Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 246
Filter
1.
Article in English | MEDLINE | ID: mdl-39007783

ABSTRACT

BACKGROUND AND AIMS: Our purpose was to assess the impact of muscle quality on overall survival (OS) in patients with advanced HCC. METHODS: This is a subanalysis of the SORAMIC trial. Overall, 363 patients were included. The SIRT/Sorafenib treatment group comprised 182 patients and the sorafenib group 181 patients. Myosteatosis was defined as skeletal muscle density (SMD) < 41 HU for patients with a body mass index up to 24.9 kg/m2 and <33 HU for patients with a body mass index ≥25 kg/m2. Albumin-gauge score was calculated as follows: serum albumin (g/dL) × SMD (HU). To assess the impact of muscle quality on clinical variables and OS, a Cox regression model was used. Hazard ratios are presented together with 95 % confidence intervals (95 % CI). Kaplan-Meier curves were used for survival analysis. RESULTS: In the SIRT/sorafenib cohort, low albumin-gauge score was an independent predictor of worse OS, HR = 1.74, CI 95% (1.16-2.62), p = 0.01. In the sorafenib cohort, muscle quality parameters did not predict OS. In alcohol-induced HCC (n = 129), myosteatosis independently predicted OS, HR = 1.85, CI 95% (1.10; 3.12), p = 0.02. In viral-induced HCC (n = 99), parameters of muscle quality did not predict OS. In patients with NASH/Non-alcoholic fatty liver disease (NAFLD) induced HCC, albumin-gauge score was a strong independent predictor of worse OS in the subgroup undergoing combined treatment with SIRT and sorafenib, HR = 9.86, CI 95% (1.12; 86.5), p = 0.04. CONCLUSIONS: Myosteatosis predicts independently worse OS in patients with alcohol-induced HCC undergoing combined treatment with SIRT and sorafenib. In patients with NASH/NAFLD induced HCC undergoing treatment with SIRT and sorafenib, albumin-gauge score predicts independently worse OS. IMPACT AND IMPLICATIONS: Associations between parameters of muscle quality and OS are different in accordance to the treatment strategy and etiology of HCC. These findings highlight the prognostic potential of skeletal muscle quality in patients with advanced HCC.

2.
Metabolism ; : 155975, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004396

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), encompasses a progressive spectrum of liver conditions, ranging from steatosis to metabolic dysfunction-associated steatohepatitis, characterised by hepatocellular death and inflammation, potentially progressing to cirrhosis and/or liver cancer. In both experimental and human MASLD, necroptosis-a regulated immunogenic necrotic cell death pathway-is triggered, yet its exact role in disease pathogenesis remains unclear. Noteworthy, necroptosis-related signalling pathways are emerging as key players in metabolic reprogramming, including lipid and mitochondrial metabolism. Additionally, metabolic dysregulation is a well-established contributor to MASLD development and progression. This review explores the intricate interplay between cell metabolism and necroptosis regulation and its impact on MASLD pathogenesis. Understanding these cellular events may offer new insights into the complexity of MASLD pathophysiology, potentially uncovering therapeutic opportunities and unforeseen metabolic consequences of targeting necroptosis.

3.
Adv Sci (Weinh) ; : e2404326, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952069

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) represents an impending global health challenge. Current management strategies often face setbacks, emphasizing the need for preclinical models that faithfully mimic the human disease and its comorbidities. The liver disease progression aggravation diet (LIDPAD), a diet-induced murine model, extensively characterized under thermoneutral conditions and refined diets is introduced to ensure reproducibility and minimize species differences. LIDPAD recapitulates key phenotypic, genetic, and metabolic hallmarks of human MASLD, including multiorgan communications, and disease progression within 4 to 16 weeks. These findings reveal gut-liver dysregulation as an early event and compensatory pancreatic islet hyperplasia, underscoring the gut-pancreas axis in MASLD pathogenesis. A robust computational pipeline is also detailed for transcriptomic-guided disease staging, validated against multiple harmonized human hepatic transcriptomic datasets, thereby enabling comparative studies between human and mouse models. This approach underscores the remarkable similarity of the LIDPAD model to human MASLD. The LIDPAD model fidelity to human MASLD is further confirmed by its responsiveness to dietary interventions, with improvements in metabolic profiles, liver histopathology, hepatic transcriptomes, and gut microbial diversity. These results, alongside the closely aligned changing disease-associated molecular signatures between the human MASLD and LIDPAD model, affirm the model's relevance and potential for driving therapeutic development.

4.
Pharmgenomics Pers Med ; 17: 363-381, 2024.
Article in English | MEDLINE | ID: mdl-38983907

ABSTRACT

Background: Obesity is reaching epidemic proportions in the developed world. The biosynthesis and degradation of human glycoproteins take place at the highest level in the liver. However, the association between glycosylation and the factors affecting obesity and metabolism-associated steatohepatitis (MASH) is still unclear. Materials and Methods: Gene expression data of liver samples from obese patients were retrieved from GSE83452 and GSE89632 databases. Difference analysis and machine learning were used to identify hub genes involved in glycosylation and associated with the response of weight loss treatment. A total of 7 glycosylation-related hub genes were identified and then subjected to correlation analysis, immune cells infiltration analysis and ROC (Receiver Operating Characteristic) analysis. We also evaluated the potential function of 7 hub genes in obesity patients. MASH mice were used to validate the glycosylation-related hub genes. Results: A total of 25 overlapped glycosylation-related genes were identified by DEGs analysis. ACER2, STX17, ARF5, GPC4, ENTPD5, NANP, and DPY19L2 were identified as hub genes. Among these hub genes, ACER2, STX17, ARF5, and ENTPD5 were also differential expressed in MASH patients. ENTPD5 showed increased transcription in obese MASH mice. Conclusion: The current study identified seven glycosylation-related genes, ACER2, STX17, ARF5, GPC4, ENTPD5, NANP, and DPY19L2, that might play key roles in the development of obesity. ENTPD5 might play a key role in the development of MASH. These findings provide fresh perspectives for expanding the investigation of obesity and MASH.

5.
J Clin Med ; 13(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38999436

ABSTRACT

The development of steatotic liver disease after liver transplant (LT) is widely described, and epidemiological data have revealed an increased incidence in recent times. Its evolution runs from simple steatosis to steatohepatitis and, in a small proportion of patients, to significant fibrosis and cirrhosis. Apparently, post-LT steatotic disease has no impact on the recipient's overall survival; however, a higher cardiovascular and malignancy burden has been reported. Many donors' and recipients' risk factors have been associated with this occurrence, although the recipient-related ones seem of greater impact. Particularly, pre- and post-LT metabolic alterations are strictly associated with steatotic graft disease, sharing common pathophysiologic mechanisms that converge on insulin resistance. Other relevant risk factors include genetic variants, sex, age, baseline liver diseases, and immunosuppressive drugs. Diagnostic evaluation relies on liver biopsy, although non-invasive methods are being increasingly used to detect and monitor both steatosis and fibrosis stages. Management requires a multifaceted approach focusing on lifestyle modifications, the optimization of immunosuppressive therapy, and the management of metabolic complications. This review aims to synthesize the current knowledge of post-LT steatotic liver disease, focusing on the recent definition of metabolic-dysfunction-associated steatotic liver disease (MASLD) and its metabolic and multisystemic concerns.

6.
Acta Pharmacol Sin ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992119

ABSTRACT

The escalating obesity epidemic and aging population have propelled metabolic dysfunction-associated steatohepatitis (MASH) to the forefront of public health concerns. The activation of FXR shows promise to combat MASH and its detrimental consequences. However, the specific alterations within the MASH-related transcriptional network remain elusive, hindering the development of more precise and effective therapeutic strategies. Through a comprehensive analysis of liver RNA-seq data from human and mouse MASH samples, we identified central perturbations within the MASH-associated transcriptional network, including disrupted cellular metabolism and mitochondrial function, decreased tissue repair capability, and increased inflammation and fibrosis. By employing integrated transcriptome profiling of diverse FXR agonists-treated mice, FXR liver-specific knockout mice, and open-source human datasets, we determined that hepatic FXR activation effectively ameliorated MASH by reversing the dysregulated metabolic and inflammatory networks implicated in MASH pathogenesis. This mitigation encompassed resolving fibrosis and reducing immune infiltration. By understanding the core regulatory network of FXR, which is directly correlated with disease severity and treatment response, we identified approximately one-third of the patients who could potentially benefit from FXR agonist therapy. A similar analysis involving intestinal RNA-seq data from FXR agonists-treated mice and FXR intestine-specific knockout mice revealed that intestinal FXR activation attenuates intestinal inflammation, and has promise in attenuating hepatic inflammation and fibrosis. Collectively, our study uncovers the intricate pathophysiological features of MASH at a transcriptional level and highlights the complex interplay between FXR activation and both MASH progression and regression. These findings contribute to precise drug development, utilization, and efficacy evaluation, ultimately aiming to improve patient outcomes.

8.
J Hepatol ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977136

ABSTRACT

BACKGROUND & AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease. Its limited treatment options warrant novel pre-clinical models for target selection and drug validation. We have established and extensively characterized a primary human steatotic hepatocyte in vitro model system that could guide treatment strategies for MASLD. METHODS: Cryopreserved primary human hepatocytes from five donors varying in sex and ethnicity were cultured with free fatty acids (FFA) in 3D collagen sandwich for 7 days and the development of MASLD was followed by assessing classical hepatocellular functions. As proof of concept, the effects of the drug Firsocostat (GS-0976) on in vitro MASLD phenotypes were evaluated. RESULTS: Incubation with FFA induced steatosis, insulin resistance, mitochondrial dysfunction, inflammation, and alterations in prominent human gene signatures similar to patients with MASLD, indicating the recapitulation of human MASLD in this system. As the application of Firsocostat rescued clinically observed fatty liver disease pathologies, it highlights the ability of the in vitro system to test drug efficacy and potentially characterize their mode of action. CONCLUSIONS: Altogether, our human MASLD in vitro model system could guide the development and validation of novel targets and drugs for the treatment of MASLD. IMPACT AND IMPLICATIONS: Due to low drug efficacy and high toxicity, a clinical treatment option for MASLD is limited. To facilitate earlier stop-go decisions in drug development, we have established a primary human steatotic hepatocyte in vitro model. As the model recapitulates clinically relevant MASLD characteristics at high phenotypic resolution, it can serve as a pre-screening platform and guide target identification and validation in MASLD therapy.

9.
Int J Pharm ; 660: 124381, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38917958

ABSTRACT

Chronic liver inflammation, a pervasive global health issue, results in millions of annual deaths due to its progression from fibrosis to the more severe forms of cirrhosis and hepatocellular carcinoma (HCC). This insidious condition stems from diverse factors such as obesity, genetic conditions, alcohol abuse, viral infections, autoimmune diseases, and toxic accumulation, manifesting as chronic liver diseases (CLDs) such as metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), alcoholic liver disease (ALD), viral hepatitis, drug-induced liver injury, and autoimmune hepatitis. Late detection of CLDs necessitates effective treatments to inhibit and potentially reverse disease progression. However, current therapies exhibit limitations in consistency and safety. A potential breakthrough lies in nanoparticle-based drug delivery strategies, offering targeted delivery to specific liver cell types, such as hepatocytes, Kupffer cells, and hepatic stellate cells. This review explores molecular targets for CLD treatment, ongoing clinical trials, recent advances in nanoparticle-based drug delivery, and the future outlook of this research field. Early intervention is crucial for chronic liver disease. Having a comprehensive understanding of current treatments, molecular biomarkers and novel nanoparticle-based drug delivery strategies can have enormous impact in guiding future strategies for the prevention and treatment of CLDs.


Subject(s)
Biomarkers , Drug Delivery Systems , Liver Diseases , Humans , Liver Diseases/drug therapy , Liver Diseases/metabolism , Animals , Drug Delivery Systems/methods , Chronic Disease , Nanoparticles , Nanoparticle Drug Delivery System
10.
Antioxidants (Basel) ; 13(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38929168

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects approximately one-third of the global population. MASLD and its advanced-stage liver fibrosis and cirrhosis are the leading causes of liver failure and liver-related death worldwide. Mitochondria are crucial organelles in liver cells for energy generation and the oxidative metabolism of fatty acids and carbohydrates. Recently, mitochondrial dysfunction in liver cells has been shown to play a vital role in the pathogenesis of MASLD and liver fibrosis. Mitophagy, a selective form of autophagy, removes and recycles impaired mitochondria. Although significant advances have been made in understanding mitophagy in liver diseases, adequate summaries concerning the contribution of liver cell mitophagy to MASLD and liver fibrosis are lacking. This review will clarify the mechanism of liver cell mitophagy in the development of MASLD and liver fibrosis, including in hepatocytes, macrophages, hepatic stellate cells, and liver sinusoidal endothelial cells. In addition, therapeutic strategies or compounds related to hepatic mitophagy are also summarized. In conclusion, mitophagy-related therapeutic strategies or compounds might be translational for the clinical treatment of MASLD and liver fibrosis.

11.
Hepatol Int ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913148

ABSTRACT

Metabolic dysfunction-associated fatty liver disease (MAFLD) is the liver manifestation of a metabolic syndrome and is highly prevalent in the general population. There has been significant progress in non-invasive tests for MAFLD, from the diagnosis of fatty liver and monitoring of liver fat content in response to intervention, to evaluation of liver fibrosis and its change over time, and from risk stratification of patients within the context of clinical care pathways, to prognostication. Various non-invasive tests have also been developed to assess for fibrotic metabolic dysfunction-associated steatohepatitis, which has emerged as an important diagnostic goal, particularly in the context of clinical trials. Non-invasive tests can be used to diagnose clinically significant portal hypertension so that intervention can be administered to reduce the risk of decompensation. Furthermore, the use of risk stratification algorithms can identify at-risk patients for hepatocellular carcinoma surveillance. Beyond the liver, various tests that evaluate cardiovascular disease risk, assess sarcopenia and measure patient reported outcomes, can be utilized to improve the care of patients with MAFLD. This review provides an up-to-date overview of these non-invasive tests and the limitations of liver biopsy in the management of patients with MAFLD.

12.
Article in English, Spanish | MEDLINE | ID: mdl-38945785

ABSTRACT

BACKGROUND AND AIMS: Comprehensive assessment of pharmacotherapy effects on atherogenic parameters (AP) that influence the risk of cardiovascular disease (CVD) is challenging due to interactions among a large number of parameters that modulate CVD risk. METHODS: We developed an illustrative tool, athero-contour (AC), which incorporates weighted key lipid, lipo- and glycoprotein parameters, to readily illustrate their overall changes following pharmacotherapy. We demonstrate the applicability of AC to assess changes in AP in response to saroglitazar treatment in patients with metabolic associated fatty liver disease (MAFLD) in the EVIDENCES IV study. RESULTS: The baseline AC of saroglitazar and placebo groups was worse than the mean of the general population. After 16-week treatment, AC improved significantly in the saroglitazar group due to alterations in very low-density lipoprotein, triglyceride, and glycoproteins. CONCLUSION: Using AC, we could readily and globally evaluate and visualize changes in AP. AC improved in patients with MAFLD following saroglitazar therapy.

13.
Prog Mol Biol Transl Sci ; 207: 193-206, 2024.
Article in English | MEDLINE | ID: mdl-38942537

ABSTRACT

Designing and predicting novel drug targets to accelerate drug discovery for treating metabolic dysfunction-associated steatohepatitis (MASH)-cirrhosis is a challenging task. The presence of superimposed (nested) and co-occurring clinical and histological phenotypes, namely MASH and cirrhosis, may partly explain this. Thus, in this scenario, each sub-phenotype has its own set of pathophysiological mechanisms, triggers, and processes. Here, we used gene/protein and set enrichment analysis to predict druggable pathways for the treatment of MASH-cirrhosis. Our findings indicate that the pathogenesis of MASH-cirrhosis can be explained by perturbations in multiple, simultaneous, and overlapping molecular processes. In this scenario, each sub-phenotype has its own set of pathophysiological mechanisms, triggers, and processes. Therefore, we used systems biology modeling to provide evidence that MASH and cirrhosis paradoxically present unique and distinct as well as common disease mechanisms, including a network of molecular targets. More importantly, pathway analysis revealed straightforward results consistent with modulation of the immune response, cell cycle control, and epigenetic regulation. In conclusion, the selection of potential therapies for MASH-cirrhosis should be guided by a better understanding of the underlying biological processes and molecular perturbations that progressively damage liver tissue and its underlying structure. Therapeutic options for patients with MASH may not necessarily be of choice for MASH cirrhosis. Therefore, the biology of the disease and the processes associated with its natural history must be at the forefront of the decision-making process.


Subject(s)
Drug Repositioning , Liver Cirrhosis , Humans , Fatty Liver/drug therapy , Fatty Liver/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Molecular Targeted Therapy , Signal Transduction/drug effects , Systems Biology
14.
Biosci Trends ; 18(3): 289-302, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38925962

ABSTRACT

STK39 is reportedly a critical negative regulator of intestinal barrier. Pharmacological targeting of STK39 is expected to protect the intestinal barrier and thereby weaken metabolic dysfunction-associated steatohepatitis (MASH); Proximal colon biopsy tissues from patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and those without MASLD were analyzed for STK39 expression. Wildtype (WT) mice and systemic STK39 gene knockout (STK39-/-) male mice were fed a normal diet or a high-fat methionine-choline deficient diet (HFMCD) for 8 weeks. The MASH mice were grouped and treated with ZT-1a (a STK39 inhibitor) or vehicle intraperitoneal injection during the procedure of HFMCD induction. Liver and intestinal tissues were collected for further examination; Colon tissues from patients with MASLD exhibited higher levels of STK39 than those from subjects without MASLD. Knockout of STK39 diminished CD68+ Kupffer cells and α-SMA+ hepatic stellate cells infiltration in mouse MASH model. Treatment with ZT-1a also prevented severe steatohepatitis in a mouse MASH model, including milder histological and pathological manifestations (lobular inflammation and fibrosis) in the liver. Interestingly, Inhibition of STK39 had minimal effects on hepatic lipid metabolism. The reduced liver injury observed in mice with STK39 inhibition was linked to significant decreases in mucosal inflammation, tight junction disruption and intestinal epithelial permeability to bacterial endotoxins; Collectively, we have revealed that inhibiting STK39 prevents the progression of MASH by protecting the intestinal epithelial barrier.


Subject(s)
Intestinal Mucosa , Mice, Knockout , Protein Serine-Threonine Kinases , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Male , Mice , Humans , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Fatty Liver/pathology , Fatty Liver/metabolism , Fatty Liver/genetics , Mice, Inbred C57BL , Liver/pathology , Liver/metabolism , Liver/drug effects , Disease Models, Animal , Diet, High-Fat/adverse effects
15.
Article in English | MEDLINE | ID: mdl-38928954

ABSTRACT

This multi-center retrospective study examined the effect of weight loss on the prevention of progression to cirrhosis in a sample exclusively composed of patients with obesity and MASH-related F3 liver fibrosis. Adult patients with obesity and biopsy-confirmed MASH-related F3 liver fibrosis (n = 101) from two liver transplant centers in the US were included in the study. A higher proportion of patients who did not progress to cirrhosis achieved >5% weight loss at follow-up (59% vs. 30%, p = 0.045). In multivariable analysis, patients with >5% weight loss at follow-up had a lower hazard of developing cirrhosis compared to patients with no weight loss or weight gain (HR: 0.29, 95%, CI: 0.08-0.96); whereas, diabetes (HR: 3.24, 95%, CI: 1.21-8.67) and higher LDL levels (HR: 1.02, 95%, CI: 1.01-1.04) were associated with higher hazards of progression to cirrhosis. Weight loss >5% has the potential to prevent disease progression to cirrhosis in patients with obesity and MASH-related F3 liver fibrosis. The realization of this benefit requires weight loss maintenance longer than one year. Larger prospective studies are needed to determine how weight loss impacts other patient-centered outcomes such as mortality, hepatic decompensation, and hepatocellular carcinoma in patients with obesity and MASH-related F3 liver fibrosis.


Subject(s)
Disease Progression , Liver Cirrhosis , Obesity , Weight Loss , Humans , Obesity/complications , Male , Retrospective Studies , Middle Aged , Female , Adult
16.
Clin Res Hepatol Gastroenterol ; 48(7): 102402, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909684

ABSTRACT

BACKGROUND: Diabetes and obesity are associated with altered lipid metabolism and hepatic steatosis. Studies suggest that increases in lipid accumulation in these patients with metabolic dysfunction-associated steatotic liver disease (MASLD) are not uniform for all lipid components. This study evaluates this variation. METHODS: A comprehensive lipidomic analysis of different lipid groups, were performed on liver tissue and plasma samples obtained at the time of histology from a well-defined cohort of 72 MASLD participants. The lipid profiles of controls were compared to those of MASLD patients with obesity, diabetes, or a combination of both. RESULTS: MASLD patients without obesity or diabetes exhibited distinct changes in the lipid profile of their liver tissue. The presence of diabetes or obesity further modified these lipid profiles (e.g., ceramide 47:7;4O), with positive or negative correlation (p < 0.05). A step-wise increase (long-chain fatty acids, triglycerides, and ceramides) or decrease (ultra-long fatty acids, diglycerides, and phospholipids) for lipid groups was observed compared to control among patients with MASLD without obesity or diabetes to MASLD patients with obesity as a single risk factor, and MASLD patients with obesity and diabetes. Changes in lipids observed in the plasma did not align with their corresponding liver tissue findings. CONCLUSION: The changes observed in the composition of lipids are not similar in patients with obesity and diabetes among those with MASLD. This highlights the different metabolic processes at play. The presence of obesity or diabetes in patients with MASLD exacerbates these lipid derangements, underscoring the potential for targeted intervention in MASLD patients.

17.
Cell Metab ; 36(7): 1439-1455, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38823393

ABSTRACT

Chronic liver diseases, primarily metabolic dysfunction-associated steatotic liver disease (MASLD), harmful use of alcohol, or viral hepatitis, may result in liver fibrosis, cirrhosis, and cancer. Hepatic fibrogenesis is a complex process with interactions between different resident and non-resident heterogeneous liver cell populations, ultimately leading to deposition of extracellular matrix and organ failure. Shifts in cell phenotypes and functions involve pronounced transcriptional and protein synthesis changes that require metabolic adaptations in cellular substrate metabolism, including glucose and lipid metabolism, resembling changes associated with the Warburg effect in cancer cells. Cell activation and metabolic changes are regulated by metabolic stress responses, including the unfolded protein response, endoplasmic reticulum stress, autophagy, ferroptosis, and nuclear receptor signaling. These metabolic adaptations are crucial for inflammatory and fibrogenic activation of macrophages, lymphoid cells, and hepatic stellate cells. Modulation of these pathways, therefore, offers opportunities for novel therapeutic approaches to halt or even reverse liver fibrosis progression.


Subject(s)
Liver Cirrhosis , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Animals , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Signal Transduction , Metabolic Reprogramming
18.
Cells ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38891092

ABSTRACT

Binge drinking in obese patients positively correlates with accelerated liver damage and liver-related death. However, the underlying mechanism and the effect of alcohol use on the progression of metabolic-dysfunction-associated steatotic liver disease (MASLD) remain unexplored. Here, we show that short-term feeding of a metabolic-dysfunction-associated steatohepatitis (MASH) diet plus daily acute alcohol binges for three days induce liver injury and activation of the NLRP3 inflammasome. We identify that a MASH diet plus acute alcohol binges promote liver inflammation via increased infiltration of monocyte-derived macrophages, neutrophil recruitment, and NET release in the liver. Our results suggest that both monocyte-derived macrophages and neutrophils are activated via NLRP3, while the administration of MCC950, an NLRP3 inhibitor, dampens these effects.In this study, we reveal important intercellular communication between hepatocytes and neutrophils. We discover that the MASH diet plus alcohol induces IL-1ß via NLRP3 activation and that IL-1ß acts on hepatocytes and promotes the production of CXCL1 and LCN2. In turn, the increase in these neutrophils recruits chemokines and causes further infiltration and activation of neutrophils in the liver. In vivo administration of the NLRP3 inhibitor, MCC950, improves the early phase of MetALD by preventing liver damage, steatosis, inflammation, and immune cells recruitment.


Subject(s)
Interleukin-1beta , Liver , NLR Family, Pyrin Domain-Containing 3 Protein , Neutrophil Infiltration , Neutrophils , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Liver/pathology , Liver/metabolism , Liver/drug effects , Interleukin-1beta/metabolism , Neutrophil Infiltration/drug effects , Male , Neutrophils/metabolism , Neutrophils/drug effects , Mice, Inbred C57BL , Mice , Inflammasomes/metabolism , Binge Drinking/pathology , Binge Drinking/complications , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Cell Communication/drug effects , Sulfones/pharmacology , Sulfonamides/pharmacology , Macrophages/metabolism , Macrophages/drug effects , Furans/pharmacology , Humans , Indenes/pharmacology , Diet , Signal Transduction/drug effects , Extracellular Traps/metabolism , Extracellular Traps/drug effects , Fatty Liver/pathology , Fatty Liver/metabolism , Sulfoxides/pharmacology
20.
Cardiovasc Toxicol ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851663

ABSTRACT

Metabolic dysfunction associated-steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) is the liver manifestation of metabolic syndrome, which is characterized by insulin resistance, hyperglycemia, hypertension, dyslipidemia, and/or obesity. Environmental pollutant exposure has been recently identified as a risk factor for developing MASH. Heterocyclic amines (HCAs) are mutagens generated when cooking meat at high temperatures or until well-done. Recent epidemiological studies reported that dietary HCA exposure may be linked to insulin resistance and type II diabetes, and we recently reported that HCAs induce insulin resistance and glucose production in human hepatocytes. However, no previous studies have examined the effects of HCAs on hepatic lipid homeostasis. In the present study, we assessed the effects of two common HCAs, MeIQx (2-amino-3, 8-dimethylimidazo [4, 5-f] quinoxaline) and PhIP (2-amino-1-methyl-6-phenylimidazo[4, 5-b] pyridine), on lipid homeostasis in cryopreserved human hepatocytes. Exposure to a single concentration of 25 µM MeIQx or PhIP in human hepatocytes led to dysregulation of lipid homeostasis, typified by significant increases in lipid droplets and triglycerides. PhIP significantly increased expression of lipid droplet-associated genes, PNPLA3 and HSD17B13, and both HCAs significantly increased PLIN2. Exposure to MeIQx or PhIP also significantly increased expression of several key genes involved in lipid synthesis, transport and metabolism, including FASN, DGAT2, CPT1A, SCD, and CD36. Furthermore, both MeIQx and PhIP significantly increased intracellular cholesterol and decreased expression of PON1 which is involved in cholesterol efflux. Taken together, these results suggest that HCAs dysregulate lipid production, metabolism, and storage. The current study demonstrates, for the first time, that HCA exposure may lead to fat accumulation in hepatocytes, which may contribute to hepatic insulin resistance and MASH.

SELECTION OF CITATIONS
SEARCH DETAIL
...