Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78.171
Filter
1.
J Ethnopharmacol ; 334: 118506, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964625

ABSTRACT

ETHNIC PHARMACOLOGICAL RELEVANCE: Panax ginseng is a traditional Chinese herbal medicine used to treat cardiovascular diseases (CVDs), and it is still widely used to improve the clinical symptoms of various CVDs. However, there is currently a lack of summary and analysis on the mechanism of Panax ginseng exerts its cardiovascular protective effects. This article provides a review of in vivo and in vitro pharmacological studies on Panax ginseng and its active ingredients in reducing CVDs damage. AIM OF THIS REVIEW: This review summarized the latest literature on Panax ginseng and its active ingredients in CVDs research, aiming to have a comprehensive and in-depth understanding of the cardiovascular protection mechanism of Panax ginseng, and to provide new ideas for the treatment of CVDs, as well as to optimize the clinical application of Panax ginseng. METHODS: Enrichment of pathways and biological terms using the traditional Chinese medicine molecular mechanism bioinformatics analysis tool (BATMAN-TCM). The literature search is based on electronic databases such as PubMed, ScienceDirect, Scopus, CNKI, with a search period of 2002-2023. The search terms include Panax ginseng, Panax ginseng ingredients, ginsenosides, ginseng polysaccharides, ginseng glycoproteins, ginseng volatile oil, CVDs, heart, and cardiac. RESULTS: 132 articles were ultimately included in the review. The ingredients in Panax ginseng that manifested cardiovascular protective effects are mainly ginsenosides (especially ginsenoside Rb1). Ginsenosides protected against CVDs such as ischemic reperfusion injury, atherosclerosis and heart failure mainly through improving energy metabolism, inhibiting hyper-autophagy, antioxidant, anti-inflammatory and promoting secretion of exosomes. CONCLUSION: Panax ginseng and its active ingredients have a particularly prominent effect on improving myocardial energy metabolism remodeling in protecting against CVDs. The AMPK and PPAR signaling pathways are the key targets through which Panax ginseng produces multiple mechanisms of cardiovascular protection. Extracellular vesicles and nanoparticles as carriers are potential delivery ways for optimizing the bioavailability of Panax ginseng and its active ingredients.

2.
Mol Metab ; 87: 101981, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971403

ABSTRACT

OBJECTIVE: The metabolism of different cells within the same microenvironment can differ and dictate physiological or pathological adaptions. Current single-cell analysis methods of metabolism are not label-free. METHODS: The study introduces a label-free, live-cell analysis method assessing endogenous fluorescence of NAD(P)H and FAD in surface-stained cells by flow cytometry. RESULTS: OxPhos inhibition, mitochondrial uncoupling, glucose exposure, genetic inactivation of glucose uptake and mitochondrial respiration alter the optical redox ratios of FAD and NAD(P)H as measured by flow cytometry. Those alterations correlate strongly with measurements obtained by extracellular flux analysis. Consequently, metabolically distinct live B-cell populations can be resolved, showing that human memory B-cells from peripheral blood exhibit a higher glycolytic flexibility than naïve B cells. Moreover, the comparison of blood-derived B- and T-lymphocytes from healthy donors and rheumatoid arthritis patients unleashes rheumatoid arthritis-associated metabolic traits in human naïve and memory B-lymphocytes. CONCLUSIONS: Taken together, these data show that the optical redox ratio can depict metabolic differences in distinct cell populations by flow cytometry.

3.
Gut Microbes ; 16(1): 2374608, 2024.
Article in English | MEDLINE | ID: mdl-38972055

ABSTRACT

With the increasing of aging population and the consumption of high-fat diets (HFD), the incidence of Alzheimer's disease (AD) has skyrocketed. Natural antioxidants show promising potential in the prevention of AD, as oxidative stress and neuroinflammation are two hallmarks of AD pathogenesis. Here, we showed that quinic acid (QA), a polyphenol derived from millet, significantly decreased HFD-induced brain oxidative stress and neuroinflammation and the levels of Aß and p-Tau. Examination of gut microbiota suggested the improvement of the composition of gut microbiota in HFD mice after QA treatment. Metabolomic analysis showed significant increase of gut microbial tryptophan metabolites indole-3-acetic acid (IAA) and kynurenic acid (KYNA) by QA. In addition, IAA and KYNA showed negative correlation with pro-inflammatory factors and AD indicators. Further experiments on HFD mice proved that IAA and KYNA could reproduce the effects of QA that suppress brain oxidative stress and inflammation and decrease the levels of of Aß and p-Tau. Transcriptomics analysis of brain after IAA administration revealed the inhibition of DR3/IKK/NF-κB signaling pathway by IAA. In conclusion, this study demonstrated that QA could counteract HFD-induced brain oxidative stress and neuroinflammation by regulating inflammatory DR3/IKK/NF-κB signaling pathway via gut microbial tryptophan metabolites.


Subject(s)
Brain , Diet, High-Fat , Gastrointestinal Microbiome , Mice, Inbred C57BL , NF-kappa B , Oxidative Stress , Quinic Acid , Signal Transduction , Tryptophan , Animals , Gastrointestinal Microbiome/drug effects , Tryptophan/metabolism , Diet, High-Fat/adverse effects , Mice , NF-kappa B/metabolism , Signal Transduction/drug effects , Male , Oxidative Stress/drug effects , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Quinic Acid/metabolism , Brain/metabolism , Brain/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/prevention & control , I-kappa B Kinase/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Indoleacetic Acids/metabolism , Kynurenic Acid/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/prevention & control
4.
Cell Rep Methods ; 4(7): 100803, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38959888

ABSTRACT

High-sensitivity nanoflow liquid chromatography (nLC) is seldom employed in untargeted metabolomics because current sample preparation techniques are inefficient at preventing nanocapillary column performance degradation. Here, we describe an nLC-based tandem mass spectrometry workflow that enables seamless joint analysis and integration of metabolomics (including lipidomics) and proteomics from the same samples without instrument duplication. This workflow is based on a robust solid-phase micro-extraction step for routine sample cleanup and bioactive molecule enrichment. Our method, termed proteomic and nanoflow metabolomic analysis (PANAMA), improves compound resolution and detection sensitivity without compromising the depth of coverage as compared with existing widely used analytical procedures. Notably, PANAMA can be applied to a broad array of specimens, including biofluids, cell lines, and tissue samples. It generates high-quality, information-rich metabolite-protein datasets while bypassing the need for specialized instrumentation.


Subject(s)
Metabolomics , Proteomics , Tandem Mass Spectrometry , Proteomics/methods , Metabolomics/methods , Chromatography, Liquid , Humans , Tandem Mass Spectrometry/methods , Animals , Nanotechnology/methods , Liquid Chromatography-Mass Spectrometry
5.
J Agric Food Chem ; 72(28): 15765-15777, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38970495

ABSTRACT

Konjac glucomannan (KGM), high-viscosity dietary fiber, is utilized in weight management. Previous investigations on the appetite-suppressing effects of KGM have centered on intestinal responses to nutrients and gastric emptying rates, with less focus on downstream hypothalamic neurons of satiety hormones. In our studies, the molecular mechanisms through which KGM and its degradation products influence energy homeostasis via the adipocyte-hypothalamic axis have been examined. It was found that high-viscosity KGM more effectively stimulates enteroendocrine cells to release glucagon-like peptide-1 (GLP-1) and reduces ghrelin production, thereby activating hypothalamic neurons and moderating short-term satiety. Conversely, low-viscosity DKGM has been shown to exhibit stronger anti-inflammatory properties in the hypothalamus, enhancing hormone sensitivity and lowering the satiety threshold. Notably, both KGM and DKGM significantly reduced leptin signaling and fatty acid signaling in adipose tissue and activated brown adipose tissue thermogenesis to suppress pro-opiomelanocortin (POMC) expression and activate agouti-related protein (AgRP) expression, thereby reducing food intake and increasing energy expenditure. Additionally, high-viscosity KGM has been found to activate the adipocyte-hypothalamus axis more effectively than DKGM, thereby promoting greater daily energy expenditure. These findings provide novel insights into the adipocyte-hypothalamic axis for KGM to suppress appetite and reduce weight.


Subject(s)
Adipocytes , Appetite Regulation , Diet, High-Fat , Energy Metabolism , Hypothalamus , Mice, Inbred C57BL , Animals , Mice , Energy Metabolism/drug effects , Hypothalamus/metabolism , Hypothalamus/drug effects , Diet, High-Fat/adverse effects , Male , Appetite Regulation/drug effects , Adipocytes/metabolism , Adipocytes/drug effects , Humans , Glucagon-Like Peptide 1/metabolism , Ghrelin/metabolism , Leptin/metabolism , Agouti-Related Protein/metabolism , Agouti-Related Protein/genetics , Thermogenesis/drug effects , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics , Obesity/metabolism , Obesity/physiopathology , Obesity/diet therapy , Mannans
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159530, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964437

ABSTRACT

STUDY OBJECTIVES: This study aimed to examine the effect of sleep deprivation (SD) on lipid metabolism or lipid metabolism regulation in the liver and white adipose tissue (WAT) during the light and dark phases and explored the possible mechanisms underlying the diurnal effect of SD on lipid metabolism associated with clock genes. METHODS: Male C57BL/6J mice aged 2 months were deprived of sleep daily for 20 h for ten consecutive days with weakly forced locomotion. The body weights and food consumption levels of the SD and control mice were recorded, and the mice were then sacrificed at ZT (zeitgeber time) 2 and ZT 14. The peripheral clock genes, enzymes involved in fat synthesis and catabolism in the WAT, and melatonin signalling pathway-mediated lipid metabolism in the liver were assessed. Untargeted metabolomics and tandem mass tag (TMT) proteomics were used to identify differential lipid metabolism pathways in the liver. RESULTS: Bodyweight gain and daily food consumption were dramatically elevated after SD. Profound disruptions in the diurnal regulation of the hepatic peripheral clock and enzymes involved in fat synthesis and catabolism in the WAT were observed, with a strong emphasis on hepatic lipid metabolic pathways, while melatonin signalling pathway-mediated lipid metabolism exhibited moderate changes. CONCLUSIONS: In mice, ten consecutive days of SD increased body weight gain and daily food consumption. In addition, SD profoundly disrupted lipid metabolism in the WAT and liver during the light and dark periods. These diurnal changes may be related to disorders of the peripheral biological clock.

7.
Physiol Behav ; 284: 114627, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964565

ABSTRACT

There is growing interest in the therapeutic potential of psilocybin for the treatment of a wide variety of medical problems, and even for the promotion of wellbeing among healthy individuals. Interestingly, among the many proposed indications, both obesity and anorexia nervosa (AN) have been discussed. However, the effect of psilocybin on appetitive behavior and metabolism is not well known. Here, we report the effects of psilocybin on body weight, intake and output, body composition, and metabolic function among lean male and female wild-type mice. In the days immediately following treatment, both male and female mice receiving a single intraperitoneal dose of psilocybin were consistently heavier than saline controls, with no effect of psilocybin on intake or output. Co-administration of the 5-HT2A/2C receptor antagonist ketanserin had no effect on this outcome. Body composition analysis revealed that psilocybin significantly increased lean and water mass among males, with a similar trend among females. A metabolic panel revealed increased creatine kinase (CK), aspartate aminotransferase (AST), and chloride among male and female psilocybin treated mice. Together, these findings begin to investigate the potential mechanisms of psilocybin's effects on body weight and metabolic measures. Such understanding will be critical for the safe, efficacious, and well-informed use of psilocybin in clinical and non-clinical settings.

8.
BMC Pulm Med ; 24(1): 323, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965505

ABSTRACT

BACKGROUND: In the tumor microenvironment (TME), a bidirectional relationship exists between hypoxia and lactate metabolism, with each component exerting a reciprocal influence on the other, forming an inextricable link. The aim of the present investigation was to develop a prognostic model by amalgamating genes associated with hypoxia and lactate metabolism. This model is intended to serve as a tool for predicting patient outcomes, including survival rates, the status of the immune microenvironment, and responsiveness to therapy in patients with lung adenocarcinoma (LUAD). METHODS: Transcriptomic sequencing data and patient clinical information specific to LUAD were obtained from comprehensive repositories of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). A compendium of genes implicated in hypoxia and lactate metabolism was assembled from an array of accessible datasets. Univariate and multivariate Cox regression analyses were employed. Additional investigative procedures, including tumor mutational load (TMB), microsatellite instability (MSI), functional enrichment assessments and the ESTIMATE, CIBERSORT, and TIDE algorithms, were used to evaluate drug sensitivity and predict the efficacy of immune-based therapies. RESULTS: A novel prognostic signature comprising five lactate and hypoxia-related genes (LHRGs), PKFP, SLC2A1, BCAN, CDKN3, and ANLN, was established. This model demonstrated that LUAD patients with elevated LHRG-related risk scores exhibited significantly reduced survival rates. Both univariate and multivariate Cox analyses confirmed that the risk score was a robust prognostic indicator of overall survival. Immunophenotyping revealed increased infiltration of memory CD4 + T cells, dendritic cells and NK cells in patients classified within the high-risk category compared to their low-risk counterparts. Higher probability of mutations in lung adenocarcinoma driver genes in high-risk groups, and the MSI was associated with the risk-score. Functional enrichment analyses indicated a predominance of cell cycle-related pathways in the high-risk group, whereas metabolic pathways were more prevalent in the low-risk group. Moreover, drug sensitivity analyses revealed increased sensitivity to a variety of drugs in the high-risk group, especially inhibitors of the PI3K-AKT, EGFR, and ELK pathways. CONCLUSIONS: This prognostic model integrates lactate metabolism and hypoxia parameters, offering predictive insights regarding survival, immune cell infiltration and functionality, as well as therapeutic responsiveness in LUAD patients. This model may facilitate personalized treatment strategies, tailoring interventions to the unique molecular profile of each patient's disease.


Subject(s)
Adenocarcinoma of Lung , Lactic Acid , Lung Neoplasms , Tumor Microenvironment , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Prognosis , Tumor Microenvironment/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Lactic Acid/metabolism , Male , Female , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Aged , Hypoxia/metabolism
9.
Cardiovasc Diabetol ; 23(1): 251, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003471

ABSTRACT

BACKGROUND: The triglyceride-glucose (TyG) index is associated with the development and prognosis of coronary artery disease (CAD). However, the impact of the TyG index on CAD severity across different glucose metabolism states exhibits significant disparities in previous research. METHODS: This cross-sectional study comprised 10,433 participants from a prospective cohort. Participants were categorized into four groups based on glucose metabolism state: normal glucose regulation (NGR), prediabetes (pre-DM), diabetes mellitus (DM) without insulin prescribed (Rx), and DM with insulin Rx. The TyG index was determined by the following formula: Ln [TG (mg/dL) × FPG (mg/dL) / 2], where TG is triglycerides and FPG is fasting plasm glucose. Statistical methods such as binary logistic regression, interaction analysis, restricted cubic spline (RCS), and receiver operating characteristic (ROC) were employed to analyze the relationship between the TyG index and CAD severity across the entire population and glucose metabolism subgroups. Mediation analysis was conducted to examine the mediating effects of glycated hemoglobin (HbA1c) on these relationships. Sensitivity analysis was performed to ensure the robustness of the findings. RESULTS: Multivariable logistic regression analysis revealed a significant positive association between the TyG index and multi-vessel CAD in the entire population (OR: 1.34; 95% CI: 1.22-1.47 per 1-unit increment). Subgroup analysis demonstrated consistent positive associations in the NGR, pre-DM, and DM non-insulin Rx groups, with the highest OR observed in the NGR group (OR: 1.67; 95% CI: 1.3-2.14 per 1-unit increment). No correlation was found in the DM with insulin Rx subgroup. RCS analyses indicated the distinct dose-response relationships across different glucose metabolism subgroups. Including the TyG index in the established model slightly improved the predictive accuracy, particularly in the NGR group. Mediation analyses showed varying mediating effects of HbA1c among different glucose metabolism subgroups. Sensitivity analysis confirmed the robustness of the aforementioned relationships in the new-onset CAD population and in individuals not using antilipidemic medications. CONCLUSIONS: The TyG index positively associated with CAD severity across all glucose metabolism states, except for individuals receiving insulin treatment. Moreover, it might serve as a supplementary noninvasive predictor of CAD severity in addition to established factors, especially in NGR patients.


Subject(s)
Blood Glucose , Coronary Artery Disease , Glycated Hemoglobin , Triglycerides , Aged , Female , Humans , Male , Middle Aged , Asian People , Biomarkers/blood , Blood Glucose/metabolism , Coronary Artery Disease/blood , Coronary Artery Disease/epidemiology , Coronary Artery Disease/diagnosis , Cross-Sectional Studies , Diabetes Mellitus/blood , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , Glycated Hemoglobin/metabolism , Hypoglycemic Agents/therapeutic use , Insulin/blood , Insulin/therapeutic use , Prediabetic State/blood , Prediabetic State/diagnosis , Prediabetic State/epidemiology , Predictive Value of Tests , Prognosis , Prospective Studies , Risk Assessment , Risk Factors , Severity of Illness Index , Triglycerides/blood
10.
Article in English | MEDLINE | ID: mdl-39007928

ABSTRACT

Up to date, digitalis glycosides, also known as "cardiac glycosides", are inhibitors of the Na+/K+-ATPase. They have a long-standing history as drugs used in patients suffering from heart failure and atrial fibrillation despite their well-known narrow therapeutic range and the intensive discussions on their raison d'être for these indications. This article will review the history and key findings in basic and clinical research as well as potentially overseen pros and cons of these drugs.

11.
Article in English | MEDLINE | ID: mdl-39007975

ABSTRACT

As versatile signaling molecules, melatonin (ML) and hydrogen sulfide (H2S) are well-known for their roles in response to abiotic stresses. However, their cross-talk to the regulation of biochemical defence responses and secondary metabolite synthesis during salinity has received less attention. Here, the role of ML-H2S interplay in inducing defensive responses and the biosynthesis of essential oil compounds in summer savoury plants under NaCl treatment was investigated. NaCl treatment, by increasing Na accumulation, disrupting nitrogen metabolism, and inducing oxidative stress, lowered photosynthetic pigments and savoury growth. NaCl treatment also resulted in a decrease in γ-terpinene (10.3%), α-terpinene (21.9%), and p-cymene (15.3%), while an increase in carvacrol (9.1%) was observed over the control. ML and ML + H2S increased the activity of antioxidant enzymes and the level of total phenols and flavonoids, resulting in decreased levels of hydrogen peroxide and superoxide anion and alleviation of oxidative damage under salinity. ML and ML + H2S increased K uptake and restored K/Na homeostasis, thus protecting the photosynthetic apparatus against NaCl-induced toxicity. ML and ML + H2S treatments also improved nitrate/ammonium homeostasis and stimulated nitrogen metabolism, leading to improved summer savoury adaptation to NaCl stress. ML and ML + H2S changed the composition of essential oils, leading to an increase in the monoterpene hydrocarbons and oxygenated monoterpenes in plants stressed with NaCl. However, the addition of an H2S scavenger, hypotaurine, inhibited the protective effects of the ML and ML + H2S treatments under NaCl stress, which could confirm the function of H2S as a signaling molecule in the downstream defence pathway induced by ML.

12.
Food Chem ; 458: 140223, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38954956

ABSTRACT

Fresh-cut pear fruit is greatly impacted by enzymatic browning, and maintaining quality remains a challenge. This study examined the impact of exogenous α-lipoic acid (α-LA) treatment on enzymatic browning and nutritional quality of fresh-cut pears. Results revealed that 0.5 g/L α-LA treatment effectively maintained color and firmness, and inhibited the increase in microbial number. The α-LA treatment also reduced MDA and H2O2 contents, decreased PPO activity, and enhanced SOD, CAT, and PAL activities. The α-LA treatment notably upregulated phenolic metabolism-related gene expression, including PbPAL, Pb4CL, PbC4H, PbCHI and PbCHS, and then increasing total phenols and flavonoids contents. Furthermore, it also influenced carbohydrate metabolism-related gene expression, including PbSS, PbSPS, PbAI and PbNI, maintaining a high level of sucrose content. These findings indicated that α-LA treatment showed promise in reducing browning and enhancing fresh-cut pears quality, offering a potential postharvest method to prolong the lifespan and maintain nutritional quality.

13.
Int Immunopharmacol ; 138: 112577, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955029

ABSTRACT

AIM OF THE STUDY: To study the cross-border regulation of immunity and energy metabolism by ginseng miRNA156, and to provide a new perspective for further exploring the possibility of ginseng miRNA156 as a pharmacodynamic substance. MATERIALS AND METHODS: Combined with the previous research results of our research group, miRNA156 with high expression in blood sequencing of intragastrically administered with ginseng decoction was selected. Bioinformatics analysis was performed on the selected differential miRNA156. The target genes of differential miRNA156 were mainly enriched in metabolic, immune and other signaling pathways. According to the analysis results, the experimental part will use qi deficiency fatigue model and RAW264.7 cells. The contents of lactic acid (LA), creatine kinase (CK), blood urea nitrogen (BUN), lactate dehydrogenase (LD), liver glycogen (LG), muscle glycogen (MG), interleukin 4 (IL-4), matrix metallo-proteinase 9 (MMP-9), superoxide dismutase (SOD), malondialdehyde, phosphor-enolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6pase), nitric oxide (NO) and tumor necrosis factor-α (TNF-α) were measured after administration of miRNA156. RESULTS: Ginseng miRNA156 can accelerate the removal of metabolic waste during exercise. Increase the glycogen reserve in, provide energy for the body, regulate the activity of key gluconeogenesis enzyme phosphorus, improve the energy metabolism system of, and enhance the endurance of fatigue mice. The contents of matrix metalloproteinase 9, superoxide dismutase and malondialdehyde were affected, and the content of TNF-α in the supernatant of RAW264.7 cells was significantly increased, which had certain antioxidant capacity and potential immunomodulatory effects. CONCLUSION: Ginseng miRNA156 has a certain regulatory effect on the energy metabolism and immune function of mice, which makes it possible to regulate the cross-species regulation of ginseng miRNA in theory, provides ideas for ginseng miRNA to become a new pharmacodynamic substance.

14.
Int Immunopharmacol ; 138: 112588, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955031

ABSTRACT

Dexmedetomidine (Dex) is widely used in the sedation in intensive care units and as an anesthetic adjunct. Considering the anti-inflammatory and antioxidant properties of Dex, we applied in vivo rat model as well as in vitro cardiomyocyte models (embryonic rat cardiomyocytes H9c2 cells and neonatal rat cardiomyocytes, NRCMs) to evaluate the effects of Dex against myocardial ischemia reperfusion (I/R) injury. Transcriptomic sequencing for gene expression in heart tissues from control rats and Dex-treated rats identified that genes related to fatty acid metabolism were significantly regulated by Dex. Among these genes, the elongation of long-chain fatty acids (ELOVL) family member 6 (Elovl6) was most increased upon Dex-treatment. By comparing the effects of Dex on both wild type and Elovl6-knockdown H9c2 cells and NRCMs under oxygen-glucose deprivation/reoxygenation (OGD/R) challenge, we found that Elovl6 knockdown attenuated the protection efficiency of Dex, which was supported by the cytotoxicity endpoints (cell viability and lactate dehydrogenase release) and apoptosis as well as key gene expressions. These results indicate that Dex exhibited the protective function against myocardial I/R injury via fatty acid metabolism pathways and Elovl6 plays a key role in the process, which was further confirmed using palmitate exposure in both cells, as well as in an in vivo rat model. Overall, this study systematically evaluates the protective effects of Dex on the myocardial I/R injury and provides better understanding on the fatty acid metabolism underlying the beneficial effects of Dex.

15.
Cell Stem Cell ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38955185

ABSTRACT

Mitochondria are key regulators of hematopoietic stem cell (HSC) homeostasis. Our research identifies the transcription factor Nynrin as a crucial regulator of HSC maintenance by modulating mitochondrial function. Nynrin is highly expressed in HSCs under both steady-state and stress conditions. The knockout Nynrin diminishes HSC frequency, dormancy, and self-renewal, with increased mitochondrial dysfunction indicated by abnormal mPTP opening, mitochondrial swelling, and elevated ROS levels. These changes reduce HSC radiation tolerance and promote necrosis-like phenotypes. By contrast, Nynrin overexpression in HSCs diminishes irradiation (IR)-induced lethality. The deletion of Nynrin activates Ppif, leading to overexpression of cyclophilin D (CypD) and further mitochondrial dysfunction. Strategies such as Ppif haploinsufficiency or pharmacological inhibition of CypD significantly mitigate these effects, restoring HSC function in Nynrin-deficient mice. This study identifies Nynrin as a critical regulator of mitochondrial function in HSCs, highlighting potential therapeutic targets for preserving stem cell viability during cancer treatment.

16.
Gut ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955401

ABSTRACT

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy because it is often diagnosed at a late-stage. Signal transducer and activator of transcription 5 (STAT5) is a transcription factor implicated in the progression of various cancer types. However, its role in KRAS-driven pancreatic tumourigenesis remains unclear. DESIGN: We performed studies with LSL-Kras G12D; Ptf1a-Cre ERT (KCERT) mice or LSL-KrasG12D; LSL-Trp53R172H ; Pdx1-Cre (KPC) mice crossed with conditional disruption of STAT5 or completed deficiency interleukin (IL)-22. Pancreatitis was induced in mice by administration of cerulein. Pharmacological inhibition of STAT5 on PDAC prevention was studied in the orthotopic transplantation and patient-derived xenografts PDAC model, and KPC mice. RESULTS: The expression and phosphorylation of STAT5 were higher in human PDAC samples than control samples and high levels of STAT5 in tumour cells were associated with a poorer prognosis. The loss of STAT5 in pancreatic cells substantially reduces the KRAS mutation and pancreatitis-derived acinar-to-ductal metaplasia (ADM) and PDAC lesions. Mechanistically, we discovered that STAT5 binds directly to the promoters of ADM mediators, hepatocyte nuclear factor (HNF) 1ß and HNF4α. Furthermore, STAT5 plays a crucial role in maintaining energy metabolism in tumour cells during PDAC progression. IL-22 signalling induced by chronic inflammation enhances KRAS-mutant-mediated STAT5 phosphorylation. Deficiency of IL-22 signalling slowed the progression of PDAC and ablated STAT5 activation. CONCLUSION: Collectively, our findings identified pancreatic STAT5 activation as a key downstream effector of oncogenic KRAS signalling that is critical for ADM initiation and PDAC progression, highlighting its potential therapeutic vulnerability.

17.
Front Pharmacol ; 15: 1406860, 2024.
Article in English | MEDLINE | ID: mdl-38957391

ABSTRACT

Currently 1.3 billion individuals globally engage in smoking, leading to significant morbidity and mortality, particularly among diabetic patients. There is urgent need for a better understanding of how smoking influences antidiabetic treatment efficacy. The review underscores the role of cigarette smoke, particularly polycyclic aromatic hydrocarbons (PAHs), in modulating the metabolic pathways of antidiabetic drugs, primarily through the induction of cytochrome P450 (CYP450) enzymes and uridine diphosphate (UDP)-glucuronosyltransferases (UGTs), thus impacting drug pharmacokinetics and therapeutic outcomes. Furthermore, the review addresses the relatively uncharted territory of how smoking cessation influences diabetes treatment, noting that cessation can lead to significant changes in drug metabolism, necessitating dosage adjustments. Special attention is given to the interaction between smoking cessation aids and antidiabetic medications, a critical area for patient safety and effective diabetes management. This scoping review aims to provide healthcare professionals with the knowledge to better support diabetic patients who smoke or are attempting to quit, ensuring tailored and effective treatment strategies. It also identifies gaps in current research, advocating for more studies to fill these voids, thereby enhancing patient care and treatment outcomes for this at-risk population.

18.
Front Pharmacol ; 15: 1368950, 2024.
Article in English | MEDLINE | ID: mdl-38957396

ABSTRACT

Background: Metabolic imbalance is the common basis of many diseases. As natural isoquinoline alkaloid, berberine (BBR) has shown great promise in regulating glucose and lipids metabolism and treating metabolic disorders. However, the related mechanism still lacks systematic research. Aim: To discuss the role of BBR in the whole body's systemic metabolic regulation and further explore its therapeutic potential and targets. Method: Based on animal and cell experiments, the mechanism of BBR regulating systemic metabolic processes is reviewed. Potential metabolism-related targets were summarized using Therapeutic Target Database (TTD), DrugBank, GeneCards, and cutting-edge literature. Molecular modeling was applied to explore BBR binding to the potential targets. Results: BBR regulates the whole-body metabolic response including digestive, circulatory, immune, endocrine, and motor systems through adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), sirtuin (SIRT)1/forkhead box O (FOXO)1/sterol regulatory element-binding protein (SREBP)2, nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1, and other signaling pathways. Through these reactions, BBR exerts hypoglycemic, lipid-regulating, anti-inflammatory, anti-oxidation, and immune regulation. Molecular docking results showed that BBR could regulate metabolism targeting FOXO3, Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase (Gpx) 4 and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). Evaluating the target clinical effects, we found that BBR has the therapeutic potential of anti-aging, anti-cancer, relieving kidney disease, regulating the nervous system, and alleviating other chronic diseases. Conclusion: This review elucidates the interaction between potential targets and small molecular metabolites by exploring the mechanism of BBR regulating metabolism. That will help pharmacologists to identify new promising metabolites interacting with these targets.

20.
Crit Rev Food Sci Nutr ; : 1-17, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38965668

ABSTRACT

Most studies on the beneficial effects of polyphenols on human health have focused on polyphenols extracted using aqueous organic solvents, ignoring the fact that a portion of polyphenols form complexes with polysaccharides. Polysaccharides and polyphenols are interrelated, and their interactions affect the physicochemical property, quality, and nutritional value of foods. In this review, the distribution of bound polyphenols in major food sources is summarized. The effect of food processing on the interaction between polyphenols and cell wall polysaccharides (CWP) is discussed in detail. We also focus on the digestion, absorption, and metabolic behavior of polysaccharide-polyphenol complexes. Different food processing techniques affect the interaction between CWP and polyphenols by altering their structure, solubility, and strength of interactions. The interaction influences the free concentration and extractability of polyphenols in food and modulates their bioaccessibility in the gastrointestinal tract, leading to their major release in the colon. Metabolism of polyphenols by gut microbes significantly enhances the bioavailability of polyphenols. The metabolic pathway and product formation rate of polyphenols and the fermentation characteristics of polysaccharides are affected by the interaction. Furthermore, the interaction exhibits synergistic or antagonistic effects on the stability, solubility, antioxidant and functional activities of polyphenols. In summary, understanding the interactions between polysaccharides and polyphenols and their changes in food processing is of great significance for a comprehensive understanding of the health benefits of polyphenols and the optimization of food processing technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...