays by employing different wet lab techniques including RT-PCR, Western Blot, proliferation, migration and invasion assays to fulfil the aim of the study. KEY FINDINGS: SIGNIFICANCE: This study identifies the importance of AMPK activators as a repurposing agent for combating lung and colon cancer cell aggressiveness. It also suggests SRT-1720 as a potent repurposing agent for cancer treatment especially in NSCLC patients where a point mutation is present in LKB1.

4.
J Clin Sleep Med ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881510

ABSTRACT

Brunner syndrome is a recessive X-linked disorder characterized by intellectual disability and impulsive aggressiveness associated with Monoamine Oxidase-A (MAOA) deficiency leading to increased monoaminergic activity. We report the presence of REM sleep behavior disorder (RBD) in a 46-year-old patient with Brunner syndrome due to a c.1438A>G/iVS14-2 A>G mutation of the MAOA gene. He suffered from mild intellectual disability and psychotic disturbances. He presented a 15-year history of nightmares (chase, attacks and fights), sleep-related vocalizations and motor behaviors characterized by talking, screaming, crying, gesturing, punching, and kicking. Video-polysomnography showed RBD characterized by excessive tonic and phasic muscle activity in the mentalis and limb muscles with dream enacting behaviors during REM sleep. Clonazepam achieved a significant reduction of RBD symptomatology. We conclude that RBD can be a manifestation of Brunner syndrome probably due to an increased monoaminergic neurotransmission occurring in this rare genetic disorder.

5.
Metab Brain Dis ; 39(5): 691-703, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38722561

ABSTRACT

Ferulago angulata is a medicinal herb from the Apiaceae family known for its antioxidant, anti-apoptotic, and neuroprotective properties. This study aimed to assess the effects of F. angulata extract on neurobehavioral and biochemical parameters in scopolamine-induced amnesic rats. Fifty-six male Wistar rats were divided into seven groups and orally treated with F. angulata extract (100, 200, 400 mg/kg) and Rivastigmine (1.5 mg/kg) for 10 days. Starting on the sixth day of treatment, the Morris water maze behavioral study was conducted to evaluate cognitive function, with scopolamine administered 30 min before training. Biochemical assays, including monoamine oxidase and oxidative stress measures, were performed on hippocampal tissue. Results showed that extract treatment significantly attenuated scopolamine-induced memory impairment in a dose-dependent manner. Following scopolamine administration, malondialdehyde levels and monoamine oxidase A/B activity increased, while total thiol content and catalase activity decreased compared to the control group. Pretreatment with F. angulata extracts ameliorated the scopolamine-induced impairment in all factors. Toxicological evaluation of liver, lung, heart, and kidney tissues did not indicate any side effects at high doses. The total extract of F. angulata prevents scopolamine-induced learning and memory impairment through antioxidant mechanisms and inhibition of monoamine oxidase. These results suggest that F. angulata extract is effective in the scopolamine model and could be a promising agent for preventing dementia, especially Alzheimer's disease.


Subject(s)
Hippocampus , Memory Disorders , Monoamine Oxidase Inhibitors , Monoamine Oxidase , Plant Extracts , Rats, Wistar , Scopolamine , Animals , Scopolamine/toxicity , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Male , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Rats , Hippocampus/drug effects , Hippocampus/metabolism , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Apiaceae/chemistry , Oxidative Stress/drug effects , Methanol/chemistry , Maze Learning/drug effects , Antioxidants/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
6.
Mol Divers ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727994

ABSTRACT

Herein, a novel series of naphthamide derivatives has been rationally developed, synthesized, and evaluated for their inhibitory activity against monoamine oxidase (MAO) and cholinesterase (ChE) enzymes. Compared to the reported naphthalene-based hit IV, the new naphthamide hybrids 2a, 2c, 2g and 2h exhibited promising MAO inhibitory activities; with an IC50 value of 0.294 µM, compound 2c most potently inhibited MAO-A, while compound 2g exhibited most potent MAO-B inhibitory activity with an IC50 value of 0.519 µM. Compounds 2c and 2g showed selectivity index (SI) values of 6.02 for MAO-A and 2.94 for MAO-B, respectively. On the other hand, most compounds showed weak inhibitory activity against ChEs except 2a and 2h over butyrylcholinesterase (BChE). The most potent compounds 2c and 2g were found to be competitive and reversible MAO inhibitors based on kinetic and reversibility studies. Plausible interpretations of the observed biological effects were provided through molecular docking simulations. The drug-likeness predicted by SwissADME and Osiris property explorer showed that the most potent compounds (2a, 2c, 2g, and 2h) obey Lipinski's rule of five. Accordingly, in the context of neurological disorders, hybrids 2c and 2g may contribute to the identification of safe and potent therapeutic approaches in the near future.

7.
Diseases ; 12(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38667528

ABSTRACT

ADHD is a neurodevelopmental disorder that children and adults can develop. A complex interplay of genetic and environmental factors may underlie interindividual variability in ADHD and potentially related aggressive behavior. Using high-resolution molecular biology techniques, we investigated the impact of some MAOA and SLC6A4 variations on ADHD and aggressive behavior in a group of 80 Italian children with ADHD and in 80 healthy controls. We found that homozygous genotypes of MAOA rs6323 and rs1137070 were associated with an increased risk of ADHD (p = 0.02 and p = 0.03, respectively), whereas the heterozygous genotypes (GT of rs6323 and CT of rs1137030) (p = 0.0002 and p = 0.0006) were strongly linked to a lower risk of developing this disorder. In patients with aggressive behavior, we highlighted only a weak negative association of both MAOA polymorphisms (heterozygous genotypes) with aggressiveness, suggesting that these genotypes may be protective towards specific changes in behavior (p = 0.05). Interestingly, an increase in the GG genotype of rs6323 (p = 0.01) and a decrease in GT genotype (p = 0.0005) was also found in patients without aggressive behavior compared to controls. Regarding 5HTT gene genotyping, no allele and genotype differences have been detected among patients and controls. Our work shows that defining a genetic profile of ADHD may help in the early detection of patients who are more vulnerable to ADHD and/or antisocial and aggressive behavior and to design precision-targeted therapies.

8.
Front Mol Biosci ; 11: 1359177, 2024.
Article in English | MEDLINE | ID: mdl-38545418

ABSTRACT

Background: Melissa officinalis L. (MO), commonly known as lemon balm, a member of the mint family, is considered a calming herb. In various traditional medicines, it has been utilized to reduce stress and anxiety and promote sleep. A growing body of clinical evidence suggests that MO leaf extract supplementation possesses considerable neuropharmacological properties. However, its possible mechanism of action largely remains unknown. Objective: In the present in vitro studies, we comparatively investigated the central nervous system (CNS)-calming and antioxidative stress properties of an innovative standardized phospholipid carrier-based (Phytosome™) MO extract (Relissa™) vs. an unformulated dry MO extract. Methods: The neuropharmacological effect of the extract was studied in the anti-depressant enzymes γ-aminobutyrate transaminase (GABA-T) and monoamine oxidase A (MAO-A) assays and SH-SY5Y cells brain-derived neurotrophic factor (BDNF) expression assay. The neuroprotective effect of the extract against oxidative stress was assessed in SH-SY5Y cell-based (H2O2-exposed) Total Antioxidant Status (TAS) and Total Reactive Oxygen Species (ROS) assays. The cytotoxic effect of the extract was evaluated using MTT and LDH assays. The extract antioxidant effect was also evaluated in cell-free chemical tests, including TEAC-ABTS, DPPH, Ferric Reducing Antioxidant Power (FRAP), Oxygen Radical Antioxidant Capacity (ORAC), and Hydroxyl Radical Antioxidant Capacity (HORAC) assays. Results: Relissa™ exhibited high GABA-T inhibitory activity, IC50 (mg/mL) = 0.064 vs. unformulated dry MO extract, IC50 (mg/mL) = 0.27. Similar inhibitory effects were also observed for MAO-A. Relissa™ demonstrated an improved neuroprotective antioxidant effect on SH-SY5Y cells against H2O2-induced oxidative stress. Compared to unformulated dry MO extract, Relissa™ exerted high protective effect on H2O2-exposed SH-SY5Y cells, leading to higher cells BDNF expression levels. Moreover, cell-free chemical tests, including TEAC-ABTS, DPPH radical scavenging, FRAP, ORAC, and HORAC assays, validated the improved antioxidant effect of Relissa™ vs. unformulated dry MO extract. Conclusion: The results of the present study support the neuromodulating and neuroprotective properties of Relissa™, and its supplementation may help in the amelioration of emotional distress and related conditions.

9.
Methods Mol Biol ; 2761: 329-336, 2024.
Article in English | MEDLINE | ID: mdl-38427248

ABSTRACT

Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamines with two isoforms, namely, MAO-A and MAO-B, in mitochondrial outer membranes. These two types of MAO-A and MAO-B participate in changes in levels of neurotransmitter such as serotonin (5-hydroxytryptamine) and dopamine. Selective MAO-A inhibitors have been targeted for anti-depression treatment, while selective MAO-B inhibitors are targets of therapeutic agents for Alzheimer's disease and Parkinson's disease. For this reason, study on the development of MAO inhibitors has recently become important. Here, we describe methods of MAO activity assay, especially continuous spectrophotometric methods, which give relatively high accuracy. MAO-A and MAO-B can be assayed using kynuramine and benzylamine as substrates, respectively, at 316 nm and 250 nm, respectively, to measure their respective products, 4-hydroxyquinoline and benzaldehyde. Inhibition degree and pattern can be analyzed by using the Lineweaver-Burk and secondary plots in the presence of inhibitor, and reversibility of inhibitor can be determined by using the dialysis method.


Subject(s)
Alzheimer Disease , Parkinson Disease , Humans , Monoamine Oxidase , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/therapeutic use , Antidepressive Agents/pharmacology , Parkinson Disease/drug therapy , Alzheimer Disease/drug therapy
10.
Article in English | MEDLINE | ID: mdl-38507052

ABSTRACT

Children with high Callous-Unemotional (CU) traits show deficits in recognizing and processing facial expressions. Alterations in emotion recognition have been linked to a higher synaptic concentration of monoaminergic neurotransmitters. The current study investigated the relationship between the MAOA-Low-activity alleles and the ability to recognize and process facial expressions in 97 male children (8-12 years old) diagnosed with disruptive behavior disorder. Participants completed a computerized emotion-recognition task while an eye-tracking system recorded the number (Fixation Count, FC) and length (Fixation Duration, FD) of fixations to the eye region of the emotional stimuli. Children with high CU traits exhibited lower scores in recognition of sadness and anger, and lower FC and FD for sadness and fear than children with low CU traits. Children carrying the MAOA-Low-activity alleles displayed lower FD for sadness, and FD and FC for fear than those carrying the MAOA-High-activity alleles. These genetic effects appeared even stronger in children with CU traits. Moderation analysis revealed that CU traits were associated with lower FC and FD for fear, and lower FD for sadness, probably due to the MAOA-Low-activity alleles. Our findings, although to be replicated, suggest MAOA-Low-activity alleles as potential genetic biomarkers to identify CU children in need of training focused on emotion processing.

11.
Cancer Immunol Immunother ; 73(3): 48, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349393

ABSTRACT

Monoamine oxidase A (MAOA) is a membrane-bound mitochondrial enzyme present in almost all vertebrate tissues that catalyzes the degradation of biogenic and dietary-derived monoamines. MAOA is known for regulating neurotransmitter metabolism and has been implicated in antitumor immune responses. In this review, we retrospect that MAOA inhibits the activities of various types of tumor-associated immune cells (such as CD8+ T cells and tumor-associated macrophages) by regulating their intracellular monoamines and metabolites. Developing novel MAOA inhibitor drugs and exploring multidrug combination strategies may enhance the efficacy of immune governance. Thus, MAOA may act as a novel immune checkpoint or immunomodulator by influencing the efficacy and effectiveness of immunotherapy. In conclusion, MAOA is a promising immune target that merits further in-depth exploration in preclinical and clinical settings.


Subject(s)
Monoamine Oxidase , Neoplasms , Humans , Adjuvants, Immunologic , Amines , CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Immunologic Factors , Neoplasms/drug therapy
12.
J Biol Chem ; 300(3): 105760, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367663

ABSTRACT

In the cold, the absence of the mitochondrial uncoupling protein 1 (UCP1) results in hyper-recruitment of beige fat, but classical brown fat becomes atrophied. Here we examine possible mechanisms underlying this phenomenon. We confirm that in brown fat from UCP1-knockout (UCP1-KO) mice acclimated to the cold, the levels of mitochondrial respiratory chain proteins were diminished; however, in beige fat, the mitochondria seemed to be unaffected. The macrophages that accumulated massively not only in brown fat but also in beige fat of the UCP1-KO mice acclimated to cold did not express tyrosine hydroxylase, the norepinephrine transporter (NET) and monoamine oxidase-A (MAO-A). Consequently, they could not influence the tissues through the synthesis or degradation of norepinephrine. Unexpectedly, in the cold, both brown and beige adipocytes from UCP1-KO mice acquired an ability to express MAO-A. Adipose tissue norepinephrine was exclusively of sympathetic origin, and sympathetic innervation significantly increased in both tissues of UCP1-KO mice. Importantly, the magnitude of sympathetic innervation and the expression levels of genes induced by adrenergic stimulation were much higher in brown fat. Therefore, we conclude that no qualitative differences in innervation or macrophage character could explain the contrasting reactions of brown versus beige adipose tissues to UCP1-ablation. Instead, these contrasting responses may be explained by quantitative differences in sympathetic innervation: the beige adipose depot from the UCP1-KO mice responded to cold acclimation in a canonical manner and displayed enhanced recruitment, while the atrophy of brown fat lacking UCP1 may be seen as a consequence of supraphysiological adrenergic stimulation in this tissue.


Subject(s)
Adipose Tissue, Beige , Adipose Tissue, Brown , Sympathetic Nervous System , Thermogenesis , Uncoupling Protein 1 , Animals , Mice , Adipose Tissue, Beige/innervation , Adipose Tissue, Beige/metabolism , Adipose Tissue, Brown/innervation , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Adrenergic Agents/metabolism , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Norepinephrine/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Mice, Knockout , Acclimatization/genetics , Sympathetic Nervous System/physiology , Macrophages/metabolism
13.
Bioorg Chem ; 144: 107148, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306828

ABSTRACT

Arylpiperazine clubbed various heterocyclic molecules present potential pharmacophoric structural features for the development of psychoactive drugs. There are various CNS active molecules possessing arylpiperazine moiety in their pharmacophore approved by USFDA. In the current study, we have explored the benzhydrylpiperazine moiety clubbed with various substituted oxadiazole moieties (AP1-12) for their monoamine oxidase (MAO) inhibition and antidepressant potential. Compounds AP3 and AP12 exhibited highly potent and selective MAO-A inhibition with IC50 values of 1.34 ± 0.93 µM and 1.13 ± 0.54 µM, respectively, and a selectivity index of 10- and 13-folds, respectively. Both the compounds displayed reversible binding character at the active site of MAO-A. In further in vivo evaluation, both the compounds AP3 and AP12 displayed potential antidepressant-like character in FST and TST studies via significantly reduced immobility time in comparison to non-treated animals. These compounds displayed no cytotoxicity in SH-SY5Y cell lines, which indicates that these compounds are safe for further evaluation. In silico studies reveal that synthesized compounds possess drug-likeness with minimal to no toxicity. In silico studies were conducted to understand the binding interactions and stability of compounds at the binding pocket of enzyme and observed that both the best compounds fit well at the active site of MAO-A lined by amino acid residues Tyr69, Asn181, Phe208, Ile335, Leu337, Phe352, and Tyr444 similar to standard MAO-A inhibitor clorgiline. The molecular dynamic studies demonstrated that AP3 and AP12 formed quite a stable complex at the active site of MAO-A and did not break under small abruption forces. The favourable binding interactions and appropriate ADMET properties present the benzhydrylpiperazine clubbed oxadiazole pharmacophoric features as a potential structural skeleton for further clinical evaluation and development of a new antidepressant drug molecule.


Subject(s)
Neuroblastoma , Pharmacophore , Animals , Humans , Antidepressive Agents/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase/metabolism , Structure-Activity Relationship
14.
ACS Appl Bio Mater ; 7(2): 1115-1124, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38194480

ABSTRACT

Monoamine oxidase A (MAO-A) is a dimeric flavoprotein that is found in the mitochondrial membrane. Currently, there is a lack of near-infrared fluorescent probes (NIR-FPs) with good specificity and high sensitivity for detecting MAO-A, making it difficult to accurately recognize and image cells in vitro and in vivo. In this study, the NIR-FP DDM-NH2 was designed and synthesized in order to detect MAO-A specifically in live biological systems. The probe comprised two functional components: dicyanoisophosphone as an NIR dye precursor and alanine as a recognition moiety. After identifying MAO-A, the probe exhibited an NIR emission peak at 770 nm with a significant Stokes shift (180 nm), 11-fold response factor, low detection limit of 99.7 nM, and considerably higher affinity toward MAO-A than that toward MAO-B, indicating high sensitivity. In addition, DDM-NH2 was effective when applied to the image-based assessment of MAO-A activity in HeLa cells, zebrafish, and tumor-bearing mice, demonstrating great potential for visualization-based research and MAO-A application in vivo.


Subject(s)
Monoamine Oxidase , Zebrafish , Humans , Mice , Animals , HeLa Cells , Fluorescence , Fluorescent Dyes
15.
Pharmacol Rep ; 76(1): 207-215, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38172401

ABSTRACT

BACKGROUND: The results of our previous studies demonstrated that low sensitivity to negative feedback (NF) is associated with increased vulnerability to the development of compulsive alcohol-seeking in rats. In the present study, we investigated the molecular underpinnings of this relationship. METHODS: Using TaqMan Gene Expression Array Cards, we analyzed the expression of the genes related to NF sensitivity and alcohol metabolism in three cortical regions (medial prefrontal cortex [mPFC], anterior cingulate cortex [ACC], orbitofrontal cortex [OFC]) and two subcortical regions (nucleus accumbens [Nacc], amygdala [Amy]). Gene expression differences were confirmed at the protein level with Western blot. RESULTS: Sensitivity to NF was characterized by differences in Gad2, Drd2, and Slc6a4 expression in the ACC, Maoa in the mPFC, and Gria1, Htr3a, and Maoa in the OFC. Chronic alcohol consumption was associated with differences in the expression of Comt and Maoa in the ACC, Comt, Adh1, and Htr2b in the mPFC, Adh1, and Slc6a4 in the Nacc, Gad2, and Htr1a in the OFC, and Drd2 in the Amy. Interactions between the sensitivity to NF and alcohol consumption were observed in the expression of Gabra1, Gabbr2, Grin2a, Grin2b, and Grm3 in the ACC, and Grin2a in the OFC. The observed differences were confirmed at the protein level for MAO-A in the mPFC, and ADH1 in the mPFC and Nacc. CONCLUSIONS: Our findings contribute to a better understanding of the molecular mechanisms underlying the relationship between trait sensitivity to NF and compulsive alcohol consumption.


Subject(s)
Alcohol Drinking , Prefrontal Cortex , Rats , Animals , Feedback , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Amygdala , Ethanol
16.
Bioorg Chem ; 143: 107011, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061181

ABSTRACT

Fifteen new diphenylpiperazine hybrids were designed, synthesized and in vitro biologically evaluated against hMAOs enzymes via fluorometric method. All of our new compounds displayed strong inhibitory activities against both two isoforms of hMAOs with IC50 range of 0.091-16.32 µM. According to selectivity index values, all hybrids showed higher selectivity against hMAO-A over hMAO-B. Compound 8 exhibited the best hMAO-A inhibition activity (IC50 value = 91 nM, SI = 19.55). With a selectivity index of 31.02 folds over MAO-B, compound 7 was revealed to be the most effective hMAO-A inhibitor. In silico prediction of physicochemical parameters and BBB permeability proved that all of the newly synthesized compounds have favorable pharmacokinetic profiles and acceptable ADME properties and can pass BBB. For clarification and explanation of the biological activity of compounds 7 and 8, molecular docking simulations were carried out. In light of this, 1,4-diphenylpiperazine analogues can be seen as an encouraging lead to develop safe and effective new drugs for treatment of many disorders such as anxiety and depression by inhibition of hMAO-A enzyme.


Subject(s)
Monoamine Oxidase Inhibitors , Monoamine Oxidase , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Structure-Activity Relationship , Molecular Docking Simulation , Monoamine Oxidase/metabolism , Permeability , Molecular Structure
17.
J Neural Transm (Vienna) ; 131(1): 59-71, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37507512

ABSTRACT

Congenital absence of monoamine oxidase A (MAO-A) activity predisposes to antisocial impulsive behaviour, and the MAOA uVNTR low-expressing genotype (MAOA-L) together with childhood maltreatment is associated with similar phenotypes in males. A possible explanation of how family environment may lead to such behaviour involves DNA methylation. We have assessed MAOA methylation and impulsive/antisocial behaviour in 121 males from the Estonian Children Personality Behaviour and Health Study. Of the 12 CpG sites measured, methylation levels at the locus designated CpG3 were significantly lower in subjects with antisocial behaviour involving police contact. CpG3 methylation was lower in subjects with alcohol use disorder by age 25, but only in MAOA-H genotype. No correlation between MAOA CpG3 methylation levels and adaptive impulsivity was found at age 15, but in MAOA-L genotype a positive correlation appeared by age 18. By age 25, this positive correlation was no longer observed in subjects with better family relationships but had increased further with experience of adversity within the family. MAOA CpG3 methylation had different developmental dynamics in relation to maladaptive impulsivity. At age 18, a positive correlation was observed in MAOA-L genotype with inferior family relationships and a negative correlation was found in MAOA-H with superior home environment; both of these associations had disappeared by age 25. CpG3 methylation was associated with dietary intake of several micronutrients, most notable was a negative correlation with the intake of zinc, but also with calcium, potassium and vitamin E; a positive correlation was found with intake of phosphorus. In conclusion, MAOA CpG3 methylation is related to both maladaptive and adaptive impulsivity in adolescence in MAOA-L males from adverse home environment. By young adulthood, this relationship with maladaptive impulsivity had disappeared but with adaptive impulsivity strengthened. Thus, MAOA CpG3 methylation may serve as a marker for adaptive developmental neuroplasticity in MAOA-L genotype. The mechanisms involved may include dietary factors.


Subject(s)
Antisocial Personality Disorder , Home Environment , Adolescent , Adult , Child , Humans , Male , Young Adult , Antisocial Personality Disorder/genetics , Diet , DNA Methylation , Genotype , Impulsive Behavior , Monoamine Oxidase/genetics
18.
J Biomol Struct Dyn ; 42(5): 2328-2340, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37261844

ABSTRACT

Almost a billion people worldwide suffer from neurological disorders, which pose public health challenges. An important enzyme that is well-known for many neurodegenerative illnesses is monoamine oxidase (MAO). Although several promising drugs for the treatment of MAO inhibition have recently been examined, it is still necessary to identify the precise structural requirements for robust efficacy. Atom-based, field-based, and GA-MLR (genetic algorithm multiple linear regression) models were created for this investigation. All of the models have strong statistical (R2 and Q2) foundations because of both internal and external validation. Our dataset's molecule has a higher docking score than safinamide, a well-known and co-crystallized MAO-B inhibitor, as we also noticed. Using the SwissSimilarity platform, we further inquired which of our docked molecules would be the best for screening. We chose ZINC000016952895 as the screen molecule with the best binding docking score (XP score = -13.3613). Finally, the 100 ns for the ZINC000016952895-MAO-B complex in our MD investigations is stable. For compounds that we hit, also anticipate ADME properties. Our research revealed that the successful compound ZINC000016952895 might pave the way for the future development of MAO inhibitors for the treatment of neurological disease.Communicated by Ramaswamy H. Sarma.


Subject(s)
Isatin , Neurodegenerative Diseases , Humans , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/metabolism , Quantitative Structure-Activity Relationship , Molecular Dynamics Simulation , Molecular Docking Simulation , Monoamine Oxidase/chemistry , Neurodegenerative Diseases/drug therapy , Structure-Activity Relationship
19.
Am J Med Genet A ; 194(1): 82-87, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37750385

ABSTRACT

Brunner syndrome is a recessive X-linked disorder caused by pathogenic variants in the monoamine oxidase A gene (MAOA). It is characterized by distinctive aggressive behavior, mild intellectual disability, sleep disturbances, and typical biochemical alterations deriving from the impaired monoamine metabolism. We herein describe a 5-year-old boy with developmental delay, autistic features, and myoclonic epilepsy, and his mother, who had mild intellectual disability and recurrent episodes of palpitations, headache, abdominal pain, and abdominal bloating. Whole exome sequencing allowed detection of the maternally-inherited variant c.410A>G, (p.Glu137Gly) in the MAOA gene. The subsequent biochemical studies confirmed the MAOA deficiency both in the child and his mother. Given the serotonergic symptoms associated with high serotonin levels found in the mother, treatment with a serotonin reuptake inhibitor and dietary modifications were carried out, resulting in regression of the biochemical abnormalities and partial reduction of symptoms. Our report expands the phenotypic spectrum of Brunner disease, bringing new perspectives on the behavioral and neurodevelopmental phenotype from childhood to adulthood.


Subject(s)
Intellectual Disability , Male , Female , Humans , Child , Adolescent , Young Adult , Child, Preschool , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Mothers , Monoamine Oxidase/chemistry , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Phenotype
20.
Curr Issues Mol Biol ; 45(12): 9674-9691, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38132450

ABSTRACT

Ginkgo biloba (GB) extracts have been used in clinical studies as an alternative therapy for Alzheimer's disease (AD), but the exact bioaction mechanism has not yet been elucidated. In this work, an in silico study on GB metabolites was carried out using SwissTargetPrediction to determine the proteins associated with AD. The resulting proteins, AChE, MAO-A, MAO-B, ß-secretase and γ-secretase, were studied by molecular docking, resulting in the finding that kaempferol, quercetin, and luteolin have multitarget potential against AD. These compounds also exhibit antioxidant activity towards reactive oxygen species (ROS), so antioxidant tests were performed on the extracts using the DPPH and ABTS techniques. The ethanol and ethyl acetate GB extracts showed an important inhibition percentage, higher than 80%, at a dose of 0.01 mg/mL. The effect of GB extracts on AD resulted in multitarget action through two pathways: firstly, inhibiting enzymes responsible for degrading neurotransmitters and forming amyloid plaques; secondly, decreasing ROS in the central nervous system (CNS), reducing its deterioration, and promoting the formation of amyloid plaques. The results of this work demonstrate the great potential of GB as a medicinal plant.

SELECTION OF CITATIONS
SEARCH DETAIL
...