Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Rev. biol. trop ; Rev. biol. trop;72(1): e54459, ene.-dic. 2024. tab, graf
Article in Spanish | LILACS, SaludCR | ID: biblio-1559316

ABSTRACT

Resumen Introducción: La biodiversidad se está perdiendo a un ritmo acelerado como resultado del cambio global. Herramientas como los modelos de distribución de especies (MDEs) han sido ampliamente usados para mejorar el conocimiento sobre el estado de conservación de las especies y ayudar a desarrollar estrategias de gestión para mitigar la pérdida de biodiversidad. Objetivo: Determinar cómo la distribución potencial predicha por los MDEs para ocho especies de murciélagos amenazados difiere de los mapas de distribución reportados por la UICN. También, inferir el área de distribución y estado de endemismo de cada especie, y evaluar la importancia de la región tumbesina para su conservación. Métodos: Basados en registros de presencia del rango global de las especies, usamos MDEs para evaluar el estado de conservación de estas ocho especies en la región tumbesina de Ecuador y Perú. Resultados: Las áreas estimadas por los MDEs eran 35-78 % más pequeñas para cuatro especies (Eptesicus innoxius, Lophostoma occidentale, Platalina genovensium y Lonchophylla hesperia) y 26-1 600 % más grandes para tres especies (Amorphochilus schnablii, Promops davisoni y Rhogeessa velilla) que aquellas reportadas por la UICN. Para Tomopeas ravus, el área estimada por el MDE y la UICN fue similar, pero difirió en la distribución espacial. Los MDEs coincidieron con áreas de endemismo informadas por autores previos para E. innoxius, R. velilla y T. ravus, pero fueron diferentes para A. schnablii, P. genovensium, P. davisoni y L. hesperia, debido en parte a las distribuciones proyectadas para estas últimas especies en valles secos interandinos según los MDEs. Conclusiones: La región tumbesina representa una porción significativa (40-96 %) de la distribución predicha de siete de las ocho especies estudiadas, subrayando la importancia de esta región para la conservación de murciélagos. Nuestros resultados muestran las probables distribuciones para estas especies y proporcionan una base importante para identificar vacíos de investigación y desarrollar medidas de conservación para murciélagos amenazados en el punto caliente de biodiversidad de Tumbes.


Abstract Introduction: Biodiversity is being lost at an accelerating rate because of global change. Tools such as species distribution models (SDMs) have been widely used to improve knowledge about species' conservation status and help develop management strategies to mitigate biodiversity loss. SDMs are especially important for species with restricted distributions, such as endemic species. Objective: To determine how potential distribution predicted by SDMs for eight threatened bat species differed from the distribution maps reported by the IUCN. Also, to infer the area of distribution and state of endemism of each specie, and to evaluate the importance of the Tumbesian region for their conservation. Methods: Based on presence records across the species' entire ranges, we used SDMs to assess the conservation status of these eight species in the Tumbesian region of Ecuador and Peru. Results: The areas estimated by SDMs were 35-78 % smaller for four species (Eptesicus innoxius, Lophostoma occidentale, Platalina genovensium and Lonchophylla hesperia) and 26-1 600 % larger for three species (Amorphochilus schnablii, Promops davisoni and Rhogeessa velilla) than those reported by the IUCN. For Tomopeas ravus, the area estimated by the SDM and IUCN was similar but differed in spatial distribution. SDMs coincided with areas of endemism reported by previous authors for E. innoxius, R. velilla, and T. ravus, but were different for A. schnablii, P. genovensium, P. davisoni, and L. hesperia, due in part to projected distributions for these latter species in dry inter-Andean valleys according to the SDMs. Conclusions: The Tumbesian region represents a significant portion (40-96 %) of the predicted distribution of seven of the eight species studied, underscoring the importance of this region for bat conservation. Our results show likely distributions for these species and provide an important basis for identifying research gaps and developing conservation measures for threatened bats in the Tumbes biodiversity hotspot.


Subject(s)
Animals , Chiroptera/classification , Peru , Endangered Species , Ecuador
2.
Sci Rep ; 14(1): 20963, 2024 09 06.
Article in English | MEDLINE | ID: mdl-39251761

ABSTRACT

Thyrinteina arnobia (Lepidoptera: Geometridae) is a native American species. Despite its historical importance as an insect pest in Eucalyptus plantations, more information is needed regarding the population diversity, demography, and climatic variables associated with its distribution in different regions of Brazil. We used a phylogeographic approach to infer the genetic diversity, genetic structure, and demographic parameters of T. arnobia. We also conducted an ecological niche modeling (ENM) to predict suitable areas for T. arnobia occurrence in Brazil and other countries worldwide. Although T. arnobia populations have low genetic diversity in Brazil, we identified mitochondrial haplogroups predominating in different Brazilian regions and high ФST and ФCT values in AMOVA, suggesting a low frequency of insect movement among these regions. These results indicate that outbreaks of T. arnobia in Eucalyptus areas in different regions of Brazil are associated with local or regional populations, with no significant contribution from long-distance dispersal from different regions or biomes, suggesting that pest management strategies would be implemented on a regional scale. In Brazil, the demographic and spatial expansion signals of T. arnobia seem to be associated with the history of geographical expansion of Eucalyptus plantations, a new sustainable host for this species. ENM indicated that isothermality and annual rainfall are critical climatic factors for the occurrence of T. arnobia in tropical and subtropical areas in the Americas. ENM also suggested that T. arnobia is a potential pest in Eucalyptus areas in all Brazilian territory and in regions from Africa, Asia, and Oceania.


Subject(s)
Ecosystem , Eucalyptus , Genetic Variation , Phylogeography , Animals , Eucalyptus/parasitology , Brazil , Lepidoptera/genetics , Lepidoptera/physiology , Moths/physiology , Moths/genetics , Phylogeny
3.
Ecol Evol ; 14(8): e70158, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39206454

ABSTRACT

The development of anthropic activities and climate change effects impact worldwide species' ecosystems and habitats. Habitats' adequate prediction can be an important tool to assess current and future trends. In addition, it allows strategies development for their conservation. The Neltuma pallida of the forest region in northern Peru, although very significant, has experienced a decline in recent years. The objective of this research is to evaluate the current and future distribution and conservation status of N. pallida in the Peruvian dry forest under climate change (Location: Republic of Peru). A total of 132 forest presence records and 10 variables (bioclimatic, topographic, and soil) were processed and selected to obtain the current and future distribution for 2100, using Google Earth Engine (GEE), RStudio, and MaxEnt. The area under the curve values fell within the range of 0.93-0.95, demonstrating a strong predictive capability for both present and future potential habitats. The findings indicated that the likely range of habitats for N. pallida was shaped by factors such as the average temperature of wettest quarter, maximum temperature of warmest month, elevation, rainfall, and precipitation of driest month. The main suitable areas were in the central regions of the geographical departments of Tumbes, Piura, and Lambayeque, as well as in the northern part of La Libertad. It is critical to determine the habitat suitability of plant species for conservation managers since this information stimulates the development of policies that favor sustainable use programs. In addition, these results can contribute significantly to identify new areas for designing strategies for populations conserving and recovering with an ecological restoration approach.

4.
Acta Trop ; 258: 107367, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39173726

ABSTRACT

Chagas disease, a neglected global health concern primarily transmitted through the bite and feces of kissing bugs, has garnered increasing attention due to recent outbreaks in northern Brazil, highlighting the role of oral transmission facilitated by the kissing bugs species Rhodnius robustus and Rhodnius pictipes. These vectors are associated with palm trees with large crowns, such as the maripa palm (Attalea maripa) and moriche palm (Mauritia flexuosa). In this study, we employ maximum entropy (MaxEnt) ecological niche models to analyze the spatial distribution of these vectors and palm species, predicting current and future climate suitability. Our models indicate broader potential habitats than documented occurrences, with high suitability in northern South America, southern Central America, central Africa, and southeast Asia. Projections suggest increased climate suitability by 2040, followed by a reduction by 2080. This study identifies present and future areas suitable for kissing bugs and palm tree species due to climate change, aiding in the design of prevention and management strategies.


Subject(s)
Arecaceae , Chagas Disease , Insect Vectors , Rhodnius , Chagas Disease/transmission , Chagas Disease/epidemiology , Animals , Rhodnius/parasitology , Rhodnius/physiology , Arecaceae/parasitology , Insect Vectors/parasitology , Insect Vectors/physiology , Humans , Ecosystem , Brazil/epidemiology , Climate Change
5.
PeerJ ; 12: e17242, 2024.
Article in English | MEDLINE | ID: mdl-38699180

ABSTRACT

Kiekie Polotow & Brescovit, 2018 is a Neotropical genus of Ctenidae, with most of its species occuring in Central America. In this study, we review the systematics of Kiekie and describe five new species and the unknown females of K. barrocolorado Polotow & Brescovit, 2018 and K. garifuna Polotow & Brescovit, 2018, and the unknown male of K. verbena Polotow & Brescovit, 2018. In addition, we described the female of K. montanense which was wrongly assigned as K. griswoldi Polotow & Brescovit, 2018 (both species are sympatric). We provided a modified diagnosis for previously described species based on the morphology of the newly discovered species and in situ photographs of living specimens. We inferred a molecular phylogeny using four nuclear (histone H3, 28S rRNA, 18S rRNA and ITS-2) and three mitochondrial genes (cytochrome c oxidase subunit I or COI, 12S rRNA and 16S rRNA) to test the monophyly of the genus and the evolutionary relationships of its species. Lastly, we reconstruct the historical biogeography and map diversity and endemism distributional patterns of the different species. This study increased the number of known species of Kiekie from 13 to 18, and we describe a new genus, Eldivo which is sister lineage of Kiekie. Most of the diversity and endemism of the genus Kiekie is located in the montane ecosystems of Costa Rica followed by the lowland rainforest of the Pacific side (Limon Basin). Kiekie originated in the North America Tropical region, this genus started diversifying in the Late Miocene and spread to Lower Central America and South America. In that region, Kiekie colonized independently several times the montane ecosystems corresponding to periods of uplifting of Talamanca and Central Cordilleras.


Subject(s)
Phylogeny , Spiders , Animals , Spiders/classification , Spiders/genetics , Central America , Female , Male , Animal Distribution , Phylogeography
6.
Bull Entomol Res ; 114(3): 454-465, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751346

ABSTRACT

The Argentine ant (Linepithema humile) and the little fire ant (Wasmannia auropunctata) are among the top 100 invasive alien species globally, causing significant ecological and economic harm. Therefore, it is crucial to study their potential geographic distribution worldwide. This study aimed to predict their global distribution under current and future climate conditions. We used distribution data from various sources, including CABI, GBIF, and PIAKey, and key climate variables selected from 19 environmental factors to model their potential geographic distribution using MaxEnt. The AUC values were 0.925 and 0.937 for L. humile and W. auropunctata, respectively, indicating good predictive performance. Suitable areas for L. humile were mainly in southern North America, northern South America, Europe, central Asia, southern Oceania, and parts of Africa, while W. auropunctata suitable areas were mostly in southern North America, most of South America, a small part of Europe, southern Asia, central Africa, and some parts of Oceania. Under climate change scenario, suitable areas for L. humile increased, while highly suitable areas for W. auropunctata decreased. The top four countries with the largest areas of overlapping suitable habitat under current climate were Brazil, China, Australia, and Argentina, while under future SSP585 climate scenario, the top four countries were Brazil, China, Indonesia, and Argentina. Some countries, such as Estonia and Finland, will see an overlapping adaptation area under climate change. In conclusion, this study provides insight into controlling the spread and harm of L. humile and W. auropunctata.


Subject(s)
Animal Distribution , Ants , Climate Change , Introduced Species , Ants/physiology , Animals , Ecosystem , Fire Ants
7.
Am J Primatol ; 86(7): e23625, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38558023

ABSTRACT

Saimiri cassiquiarensis cassiquiarensis (Cebidae) is a primate subspecies with a wide distribution in the Amazonian region of Brazil, Colombia, and Venezuela. However, the boundaries of its geographic range remain poorly defined. This study presents new occurrence localities for this subspecies and updates its distribution using a compiled data set of 140 occurrence records based on literature, specimens vouchered in scientific collections, and new field data to produce model-based range maps. After cleaning our data set, we updated the subspecies' extent of occurrence, which was used in model calibration. We then modeled the subspecies' range using a maximum entropy algorithm (MaxEnt). The final model was adjusted using a fixed threshold, and we revised this polygon based on known geographic barriers and parapatric congeneric ranges. Our findings indicate that this subspecies is strongly associated with lowland areas, with consistently high daily temperatures. We propose modifications to all range boundaries and estimate that 3% of the area of occupancy (AOO, as defined by IUCN) has already been lost due to deforestation, resulting in a current range of 224,469 km2. We also found that 54% of their AOO is currently covered by protected areas (PAs). Based on these results, we consider that this subspecies is currently properly classified as Least Concern, because it occupies an extensive range, which is relatively well covered by PAs, and is currently experiencing low rates of deforestation.


Saimiri cassiquiarensis cassiquiarensis (Cebidae) é uma subespécie de primata com ampla distribuição na região amazônica do Brasil, Colômbia e Venezuela. No entanto, os limites de sua distribuição geográfica permanecem mal definidos. Este estudo apresenta novas localidades de ocorrência para essa subespécie e atualiza sua distribuição usando 140 registros de ocorrência compilados com base na literatura, espécimes depositados em coleções científicas e novos registros de campo para produzir mapas de distribuição baseados em modelos. Após a limpeza do nosso banco de dados, atualizamos a extensão de ocorrência da subespécie, que foi usada na calibração do modelo. Em seguida, modelamos a área de distribuição da subespécie usando um algoritmo de entropia máxima (MaxEnt). O modelo final foi ajustado usando um limiar fixo e revisamos esse polígono com base em barreiras geográficas conhecidas e na distribuição de congêneres parapátricas. Nosso modelo sugere que a espécie é fortemente associada a áreas planas, com temperaturas diárias consistentemente altas. Propomos modificações em todos os limites da área de distribuição e estimamos que 3% da área de ocupação (AOO, conforme definida pela IUCN) da subespécie já foi perdida devido ao desmatamento, resultando em uma área de distribuição atual de 224,469 km2. Também estimamos que 54% de sua AOO encontra­se atualmente coberta por áreas protegidas. Com base nesses resultados, consideramos que a subespécie está apropriadamente classificada como Pouco Preocupante, pois ocupa uma área extensa, que é relativamente bem coberta por áreas protegidas e atualmente apresenta baixas taxas de desmatamento.


Subject(s)
Animal Distribution , Saimiri , Animals , Saimiri/physiology , Venezuela , Brazil , Colombia , Conservation of Natural Resources , Ecosystem
8.
Glob Chang Biol ; 30(3): e17232, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38462701

ABSTRACT

Driven by climate change, tropical cyclones (TCs) are predicted to change in intensity and frequency through time. Given these forecasted changes, developing an understanding of how TCs impact insular wildlife is of heightened importance. Previous work has shown that extreme weather events may shape species distributions more strongly than climatic averages; however, given the coarse spatial and temporal scales at which TC data are often reported, the influence of TCs on species distributions has yet to be explored. Using TC data from the National Hurricane Center, we developed spatially and temporally explicit species distribution models (SDMs) to examine the role of TCs in shaping present-day distributions of Puerto Rico's 10 Anolis lizard species. We created six predictor variables to represent the intensity and frequency of TCs. For each occurrence of a species, we calculated these variables for TCs that came within 500 km of the center of Puerto Rico and occurred within the 1-year window prior to when that occurrence was recorded. We also included predictor variables related to landcover, climate, topography, canopy cover and geology. We used random forests to assess model performance and variable importance in models with and without TC variables. We found that the inclusion of TC variables improved model performance for the majority of Puerto Rico's 10 anole species. The magnitude of the improvement varied by species, with generalist species that occur throughout the island experiencing the greatest improvements in model performance. Range-restricted species experienced small, almost negligible, improvements but also had more predictive models both with and without the inclusion of TC variables compared to generalist species. Our findings suggest that incorporating data on TCs into SDMs may be important for modeling insular species that are prone to experiencing these types of extreme weather events.


Subject(s)
Cyclonic Storms , Lizards , Animals , Climate Change , Puerto Rico , Animals, Wild , Forecasting
9.
Environ Monit Assess ; 196(4): 392, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520558

ABSTRACT

Climate change is one of the main factors affecting biodiversity worldwide at an alarming rate. In addition to increases in global extreme weather events, melting of polar ice caps, and subsequent sea level rise, climate change might shift the geographic distribution of species. In recent years, interest in understanding the effects of climate change on species distribution has increased, including species which depend greatly on forest cover for survival, such as strictly arboreal primates. Here, we generate a series of species distribution models (SDMs) to evaluate future projections under different climate change scenarios on the distribution of the black howler monkey (Alouatta pigra), an endemic endangered primate species. Using SDMs, we assessed current and future projections of their potential distribution for three Social Economic Paths (SSPs) for the years 2030, 2050, 2070, and 2090. Specifically, we found that precipitation seasonality (BIO15, 30.8%), isothermality (BIO3, 25.4%), and mean diurnal range (BIO2, 19.7.%) are the main factors affecting A. pigra distribution. The future climate change models suggested a decrease in the potential distribution of A. pigra by projected scenarios (from - 1.23 to - 12.66%). The highly suitable area was the most affected above all in the more pessimist scenario most likely related to habitat fragmentation. Our study provides new insights into the potential future distribution and suitable habitats of Alouatta pigra. Such information could be used by local communities, governments, and non-governmental organizations for conservation planning of this primate species.


Subject(s)
Alouatta , Trees , Animals , Climate Change , Environmental Monitoring , Ecosystem , Endangered Species
10.
J Med Entomol ; 61(2): 354-366, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38339867

ABSTRACT

Anthropogenic activities are altering ecosystem stability and climate worldwide, which is disturbing and shifting arbovirus vector distributions. Although the overall geographic range of some epidemiologically important species is recognized, the spatiotemporal variation for other species in the context of climate change remains poorly understood. Here we predict the current potential distribution of 9 species of Culex (Melanoconion) based on an ecological niche modeling (ENM) approach and assess spatiotemporal variation in future climate change in the Neotropics. The most important environmental predictors were the mean temperature of the warmest season (27 °C), precipitation during the driest month (50 mm), and precipitation during the warmest season (>200 mm). The best current model for each species was transferred to the future general circulation model IPSL-CM6A-LR, using 2 shared socioeconomic pathway scenarios (ssp1-2.6, ssp5-8.5). Under both scenarios of climatic change, an expansion of suitable areas can be observed followed by a strong reduction for the medium-long future under the worst scenario. The multivariate environmental similarity surface analysis indicated future novel climates outside the current range. However, none of the species would occur in those areas. Even if many challenges remain in improving methods for forecasting species responses to global climate change and arbovirus transmission, ENM has strong potential to be applied to the geographic characterization of these systems. Our study can be used for the monitoring of Culex (Melanoconion) species populations and their associated arboviruses, contributing to develop region-specific public health surveillance programs.


Subject(s)
Arboviruses , Culex , Culicidae , Animals , Ecosystem , Public Health , Mosquito Vectors , Arboviruses/physiology , Climate Change
11.
Zoosystema, v. 46, n. 10, p. 245-268, abr. 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5385

ABSTRACT

A new scorpion species, Microtityus adriki n. sp., is described based on adult specimens collected in Cantá, state of Roraima (RR), northern Brazil. Microtityus adriki n. sp. is the second species of Microtityus Kjellesvig-Waering, 1966 known from Brazil and is one of the smallest scorpion species (12.39-19.47 mm) in the Amazonian region. In this study, we propose an amended generic diagnosis and a specific diagnosis, describe the male hemispermatophore of Microtityus, give the sequence of COI barcode, and present a potential distribution analysis for the genus. The morphology of the male hemispermatophore of Microtityus differs from that of other Neotropical buthid genera, except for the number of lobes (three lobes), which is a character state shared with several genera. The potential distribution model generated by MaxEnt suggests high environmental suitability for the genus in the Antilles and northern South America, with scattered high suitability in several regions of Central America. However, the model did not indicate high suitability in areas where Brazilian species occur (i.e., Microtityus adriki n. sp. and Microtityus vanzolinii Lourenço & Eickstedt, 1983), and this could be explained by a sampling bias. Therefore, future studies, including extensive sampling, are required to better understand the biogeographic processes behind the distribution of this genus.

12.
Environ Monit Assess ; 196(1): 89, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38147172

ABSTRACT

One of the most obvious impacts of roads is roadkill, a problem that is recently being addressed in Mexico. However, there are economic and human resource limitations to monitor the entire road network, assess its impacts, and propose mitigation measures. The black bear (Ursus americanus) is a top predator and the largest terrestrial mammal distributed in Mexico, currently the only of the Ursidae family. In recent years, its presence near human settlements and incidents on roads has increased. We generated a single MaxEnt model to identify characteristics of sites with high black bear roadkill risk and to identify these areas within protected natural areas. We obtained 83 bear roadkill records between 2008 and 2022, and we used a set of 16 variables that included landscape, road variables, and human variables. The model had an area under curve value of 0.96 indicating good performance and the Jacknife analysis identified influence on the roadkill risk of the distance to water bodies, protected areas, scrubland, drainages, and speed limit. We identified 3883.25 km of roads at high roadkill risk for black bears of which, 373.10 (9.6%) km were inside protected areas. We suggest placing speed bumps and effective signage on high-risk sections as a short-term, low-cost strategy. The results help to focus conservation efforts to specific sections of the road network, as roadkill is an increasing source of mortality that has not been evaluated for black bear in Mexico. This information is applicable for mitigating the impacts of existing roads and for planning new projects that have less impact on wild black bear populations and, at the same time, increase the safety of vehicle drivers.


Subject(s)
Ursidae , Humans , Animals , Mexico , Environmental Monitoring , Area Under Curve
13.
PeerJ ; 11: e16533, 2023.
Article in English | MEDLINE | ID: mdl-38099301

ABSTRACT

The avifauna of South America is one of the most widely studied groups of vertebrates. However, certain species, such as the Andean Ibis (Theristicus branickii), have received limited attention regarding their ecological patterns, biology, current distribution, and environmental requirements. This study analyzed observation data from the Global Biodiversity Information Facility (GBIF) on the Andean Ibis in four countries to identify and understand critical variables that determine the species' presence, assess the proportion of its habitat within protected areas and identify possible threats to the species. Additionally, this study considered environmental and ecological variables to model ecological niches using the maximum entropy approach in MaxEnt to map the suitable habitat of the species. The findings revealed the extent of suitable Andean Ibis habitats in Ecuador, Peru, Bolivia and Chile. The variables that most determined the presence of the species were: altitude (36.57%), distance to lakes (23.29%) and ecological isothermality (13.34%). The distribution area of the Andean Ibis totaled 300,095.00 km2, spanning both sides of the Andean mountains range. Human activities have left a significant impact on the Andean Ibis habitat, with 48% of this area impacted by the human footprint and only 10% of the territory falling within protected areas designated by the respective countries. The results of this study show that the Andean Ibis presents characteristics of a specialist species due to its adaptation to the climate conditions of the plateau and highlands, including low temperatures, herbaceous vegetation and the presence of water bodies. The species is distributed in disconnected Andean landscape areas, whose functionality could be compromised by increased human activities. Complementary studies will be necessary to understand the ecological role and effectiveness of protected areas for conserving the species.


Subject(s)
Birds , Animals , Humans , Peru , Ecuador , Bolivia , Chile
14.
Am J Primatol ; 85(12): e23562, 2023 12.
Article in English | MEDLINE | ID: mdl-37842913

ABSTRACT

The crested capuchin monkey (Sapajus robustus) is endemic to the Atlantic Forest and its transition areas within Cerrado in Brazil. The species is currently threatened by habitat loss and has been classified as endangered by the IUCN Red List of Threatened Species since 2015. We used ecological niche models built with MaxEnt to predict the potential impact of climate change on the distribution of this species. The models were projected onto the reference climate, considering six climate scenarios (three Global Climate Models and two Representative Concentration Pathways) from IPCC for 2050 and 2070. We showed that while the amount of suitable area is expected to change little across the species' range in most evaluated climate scenarios, climatic conditions may significantly deteriorate by 2070 in the pessimistic scenario, especially in currently warmer and dryer areas to the west. As seen on other capuchin monkeys, the potential use of tools by crested capuchins may increase the chances of the species adaptation to novel harsher environmental conditions. The major negative impacts across the species range also include habitat loss and fragmentation so that the conservation of the species relies on the protection of the forest remnants in the center of its distribution, which can harbor populations of the species in current and future climate scenarios.


Subject(s)
Cebinae , Cebus , Animals , Climate Change , Ecosystem , Endangered Species
15.
Am J Primatol ; 85(12): e23557, 2023 12.
Article in English | MEDLINE | ID: mdl-37812044

ABSTRACT

The magnitude of recent climatic changes has no historical precedent and impacts biodiversity. Climatic changes may displace suitable habitats (areas with suitable climates), leading to global biodiversity decline. Primates are among the most affected groups. Most primates depend on forests and contribute to their maintenance. We evaluated the potential effects of climatic change on the distribution of Sapajus xanthosternos, a critically endangered primate whose geographical range encompasses three Brazilian biomes. We evaluated changes between baseline (1970-2000) and future (2081-2100) climates using multivariate analysis. Then, we compared current and future (2100) climatic suitability projections for the species. The climatic changes predicted throughout the S. xanthosternos range differed mostly longitudinally, with higher temperature increases in the west and higher precipitation reductions in the east. Climatic suitability for S. xanthosternos is predicted to decline in the future. Areas with highest current climatic suitability occur as a narrow strip in the eastern part of the geographic range throughout the latitudinal range. In the future, areas with highest values are projected to be located as an even narrower strip in the eastern part of the geographical range. A small portion of forest remnants larger than 150 ha located in the east has larger current and future suitability values. At this large scale, the spatial heterogeneity of the climate effects reinforce the importance of maintenance of current populations in different areas of the range. The possibility that phenotypic plasticity helps primates cope with reduced climatic suitability may be mediated by habitat availability, quality, and connectivity.


Subject(s)
Cebus , Sapajus , Animals , Climate Change , Forests , Ecosystem
16.
Ecol Evol ; 13(9): e10534, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37727774

ABSTRACT

The distribution range and population abundance of species provide fundamental information on the species-habitat relationship required for management and conservation. Abundance inherently provides more information about the ecology of species than do occurrence data. However, information on abundance is scarce for most species, mainly at large spatial scales. The objective of this work was, therefore, to provide information regarding the population status of six wild felids inhabiting territories in Mexico that are inaccessible or politically unstable. This was done using species distribution models derived from occurrence data. We used distribution data at a continental scale for the wild felids inhabiting Mexico: jaguar (Panthera onca), bobcat (Lynx rufus), ocelot (Leopardus pardalis), cougar (Puma concolor), margay (Leopardus wiedii), and jaguarundi (Herpailurus yagouaroundi) to predict environmental suitability (estimated by both Maxent and the distance to niche centroid, DNC). Suitability was then examined by relating to a capture rate-based index, in a well-monitored area in central western Mexico in order to assess their performance as proxies of relative abundance. Our results indicate that the environmental suitability patterns predicted by both algorithms were comparable. However, the strength of the relationship between the suitability and relative abundance of local populations differed across species and between algorithms, with the bobcat and DNC, respectively, having the best fit, although the relationship was not consistent in all the models. This paper presents the potential of implementing species distribution models in order to predict the relative abundance of wild felids in Mexico and offers guidance for the proper interpretation of the relationship between suitability and population abundance. The results obtained provide a robust information base on which to outline specific conservation actions and on which to examine the potential status of endangered species inhabiting remote or politically unstable territories in which on-field monitoring programs are not feasible.

17.
Article in English | MEDLINE | ID: mdl-37009555

ABSTRACT

A recent phylogenetic analysis of Triatoma pallidipennis, an important Chagas disease vector in Mexico, based on molecular markers, revealed five monophyletic haplogroups with validity as cryptic species. Here, we compare T. pallidipennis haplogroups using head and pronotum features, environmental characteristics of their habitats, and ecological niche modeling. To analyze variation in shape, images of the head and pronotum of the specimens were obtained and analyzed using methods based on landmarks and semi-landmarks. Ecological niche models were obtained from occurrence data, as well as a set of bioclimatic variables that characterized the environmental niche of each analyzed haplogroup. Deformation grids for head showed a slight displacement towards posterior region of pre-ocular landmarks. Greatest change in head shape was observed with strong displacement towards anterior region of antenniferous tubercle. Procrustes ANOVA and pairwise comparisons showed differences in mean head shape in almost all haplogroups. However, pairwise comparisons of mean pronotum shape only showed differences among three haplogroups. Correct classification of all haplogroups was not possible using discriminant analysis. Important differences were found among the environmental niches of the analyzed haplogroups. Ecological niche models of each haplogroup did not predict the climatic suitability areas of the other haplogroups, revealing differences in environmental conditions. Significant differences were found between at least two haplogroups, demonstrating distinct environmental preferences among them. Our results show how the analysis of morphometric variation and the characterization of the environmental conditions that define the climatic niche can be used to improve the delimitation of T. pallidipennis haplogroups that constitute cryptic species.

18.
Environ Manage ; 71(6): 1176-1187, 2023 06.
Article in English | MEDLINE | ID: mdl-36867207

ABSTRACT

Invasive alien species are one of the main causes of biodiversity loss and ecosystem alteration. Obtaining up-to-date occurrence records and accurate invasion risk maps has become crucial to develop timely and effective management strategies. Unfortunately, gathering and validating distribution data can be labor-intensive and time-consuming, with different data sources unavoidably leading to biases in the results. In this study, we evaluated the performance of a tailored citizen science project compared with other data sources, in mapping the current and potential distribution of Iris pseudacorus, a strong invasive alien plant in Argentina. To do so, we used geographic information systems and ecological niche modeling with Maxent, and compared data from: i) a citizen science tailored project; ii) the Global Biodiversity Information Facility (GBIF); and iii) an exhaustive professional data collection (i.e. field samplings across Argentina, literature and collections review). Results suggest that the citizen science tailored project provided a larger and more diversified amount of data compared to the other sources. All data-sources showed good performance in the ecological niche models, however, data from the tailored citizen science project predicted a greater suitable area, including regions not yet reported. This allowed us to better identify critical and vulnerable areas, where management and prevention strategies are necessary. Professional data provided more reports in non-urban areas, whereas citizen science based data sources (i.e. GBIF and the citizen science project conducted in this study) reported more sites in urban areas, which indicates that different data-sources are complementary and there is a big potential in combining methods. We encourage the use of tailored citizen science campaigns to gather a more diverse amount of data, generating better knowledge about aquatic invasive species and helping decision-making in ecosystem management.


Subject(s)
Citizen Science , Introduced Species , Wetlands , Biodiversity , Ecosystem
19.
Am J Primatol ; 85(2): e23464, 2023 02.
Article in English | MEDLINE | ID: mdl-36642976

ABSTRACT

The Tropical Andes Biodiversity Hotspot holds a remarkable number of species at risk of extinction due to anthropogenic habitat loss, hunting, and climate change. One of these species, the critically endangered yellow-tailed woolly monkey (Lagothrix flavicauda), was recently observed in the region Junín, 206 km south of its previously known distribution. This range extension, combined with continued habitat loss, calls for a reevaluation of the species distribution, and available suitable habitat. Here, we present novel data from surveys at 53 sites in the regions of Junín, Cerro de Pasco, Ayacucho, and Cusco. We encountered L. flavicauda at 9 sites, all in Junín, and the congeneric Lagothrix lagotricha tschudii at 20 sites, but never in sympatry. Using these new localities along with all previous geographic localities for the species, we made predictive species distribution models based on ecological niche modeling using a generalized linear model and maximum entropy. Each model incorporated bioclimatic variables, forest cover, vegetation measurements, and elevation as predictor variables. The model evaluation showed >80% accuracy for all measures. Precipitation was the strongest predictor of species presence. Habitat suitability maps illustrate potential corridors for gene flow between the southern and northern populations, although much of this area is inhabited by L. l. tschudii whereas L. flavicauda has yet to be officially confirmed in these areas, by these or any other scientific surveys. An analysis of the current protected area (PA) network showed that ~75% of remaining suitable habitat is unprotected. With this, we suggest priority areas for new PAs or expansions to existing reserves that would conserve potential corridors between L. flavicauda populations. Further surveys and characterization of the distribution in intermediate areas, combined with studies on gene flow through these areas, are still needed to protect this species.


Subject(s)
Atelinae , Ecosystem , Animals , Peru , Atelinae/genetics , Forests
20.
PeerJ ; 11: e14651, 2023.
Article in English | MEDLINE | ID: mdl-36650841

ABSTRACT

The biogeographic region of Argentinean Puna mainly extends at elevations higher than 3,000 m within the Andean Plateau and hosts diverse ecological communities highly adapted to extreme aridity and low temperatures. Soils of Puna are typically poorly evolved and geomorphology is shaped by drainage networks, resulting in highly vegetated endorheic basins and hypersaline basins known as salar or salt flats. Local communities rely on soil fertility for agricultural practices and on pastures for livestock rearing. From this perspective, investigating the scarcely explored microbiological diversity of these soils as indicators of ecosystems functioning might help to predict the fragility of these harsh environments. In this study we collected soil samples from 28 points, following a nested design within three different macro-habitats, i.e., Puna grassland, hypersaline salar and family-run crop fields. Total fungi and arbuscular mycorrhizal fungi (AMF) occurrence were analyzed using eDNA sequencing. In addition, the significance of soil salinity and organic matter content as significant predictors of AMF occurrence, was assessed through Generalized Linear Mixed Modeling. We also investigated whether intensive grazing by cattle and lama in Puna grasslands may reduce the presence of AMF in these highly disturbed soils, driving or not major ecological changes, but no consistent results were found, suggesting that more specific experiments and further investigations may address the question more specifically. Finally, to predict the suitability for AMF in the different macro-habitats, Species Distribution Modeling (SDM) was performed within an environmental coherent area comprising both the phytogeographic regions of Puna and Altoandino. We modeled AMF distribution with a maximum entropy approach, including bioclimatic and edaphic predictors and obtaining maps of environmental suitability for AMF within the predicted areas. To assess the impact of farming on AMF occurrence, we set a new series of models excluding the cultivated Chaupi Rodeo samples. Overall, SDM predicted a lower suitability for AMF in hypersaline salar areas, while grassland habitats and a wider temperature seasonality range appear to be factors significantly related to AMF enrichment, suggesting a main role of seasonal dynamics in shaping AMF communities. The highest abundance of AMF was observed in Vicia faba crop fields, while potato fields yielded a very low AMF occurrence. The models excluding the cultivated Chaupi Rodeo samples highlighted that if these cultivated areas had theoretically remained unmanaged habitats of Puna and Altoandino, then large-scale soil features and local bioclimatic constraints would likely support a lower suitability for AMF. Using SDM we evidenced the influence of bioclimatic, edaphic and anthropic predictors in shaping AMF occurrence and highlighted the relevance of considering human activities to accurately predict AMF distribution.


Subject(s)
Mycorrhizae , Humans , Animals , Cattle , Mycorrhizae/genetics , Soil , Ecosystem , Entropy , Agriculture/methods
SELECTION OF CITATIONS
SEARCH DETAIL