Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Diabetologia ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103720

ABSTRACT

AIMS/HYPOTHESIS: Diabetic kidney disease (DKD) is a severe diabetic complication that affects one third of individuals with type 1 diabetes. Although several genes and common variants have been shown to be associated with DKD, much of the predicted inheritance remains unexplained. Here, we performed next-generation sequencing to assess whether low-frequency variants, extending to a minor allele frequency (MAF) ≤10% (single or aggregated) contribute to the missing heritability in DKD. METHODS: We performed whole-exome sequencing (WES) of 498 individuals and whole-genome sequencing (WGS) of 599 individuals with type 1 diabetes. After quality control, next-generation sequencing data were available for a total of 1064 individuals, of whom 541 had developed either severe albuminuria or end-stage kidney disease, and 523 had retained normal albumin excretion despite a long duration of type 1 diabetes. Single-variant and gene-aggregate tests for protein-altering variants (PAV) and protein-truncating variants (PTV) were performed separately for WES and WGS data and combined in a meta-analysis. We also performed genome-wide aggregate analyses on genomic windows (sliding window), promoters and enhancers using the WGS dataset. RESULTS: In the single-variant meta-analysis, no variant reached genome-wide significance, but a suggestively associated common THAP7 rs369250 variant (p=1.50 × 10-5, MAF=49%) was replicated in the FinnGen general population genome-wide association study (GWAS) data for chronic kidney disease and DKD phenotypes. The gene-aggregate meta-analysis provided suggestive evidence (p<4.0 × 10-4) at four genes for DKD, of which NAT16 (MAFPAV≤10%) and LTA (also known as TNFß, MAFPAV≤5%) are replicated in the FinnGen general population GWAS data. The LTA rs2229092 C allele was associated with significantly lower TNFR1, TNFR2 and TNFR3 serum levels in a subset of FinnDiane participants. Of the intergenic regions suggestively associated with DKD, the enhancer on chromosome 18q12.3 (p=3.94 × 10-5, MAFvariants≤5%) showed interaction with the METTL4 gene; the lead variant was replicated, and predicted to alter binding of the MafB transcription factor. CONCLUSIONS/INTERPRETATION: Our sequencing-based meta-analysis revealed multiple genes, variants and regulatory regions that were suggestively associated with DKD. However, as no variant or gene reached genome-wide significance, further studies are needed to validate the findings.

3.
Plant Sci ; 338: 111916, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37944704

ABSTRACT

DNA N6-methyladenine (6 mA) is an evolutionarily conserved DNA modification in procaryotes and eukaryotes. The DNA 6 mA methylation is tightly controlled by 6 mA regulatory proteins. DNA N6-adenine methyltransferase 1 (DAMT-1) has been identified as a DNA 6 mA methyltransferase in animals. In plants, DNA 6 mA methylation has been found, however, the DNA 6 mA methyltransferases and their function in plants are largely unknown. In our study, we find METTL4 is a DNA 6 mA methyltransferase in Arabidopsis thaliana. Both in vitro and in vivo evidences support the DNA 6 mA methyltransferase activity of METTL4. mettl4 mutant is hypersensitive to heat stress, suggesting DNA 6 mA methylation plays important role in heat stress adaption. RNA-seq and 6 mA IP-qPCR analysis show that METTL4 participates in heat stress tolerance by regulating expression of heat responsive genes. Our study find METTL4 is a plant DNA 6 mA methyltransferase and illustrates its function in regulating heat stress response.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Thermotolerance , Animals , Arabidopsis/metabolism , Thermotolerance/genetics , Arabidopsis Proteins/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Plants/metabolism , DNA/metabolism , Gene Expression Regulation, Plant
4.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36834878

ABSTRACT

DNA N6-methyladenine (6mA) has recently been found to play regulatory roles in gene expression that links to various biological processes in eukaryotic species. The functional identification of 6mA methyltransferase will be important for understanding the underlying molecular mechanism of epigenetic 6mA methylation. It has been reported that the methyltransferase METTL4 can catalyze the methylation of 6mA; however, the function of METTL4 remains largely unknown. In this study, we aim to investigate the role of the Bombyx mori homolog METTL4 (BmMETTL4) in silkworm, a lepidopteran model insect. By using CRISPR-Cas9 system, we somatically mutated BmMETTL4 in silkworm individuates and found that disruption of BmMETTL4 caused the developmental defect of late silkworm embryo and subsequent lethality. We performed RNA-Seq and identified that there were 3192 differentially expressed genes in BmMETTL4 mutant including 1743 up-regulated and 1449 down-regulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that genes involved in molecular structure, chitin binding, and serine hydrolase activity were significantly affected by BmMETTL4 mutation. We further found that the expression of cuticular protein genes and collagens were clearly decreased while collagenases were highly increased, which had great contributions to the abnormal embryo and decreased hatchability of silkworm. Taken together, these results demonstrated a critical role of 6mA methyltransferase BmMETTL4 in regulating embryonic development of silkworm.


Subject(s)
Bombyx , Methyltransferases , Animals , Methyltransferases/metabolism , Bombyx/genetics , CRISPR-Cas Systems , Mutation , Methylation , Insect Proteins/genetics
5.
Mol Cell ; 83(3): 428-441, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36736310

ABSTRACT

Since the early days of foundational studies of nucleic acids, many chemical moieties have been discovered to decorate RNA and DNA in diverse organisms. In mammalian cells, one of these chemical modifications, N6-methyl adenosine (m6A), is unique in a way that it is highly abundant not only on RNA polymerase II (RNAPII) transcribed, protein-coding transcripts but also on non-coding RNAs, such as ribosomal RNAs and snRNAs, mediated by distinct, evolutionarily conserved enzymes. Here, we review RNA m6A modification in the light of the recent appreciation of nuclear roles for m6A in regulating chromatin states and gene expression, as well as the recent discoveries of the evolutionarily conserved methyltransferases, which catalyze methylation of adenosine on diverse sets of RNAs. Considering that the substrates of these enzymes are involved in many important biological processes, this modification warrants further research to understand the molecular mechanisms and functions of m6A in health and disease.


Subject(s)
Methyltransferases , Transcriptome , Animals , Methylation , Methyltransferases/metabolism , Adenosine/metabolism , RNA/metabolism , Mammals/metabolism
6.
World J Surg Oncol ; 21(1): 25, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36710350

ABSTRACT

BACKGROUND: N6-Methyladenosine (m6A) and long non-coding RNAs (lncRNAs) are both crucial regulators in human cancer growth and metastasis. However, their regulation on cervical squamous cell carcinoma (CSCC) is largely unclear. The present study aimed to explore the role of m6A-associated lncRNAs in CSCC. METHODS: We screened the expression of methylation modification-related enzymes in CECC samples from TCGA. The qRT-PCR was used to detect METTL3 and lncRNA METTL4-2 expression. The biological activities of METTL3 in CSCC cells were evaluated by CCK-8, colony formation, transwell, wound healing, and xenograft tumor assays, respectively. The SRAMP tool was used to screen m6A modification sites of METTL4-2. Finally, the quantitative analysis of m6A modification was carried out by MeRIP. RESULTS: METTL3 expression was upregulated in CSCC cells and tissues. Biological function and function loss analysis indicated that METTL3 promoted the migration and proliferation of CSCC cells. In addition, METTL3 promoted CSCC tumor growth in vivo. Mechanically, METTL3 installed the m6A modification and enhanced METTL4-2 transcript stability to increase its expression. Meanwhile, the m6A "reader" YTHDF1 recognized METTL4-2 installed by METTL3 and facilitated the translation of METTL4-2. CONCLUSIONS: In conclusion, our study highlights the function and mechanism of METTL3-induced METTL4-2 in CSCC. These findings support that METTL3-stabilized METTL4-2 promoted CSCC progression via a m6A-dependent modality, which provides new insights into therapeutic strategies for CSCC.


Subject(s)
Carcinoma, Squamous Cell , RNA, Long Noncoding , Uterine Cervical Neoplasms , Female , Humans , Carcinoma, Squamous Cell/genetics , Methyltransferases/genetics , RNA, Long Noncoding/genetics , Uterine Cervical Neoplasms/genetics
7.
Genome Biol ; 23(1): 249, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36461076

ABSTRACT

BACKGROUND: DNA N6-methyldeoxyadenosine (6mA) is rarely present in mammalian cells and its nuclear role remains elusive. RESULTS: Here we show that hypoxia induces nuclear 6mA modification through a DNA methyltransferase, METTL4, in hypoxia-induced epithelial-mesenchymal transition (EMT) and tumor metastasis. Co-expression of METTL4 and 6mA represents a prognosis marker for upper tract urothelial cancer patients. By RNA sequencing and 6mA chromatin immunoprecipitation-exonuclease digestion followed by sequencing, we identify lncRNA RP11-390F4.3 and one novel HIF-1α co-activator, ZMIZ1, that are co-regulated by hypoxia and METTL4. Other genes involved in hypoxia-mediated phenotypes are also regulated by 6mA modification. Quantitative chromatin isolation by RNA purification assay shows the occupancy of lncRNA RP11-390F4.3 on the promoters of multiple EMT regulators, indicating lncRNA-chromatin interaction. Knockdown of lncRNA RP11-390F4.3 abolishes METTL4-mediated tumor metastasis. We demonstrate that ZMIZ1 is an essential co-activator of HIF-1α. CONCLUSIONS: We show that hypoxia results in enriched 6mA levels in mammalian tumor cells through METTL4. This METTL4-mediated nuclear 6mA deposition induces tumor metastasis through activating multiple metastasis-inducing genes. METTL4 is characterized as a potential therapeutic target in hypoxic tumors.


Subject(s)
RNA, Long Noncoding , Urinary Bladder Neoplasms , Animals , Methylation , RNA, Long Noncoding/genetics , Chromatin , Hypoxia , Deoxyadenosines , Mammals
8.
Adv Exp Med Biol ; 1389: 177-210, 2022.
Article in English | MEDLINE | ID: mdl-36350511

ABSTRACT

Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA code to confer many different cellular phenotypes. This biological versatility is accomplished in large part by post-translational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions and mark certain regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al., Prog Mol Biol Transl Sci. 101:25-104, 2011), this chapter will focus on methylation of the 6th position on adenines (6mA). 6mA is a prevalent modification in unicellular organisms and until recently was thought to be restricted to them. A flurry of conflicting studies have proposed that 6mA either does not exist, is present at low levels, or is present at relatively high levels and regulates complex processes in different multicellular eukaryotes. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the proteins that have been reported to bind and regulate 6mA and examine the known and potential functions of this modification in eukaryotes. Finally, we will close with a discussion of the ongoing debate about whether 6mA exists as a directed DNA modification in multicellular eukaryotes.


Subject(s)
DNA Methylation , Histones , Histones/genetics , Histones/metabolism , Chromatin/genetics , Adenine/chemistry , Eukaryota/genetics , Eukaryota/metabolism , DNA/metabolism
9.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162982

ABSTRACT

N-6-methyladenosine (m6A) is the most prevalent post-transcriptional RNA modification in eukaryotic cells. The modification is reversible and can be dynamically regulated by writer and eraser enzymes. Alteration in the levels of these enzymes can lead to changes in mRNA stability, alternative splicing or microRNA processing, depending on the m6A-binding proteins. Dynamic regulation of mRNA m6A methylation after ischemia and hypoxia influences mRNA stability, alternative splicing and translation, contributing to heart failure. In this study, we studied vasoactive microRNA m6A methylation in fibroblasts and examined the effect of hypoxia on microRNAs methylation using m6A immunoprecipitation. Of the 19 microRNAs investigated, at least 16 contained m6A in both primary human fibroblasts and a human fibroblast cell line, suggesting vasoactive microRNAs are commonly m6A methylated in fibroblasts. More importantly, we found that mature microRNA m6A levels increased upon subjecting cells to hypoxia. By silencing different m6A writer and eraser enzymes followed by m6A immunoprecipitation, we identified METTL4, an snRNA m6A methyltransferase, to be predominantly responsible for the increase in m6A modification. Moreover, by using m6A-methylated microRNA mimics, we found that microRNA m6A directly affects downstream target mRNA repression efficacy. Our findings highlight the regulatory potential of the emerging field of microRNA modifications.


Subject(s)
Methyltransferases , MicroRNAs , Adenosine/analogs & derivatives , Adenosine/metabolism , Cell Hypoxia , Fibroblasts , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Trends Genet ; 38(5): 454-467, 2022 05.
Article in English | MEDLINE | ID: mdl-34991904

ABSTRACT

N6-methyladenine (6mA) is the most prevalent DNA modification in prokaryotes. However, its presence and significance in eukaryotes remain elusive. Recently, with methodology advances in detection and sequencing of 6mA in eukaryotes, 6mA is back in the spotlight. Although multiple studies have reported that 6mA is an important epigenetic mark in eukaryotes and plays a regulatory role in DNA transcription, transposon activation, stress response, and other bioprocesses, there are some discrepancies in the current literature. We review the recent advances in 6mA research in eukaryotes, especially in mammals. In particular, we describe the abundance/distribution of 6mA, its potential role in regulating gene expression, identified regulators, and pathological roles in human diseases, especially in cancer. The limitations faced by the field and future perspectives in 6mA research are also discussed.


Subject(s)
Adenine , DNA Methylation , Adenine/metabolism , Animals , DNA/genetics , Deoxyadenosines , Eukaryota/genetics , Humans , Mammals/genetics
11.
BJUI Compass ; 2(6): 402-411, 2021 Nov.
Article in English | MEDLINE | ID: mdl-35474700

ABSTRACT

Objectives: To investigate the regulation of the N-6-methyladenosine (m6A) methyltransferases METTL3, METTL14, WTAP, KIAA1429, and METTL4, referred to as "m6A writers," in clear cell renal cell carcinoma (ccRCC), and other RCC subtypes in respect of the potential prognostic value. Patients and methods: Tissue samples were collected within the framework of the Biobank at the Center for Integrated Oncology Bonn. The expression of the methyltransferases was systematically determined in clear cell renal carcinoma (ccRCC) on the RNA (real-time PCR) and protein level (immunohistochemistry). Additionally, protein expression of the m6A writers was further investigated in papillary RCC, chromophobe RCC, sarcomatoid RCC, oncocytoma, and normal renal tissue (immunohistochemistry). Results: The expression of all m6A-methyltransferases was significantly downregulated in ccRCC compared to benign renal tissue. Low m6A-methyltransferase levels were correlated with higher histological grade, advanced pT-stage, pN-stage, and metastatic disease. Reduced m6A-methyltransferase expression was associated with shorter overall survival. Conclusion: In conclusion, m6A-methyltransferases are dysregulated in ccRCC and might act as tumor suppressor genes, which could be of particular importance for future diagnostic and therapeutic options.

12.
Mol Cell ; 78(3): 382-395.e8, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32183942

ABSTRACT

N6-Methyldeoxyadenosine (6mA) has recently been shown to exist and play regulatory roles in eukaryotic genomic DNA (gDNA). However, the biological functions of 6mA in mammals have yet to be adequately explored, largely due to its low abundance in most mammalian genomes. Here, we report that mammalian mitochondrial DNA (mtDNA) is enriched for 6mA. The level of 6mA in HepG2 mtDNA is at least 1,300-fold higher than that in gDNA under normal growth conditions, corresponding to approximately four 6mA modifications on each mtDNA molecule. METTL4, a putative mammalian methyltransferase, can mediate mtDNA 6mA methylation, which contributes to attenuated mtDNA transcription and a reduced mtDNA copy number. Mechanistically, the presence of 6mA could repress DNA binding and bending by mitochondrial transcription factor (TFAM). Under hypoxia, the 6mA level in mtDNA could be further elevated, suggesting regulatory roles for 6mA in mitochondrial stress response. Our study reveals DNA 6mA as a regulatory mark in mammalian mtDNA.


Subject(s)
DNA, Mitochondrial/metabolism , Deoxyadenosines/metabolism , Methyltransferases/metabolism , Animals , DNA Methylation , DNA, Mitochondrial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Deoxyadenosines/genetics , Gene Expression Regulation , Hep G2 Cells , Humans , Hypoxia/genetics , Methyltransferases/genetics , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Mol Cell ; 74(6): 1138-1147.e6, 2019 06 20.
Article in English | MEDLINE | ID: mdl-30982744

ABSTRACT

Adenine N6 methylation in DNA (6mA) is widespread among bacteria and phage and is detected in mammalian genomes, where its function is largely unexplored. Here we show that 6mA deposition and removal are catalyzed by the Mettl4 methyltransferase and Alkbh4 dioxygenase, respectively, and that 6mA accumulation in genic elements corresponds with transcriptional silencing. Inactivation of murine Mettl4 depletes 6mA and causes sublethality and craniofacial dysmorphism in incross progeny. We identify distinct 6mA sensor domains of prokaryotic origin within the MPND deubiquitinase and ASXL1, a component of the Polycomb repressive deubiquitinase (PR-DUB) complex, both of which act to remove monoubiquitin from histone H2A (H2A-K119Ub), a repressive mark. Deposition of 6mA by Mettl4 triggers the proteolytic destruction of both sensor proteins, preserving genome-wide H2A-K119Ub levels. Expression of the bacterial 6mA methyltransferase Dam, in contrast, fails to destroy either sensor. These findings uncover a native, adversarial 6mA network architecture that preserves Polycomb silencing.


Subject(s)
Adenine/analogs & derivatives , AlkB Homolog 4, Lysine Demethylase/genetics , Craniofacial Abnormalities/genetics , DNA/genetics , Methyltransferases/genetics , Repressor Proteins/genetics , Adenine/metabolism , AlkB Homolog 4, Lysine Demethylase/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Craniofacial Abnormalities/metabolism , Craniofacial Abnormalities/pathology , DNA/metabolism , DNA Methylation , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Female , Gene Silencing , Genes, Lethal , Histones/genetics , Histones/metabolism , Inbreeding , Male , Methyltransferases/deficiency , Mice , Mice, Knockout , Proteolysis , Repressor Proteins/metabolism , Signal Transduction , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Transcription, Genetic , Ubiquitin/genetics , Ubiquitin/metabolism
14.
Am J Med Genet A ; 176(11): 2395-2403, 2018 11.
Article in English | MEDLINE | ID: mdl-30244536

ABSTRACT

The application of array-based comparative genomic hybridization and next-generation sequencing has identified many chromosomal microdeletions and microduplications in patients with different pathological phenotypes. Different copy number variations are described within the short arm of chromosome 18 in patients with skin diseases. In particular, full or partial monosomy 18p has also been associated with keratosis pilaris. Here, for the first time, we report a young male patient with intellectual disability, diabetes mellitus (type I), and keratosis pilaris, who exhibited a de novo 45-kb microduplication of exons 4-22 of LAMA1, located at 18p11.31, and a 432-kb 18p11.32 microduplication of paternal origin containing the genes METTL4, NDC80, and CBX3P2 and exons 1-15 of the SMCHD1 gene. The microduplication of LAMA1 was identified in skin fibroblasts but not in lymphocytes, whereas the larger microduplication was present in both tissues. We propose LAMA1 as a novel candidate gene for keratosis pilaris. Although inherited from a healthy father, the 18p11.32 microduplication, which included relevant genes, could also contribute to phenotype manifestation.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Duplication/genetics , Darier Disease/complications , Darier Disease/genetics , Eyebrows/abnormalities , Intellectual Disability/complications , Intellectual Disability/genetics , Laminin/genetics , Mosaicism , Adolescent , Child , Child, Preschool , Comparative Genomic Hybridization , Fibroblasts/metabolism , Gene Expression Regulation , Humans , Infant , Infant, Newborn , Male , Skin/pathology
15.
Gene ; 536(1): 145-50, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24291026

ABSTRACT

The use of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated the identification of many new microdeletion/microduplication syndromes (MMSs). Furthermore, this method has allowed for the identification of copy number variations (CNVs) whose pathogenic role has yet to be uncovered. Here, we report on our application of array CGH for the identification of pathogenic CNVs in 79 Russian children with intellectual disability (ID). Twenty-six pathogenic or likely pathogenic changes in copy number were detected in 22 patients (28%): 8 CNVs corresponded to known MMSs, and 17 were not associated with previously described syndromes. In this report, we describe our findings and comment on genes potentially associated with ID that are located within the CNV regions.


Subject(s)
Comparative Genomic Hybridization/methods , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Adolescent , Child , Child, Preschool , Chromosome Aberrations , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 4/genetics , Cohort Studies , DNA Copy Number Variations/genetics , Female , Humans , Male , Russia
16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-522768

ABSTRACT

AIM: To investigate the single nucleotide polymorphisms (SNPs) in the METTL4 gene which was mapped to 18p11.31, and the relationship between the SNPs and high myopia. METHODS: Genomic DNA was collected from 71 control subjects and 177 individuals with high myopia. Among them, there were 59 autosomal dominant high myopia probands (AD group), 46 autosomal recessive probands (AR group) and 72 patients non-transmitted (SF group). The exons of METTL4 gene were analyzed by polymerase chain reaction, heteroduplex-single strand conformation polymorphism (HA-SSCP) and sequencing. RESULTS: There were 2 SNPs of METTL4 gene in high myopia individuals and control subjects: SNP7438A→C, Glu230Asp, which hadn't been reported in GenBank;and SNP131C→A, Gln310Lys. SNP7438A→C genotypes between controls and high myopia groups were not different. SNP131C→A genotypes between controls and AR or SF groups were not different, while SNP131C→A genotypes showed a significant difference between AD group and control subjects. CONCLUSION: In METTL4 gene, SNP7438A→C is not responsible for high myopia. Further studies are needed to confirm whether SNP131C→A is responsible for autosomal dominant high myopia.

SELECTION OF CITATIONS
SEARCH DETAIL