Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Cancer Innov ; 3(2): e113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38946933

ABSTRACT

Background: Synovial sarcoma (SS) is an SS18-SSX fusion gene-driven soft tissue sarcoma with mesenchymal characteristics, associated with a poor prognosis due to frequent metastasis to a distant organ, such as the lung. Histone deacetylase (HDAC) inhibitors (HDACis) are arising as potent molecular targeted drugs, as HDACi treatment disrupts the SS oncoprotein complex, which includes HDACs, in addition to general HDACi effects. To provide further molecular evidence for the advantages of HDACi treatment and its limitations due to drug resistance induced by the microenvironment in SS cells, we examined cellular responses to HDACi treatment in combination with two-dimensional (2D) and 3D culture conditions. Methods: Using several SS cell lines, biochemical and cell biological assays were performed with romidepsin, an HDAC1/2 selective inhibitor. SN38 was concomitantly used as an ameliorant drug with romidepsin treatment. Cytostasis, apoptosis induction, and MHC class I polypeptide-related sequence A/B (MICA/B) induction were monitored to evaluate the drug efficacy. In addition to the conventional 2D culture condition, spheroid culture was adopted to evaluate the influence of cell-mass microenvironment on chemoresistance. Results: By monitoring the cellular behavior with romidepsin and/or SN38 in SS cells, we observed that responsiveness is diverse in each cell line. In the apoptotic inducible cells, co-treatment with SN38 enhanced cell death. In nonapoptotic inducible cells, cytostasis and MICA/B induction were observed, and SN38 improved MICA/B induction further. As a novel efficacy of SN38, we revealed TWIST1 suppression in SS cells. In the spheroid (3D) condition, romidepsin efficacy was severely restricted in TWIST1-positive cells. We demonstrated that TWIST1 downregulation restored romidepsin efficacy even in spheroid form, and concomitant SN38 treatment along with romidepsin reproduced the reaction. Conclusions: The current study demonstrated the benefits and concerns of using HDACi for SS treatment in 2D and 3D culture conditions and provided molecular evidence that concomitant treatment with SN38 can overcome drug resistance to HDACi by suppressing TWIST1 expression.

2.
MedComm (2020) ; 5(7): e626, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38882209

ABSTRACT

Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.

3.
Biochem Biophys Res Commun ; 710: 149918, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38598902

ABSTRACT

Chimeric antigen receptor (CAR)-modified immune cells have emerged as a promising approach for cancer treatment, but single-target CAR therapy in solid tumors is limited by immune escape caused by tumor antigen heterogeneity and shedding. Natural killer group 2D (NKG2D) is an activating receptor expressed in human NK cells, and its ligands, such as MICA and MICB (MICA/B), are widely expressed in malignant cells and typically absent from healthy tissue. NKG2D plays an important role in anti-tumor immunity, recognizing tumor cells and initiating an anti-tumor response. Therefore, NKG2D-based CAR is a promising CAR candidate. Nevertheless, the shedding of MICA/B hinders the therapeutic efficacy of NKG2D-CARs. Here, we designed a novel CAR by engineering an anti-MICA/B shedding antibody 1D5 into the CAR construct. The engineered NK cells exhibited significantly enhanced cytotoxicity against various MICA/B-expressing tumor cells and were not inhibited by NKG2D antibody or NKG2D-Fc fusion protein, indicating no interference with NKG2D-MICA/B binding. Therefore, the developed 1D5-CAR could be combined with NKG2D-CAR to further improve the obstacles caused by MICA/B shedding.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Cell Line, Tumor , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Killer Cells, Natural , Neoplasms/immunology , Neoplasms/metabolism , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods
4.
Biology (Basel) ; 12(8)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37626965

ABSTRACT

The family of human NKG2D ligands (NKG2DL) consists of eight stress-induced molecules. Over 80% of human cancers express these ligands on the surface of tumour cells and/or associated stromal elements. In mice, NKG2D deficiency increases susceptibility to some types of cancer, implicating this system in immune surveillance for malignancy. However, NKG2DL can also be shed, released via exosomes and trapped intracellularly, leading to immunosuppressive effects. Moreover, NKG2D can enhance chronic inflammatory processes which themselves can increase cancer risk and progression. Indeed, tumours commonly deploy a range of countermeasures that can neutralise or even corrupt this surveillance system, tipping the balance away from immune control towards tumour progression. Consequently, the prognostic impact of NKG2DL expression in human cancer is variable. In this review, we consider the underlying biology and regulation of the NKG2D/NKG2DL system and its expression and role in a range of cancer types. We also consider the opportunities for pharmacological modulation of NKG2DL expression while cautioning that such interventions need to be carefully calibrated according to the biology of the specific cancer type.

5.
Med ; 4(7): 457-477.e8, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37172578

ABSTRACT

BACKGROUND: The advent of chimeric antigen receptor (CAR) T cell therapies has transformed the treatment of hematological malignancies; however, broader therapeutic success of CAR T cells has been limited in solid tumors because of their frequently heterogeneous composition. Stress proteins in the MICA and MICB (MICA/B) family are broadly expressed by tumor cells following DNA damage but are rapidly shed to evade immune detection. METHODS: We have developed a novel CAR targeting the conserved α3 domain of MICA/B (3MICA/B CAR) and incorporated it into a multiplexed-engineered induced pluripotent stem cell (iPSC)-derived natural killer (NK) cell (3MICA/B CAR iNK) that expressed a shedding-resistant form of the CD16 Fc receptor to enable tumor recognition through two major targeting receptors. FINDINGS: We demonstrated that 3MICA/B CAR mitigates MICA/B shedding and inhibition via soluble MICA/B while simultaneously exhibiting antigen-specific anti-tumor reactivity across an expansive library of human cancer cell lines. Pre-clinical assessment of 3MICA/B CAR iNK cells demonstrated potent antigen-specific in vivo cytolytic activity against both solid and hematological xenograft models, which was further enhanced in combination with tumor-targeted therapeutic antibodies that activate the CD16 Fc receptor. CONCLUSIONS: Our work demonstrated 3MICA/B CAR iNK cells to be a promising multi-antigen-targeting cancer immunotherapy approach intended for solid tumors. FUNDING: Funded by Fate Therapeutics and NIH (R01CA238039).


Subject(s)
Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Cell Line, Tumor , Immunotherapy, Adoptive , Killer Cells, Natural/metabolism , Killer Cells, Natural/transplantation , Receptors, Fc/metabolism
6.
Heliyon ; 9(4): e14957, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37064475

ABSTRACT

Natural killer (NK) cells play a potent role in antitumor immunity via spontaneously eliminating tumor directly. However, some tumors such as prostate cancer constantly escape this immune response by down-regulating cell surface molecule recognition and/or secreting immune impressive cytokines. Here, we found pterostilbene, a natural agent with potent anticancer activity, could enhance expression of major histocompatibility complex class I chain-related proteins A and B (MICA/B) on prostate cancer cells surface, which are ligands of the natural killer group 2 member D (NKG2D) expressed by NK cells, and inhibit TGF-ß1 secretion by prostate cancer cells. Further, we discovered that these effects were caused by inhibition of miR-20a in prostate cancer cells by pterostilbene. MiR-20a could target the 3' untranslated region (UTR) of MICA/B, resulting in their expression down-regulation. Inhibition of TGF-ß1 function by its specific antibody attenuated its impairment to NKG2D on NK cells. Finally, we observed that pterostilbene-treated prostate cancer cells were more easily to be killed by NK cells. Taken together, our findings demonstrated inhibition of miR-20a by pterostilbene in prostate cancer cells could increase MICA/B expression and decrease TGF-ß1 secretion, which enhanced NK cell-mediated cytotoxicity againt prostate cancer cells, suggesting a potential approach for increasing anti-prostate cancer immune.

7.
Transl Oncol ; 31: 101653, 2023 May.
Article in English | MEDLINE | ID: mdl-36907052

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is known as hot immunogenic tumor. Yet, it is one of the most aggressive BC subtypes. TNBC evolve several tactics to evade the immune surveillance phenomena, one of which is shedding of natural killer (NK) cells activating immune ligands such as MICA/B and/or by inducing the expression of the immune checkpoints such as PD-L1 and B7-H4. MALAT-1 is an oncogenic lncRNA. MALAT-1 immunogenic profile is not well investigated. AIM: The study aims at exploring the immunogenic role of MALAT-1 in TNBC patients and cell lines and to identify its molecular mechanism in altering both innate and adaptive immune cells present at the tumor microenvironment of TNBC METHODS: BC patients (n = 35) were recruited. Primary NK cells and cytotoxic T lymphocytes were isolated from normal individuals using the negative selection method. MDA-MB-231 cells were cultured and transfected by several oligonucleotides by lipofection technique. Screening of ncRNAs was performed using q-RT-PCR. Immunological functional analysis experiments were performed upon co-culturing primary natural killer cells and cytotoxic T lymphocytes using LDH assay. Bioinformatics analysis was performed to identify potential microRNAs targeted by MALAT-1. RESULTS: MALAT-1 expression was significantly upregulated in BC patinets with a profound expression in TNBC patients compared to their normal counterparts. Correlation analysis revealed a positive correlation between MALAT-1, tumor size and lymph node metastasis. Knocking down of MALAT-1 in MDA-MB-231 cells resulted in a significant induction of MICA/B, repression of PD-L1 and B7-H4 expression levels. Enhancement of cytotoxic activity of co-cultured NK and CD8+ cells with MALAT-1 siRNAs transfected MDA-MB-231 cells. In silico analysis revealed that miR-34a and miR-17-5p are potential targets to MALAT-1; accordingly, they were found to be downregulated in BC patients. Forcing the expression of miR-34a in MDA-MB-231 cells resulted in a significant induction in MICA/B levels. Ectopic expression of miR-17-5p in MDA-MB-231 cells significantly repressed the expression of PD-L1 and B7-H4 checkpoints. Validations of MALAT-1/miR-34a" and "MALAT-1/miR-17-5p axes were performed by a series of co-transfections and functional assessment of cytotoxic profile of primary immune cells. CONCLUSION: This study proposes a novel epigenetic alteration exerted by TNBC cells mainly by inducing the expression of MALAT-1 lncRNA. MALAT-1 mediates innate and adaptive immune suppression events partially via targeting miR-34a/MICA/B and miR-175p/PD-L1/B7-H4 axes in TNBC patients and cell lines.

8.
Oncoimmunology ; 11(1): 2016159, 2022.
Article in English | MEDLINE | ID: mdl-35154904

ABSTRACT

DNA damage by genotoxic drugs such as gemcitabine and 5-fluorouracil (5-FU) activates the ataxia telangiectasia, mutated (ATM)-Chk pathway and induces the expression of NKG2D ligands such as the MHC class I-related chain A and B (MICA/B). The mechanisms underlying this remain incompletely understood. Here we report that xanthine oxidoreductase (XOR), a rate-limiting enzyme that produces uric acid in the purine catabolism pathway, promotes DNA damage-induced MICA/B expression. Inhibition of the ATM-Chk pathway blocks genotoxic drug-induced uric acid production, TGF-ß-activated kinase 1 (TAK1) activation, ERK phosphorylation, and MICA/B expression. Inhibition of uric acid production by the XOR inhibitor allopurinol blocks DNA damage-induced TAK1 activation and MICA/B expression in genotoxic drug-treated cells. Exogenous uric acid activates TAK1, NF-κB, and the MAP kinase pathway. TAK1 inhibition blocks gemcitabine- and uric acid-induced MAP kinase activation and MICA/B expression. Exogenous uric acid in its salt form, monosodium urate (MSU), induces MICA/B expression and sensitizes tumor cells to NK cell killing. MSU immunization with irradiated murine breast cancer cell line RCAS-Neu retards breast cancer growth in syngeneic breast cancer models and delays breast cancer development in a somatic breast cancer model. Our study suggests that uric acid accumulation plays an important role in activating TAK1, inducing DNA damage-induced MICA/B expression, and enhancing antitumor immunity.


Subject(s)
NK Cell Lectin-Like Receptor Subfamily K , Uric Acid , Animals , DNA , DNA Damage , Ligands , MAP Kinase Kinase Kinases , Mice , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Uric Acid/pharmacology
9.
Breast Dis ; 41(1): 471-480, 2022.
Article in English | MEDLINE | ID: mdl-36641654

ABSTRACT

OBJECTIVE: In this study, the profiling of the expression of major histocompatibility complex (MHC) class I-related chain A and B (MICA/B) in human breast cancer tumor tissue, saliva, and urine samples of breast cancer patients and control is carried out. MICA/B is ligand of NKG2D receptor expressed on malignant cells. The release of MICA/B from tumor tissue comprises an immune escape mechanism that impairs antitumor immunity. Based on this literature we explored the potential of soluble MICA (sMICA) as a marker in breast cancer (BC). METHODS: The expression was profiled by using immunohistochemistry (MICA/B), western blot (MICA/B) and ELISA (MICA). RESULTS: The optical density of western blot of MICA/B in different stages of BC illustrated significant difference as per one way analysis of variance and significant difference with stage III and IV by Dunnett's multiple comparisons test respectively. Analysis of sMICA in serum, saliva and urine of BC patients revealed significantly higher levels (median 41.0 ± 4.1 pg/ml in pre-treatment sera, 181.9 ± 1.6 pg/ml in saliva and 90.7 ± 1.7 pg/ml in urine) than in control (median <1.2 pg/ml). The elevated levels of sMICA were related to the cancer stage. CONCLUSIONS: The elevated levels of sMICA were observed in patients with well differentiated cancer while the poor expression of sMICA was observed in patients with poorly differentiated tumors. Tumor immunity is impaired by the release of MICA in the biofluids and may be useful for detection and diagnosis of the stage of BC.


Subject(s)
Breast Neoplasms , Humans , Female , Down-Regulation , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Neoplasm Staging , Immunohistochemistry
10.
Front Immunol ; 12: 731767, 2021.
Article in English | MEDLINE | ID: mdl-34691037

ABSTRACT

Cytokine-induced killer (CIK) cells are an ex vivo expanded heterogeneous cell population with an enriched NK-T phenotype (CD3+CD56+). Due to the convenient and relatively inexpensive expansion capability, together with low incidence of graft versus host disease (GVHD) in allogeneic cancer patients, CIK cells are a promising candidate for immunotherapy. It is well known that natural killer group 2D (NKG2D) plays an important role in CIK cell-mediated antitumor activity; however, it remains unclear whether its engagement alone is sufficient or if it requires additional co-stimulatory signals to activate the CIK cells. Likewise, the role of 2B4 has not yet been identified in CIK cells. Herein, we investigated the individual and cumulative contribution of NKG2D and 2B4 in the activation of CIK cells. Our analysis suggests that (a) NKG2D (not 2B4) is implicated in CIK cell (especially CD3+CD56+ subset)-mediated cytotoxicity, IFN-γ secretion, E/T conjugate formation, and degranulation; (b) NKG2D alone is adequate enough to induce degranulation, IFN-γ secretion, and LFA-1 activation in CIK cells, while 2B4 only provides limited synergy with NKG2D (e.g., in LFA-1 activation); and (c) NKG2D was unable to costimulate CD3. Collectively, we conclude that NKG2D engagement alone suffices to activate CIK cells, thereby strengthening the idea that targeting the NKG2D axis is a promising approach to improve CIK cell therapy for cancer patients. Furthermore, CIK cells exhibit similarities to classical invariant natural killer (iNKT) cells with deficiencies in 2B4 stimulation and in the costimulation of CD3 with NKG2D. In addition, based on the current data, the divergence in receptor function between CIK cells and NK (or T) cells can be assumed, pointing to the possibility that molecular modifications (e.g., using chimeric antigen receptor technology) on CIK cells may need to be customized and optimized to maximize their functional potential.


Subject(s)
Cytokine-Induced Killer Cells/metabolism , Lymphocyte Activation , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Signaling Lymphocytic Activation Molecule Family/metabolism , Animals , Cell Degranulation , Coculture Techniques , Cytokine-Induced Killer Cells/immunology , Cytotoxicity, Immunologic , Histocompatibility Antigens Class I/metabolism , Humans , Interferon-gamma/metabolism , K562 Cells , Lymphocyte Function-Associated Antigen-1/metabolism , Mice , Phenotype , Signal Transduction
11.
Int J Mol Sci ; 22(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34502191

ABSTRACT

Human hepatocellular carcinoma (HCC) is the most common and even worse at prognosis. The patients with HCC which accompanied by other diseases, such as cirrhosis, can be limited in various treatments, such as chemotherapy, not HCC patients without other diseases. NLRP3 inflammasome plays an important role in the innate immune response, but emerging evidence has indicated that the NLRP3 inflammasome is implicated in all stages of cancer development. Various cells express NLRP3 protein through the autocrine or paracrine signaling in their environment, but NK cells do not. The expanding evidence shows that patients who suffer from liver cancers have a low frequency of natural killer (NK) cells, and the function of these cells is also impaired. Thus, we examined how the expression of NLRP3 in HCC cells affects cancer surveillance by NK cells in a state of a co-culture of both cells. When the expression of NLRP3 in HCC cells was ablated, MICA/B on the surface of HCC cells was upregulated through the lowered expression of matrix metalloproteinase. The expression of MICA on the surface of HCC cells interacted with the NKG2D receptor on NK-92 cells, which led to NK cytotoxicity. Furthermore, in a xenograft mice model, NLRP3 KO HCC cells delayed tumor development and metastasis as well as increased the sensitivity to NK cell cytotoxicity. Taken together, NLRP3 KO in HCC could enhance NK immunosurveillance through an interaction of NKG2D-MICA.


Subject(s)
Carcinoma, Hepatocellular/immunology , Cytotoxicity, Immunologic/immunology , Histocompatibility Antigens Class I/metabolism , Killer Cells, Natural/immunology , Monitoring, Immunologic/methods , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CRISPR-Cas Systems , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens Class I/genetics , Humans , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Mice, Inbred NOD , Mice, SCID , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
12.
Cancers (Basel) ; 13(2)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440654

ABSTRACT

Tumor cells are known to upregulate major histocompatibility complex-class I chain related proteins A and B (MICA/B) expression under stress conditions or due to radiation exposure. However, it is not clear whether there are specific stages of cellular maturation in which these ligands are upregulated or whether the natural killer (NK) cells differentially target these tumors in direct cytotoxicity or antibody-dependent cell cytotoxicity (ADCC). We used freshly isolated primary and osteoclast (OCs)-expanded NK cells to determine the degree of direct cytotoxicity or of ADCC using anti-MICA/B monoclonal antibodies (mAbs) against oral stem-like/poorly-differentiated oral squamous cancer stem cells (OSCSCs) and Mia PaCa-2 (MP2) pancreatic tumors as well as their well-differentiated counterparts: namely, oral squamous carcinoma cells (OSCCs) and pancreatic PL12 tumors. By using phenotypic and functional analysis, we demonstrated that OSCSCs and MP2 tumors were primary targets of direct cytotoxicity by freshly isolated NK cells and not by ADCC mediated by anti-MICA/B mAbs, which was likely due to the lower surface expression of MICA/B. However, the inverse was seen when their MICA/B-expressing differentiated counterparts, OSCCs and PL12 tumors, were used in direct cytotoxicity and ADCC, in which there was lower direct cytotoxicity but higher ADCC mediated by the NK cells. Differentiation of the OSCSCs and MP2 tumors by NK cell-supernatants abolished the direct killing of these tumors by the NK cells while enhancing NK cell-mediated ADCC due to the increased expression of MICA/B on the surface of these tumors. We further report that both direct killing and ADCC against MICA/B expressing tumors were significantly diminished by cancer patients' NK cells. Surprisingly, OC-expanded NK cells, unlike primary interleukin-2 (IL-2) activated NK cells, were found to kill OSCCs and PL12 tumors, and under these conditions, we did not observe significant ADCC using anti-MICA/B mAbs, even though the tumors expressed a higher surface expression of MICA/B. In addition, differentiated tumor cells also expressed higher levels of surface epidermal growth factor receptor (EGFR) and programmed death-ligand 1(PDL1) and were more susceptible to NK cell-mediated ADCC in the presence of anti-EGFR and anti-PDL1 mAbs compared to their stem-like/poorly differentiated counterparts. Overall, these results suggested the possibility of CD16 receptors mediating both direct cytotoxicity and ADCC, resulting in the competitive use of these receptors in either direct killing or ADCC, depending on the differentiation status of tumor cells and the stage of maturation and activation of NK cells.

13.
J Adv Res ; 27: 177-190, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33318876

ABSTRACT

INTRODUCTION: Hydrogen sulphide (H2S) has been established as a key member of the gasotransmitters family that recently showed a pivotal role in various pathological conditions including cancer. OBJECTIVES: This study investigated the role of H2S in breast cancer (BC) pathogenesis, on BC immune recognition capacity and the consequence of targeting H2S using non-coding RNAs. METHODS: Eighty BC patients have been recruited for the study. BC cell lines were cultured and transfected using validated oligonucleotide delivery system. Gene and protein expression analysis was performed using qRT-PCR, western blot and flow-cytometry. In-vitro analysis for BC hallmarks was performed using MTT, BrdU, Modified Boyden chamber, migration and colony forming assays. H2S and nitric oxide (NO) levels were measured spectrophotometrically. Primary natural killer cells (NK cells) and T cell isolation and chimeric antigen receptor transduction (CAR T cells) were performed using appropriate kits. NK and T cells cytotoxicity was measured. Finally, computational target prediction analysis and binding confirmation analyses were performed using different software and dual luciferase assay kit, respectively. RESULTS: The H2S synthesizing enzymes, cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE), exhibited elevated levels in the clinical samples that correlated with tumor proliferation index. Knock-down of CBS and CSE in the HER2+ BC and triple negative BC (TNBC) cells resulted in significant attenuation of BC malignancy. In addition to increased susceptibility of HER2+ BC and TNBC to the cytotoxic activity of HER2 targeting CAR T cells and NK cells, respectively. Transcriptomic and phosphoprotein analysis revealed that H2S signaling is mediated through Akt in MCF7, STAT3 in MDA-MB-231 and miR-155/ NOS2/NO signaling in both cell lines. Lastly, miR-4317 was found to function as an upstream regulator of CBS and CSE synergistically abrogates the malignancy of BC cells. CONCLUSION: These findings demonstrate the potential role of H2S signaling in BC pathogenesis and the potential of its targeting for disease mitigation.

14.
Diagnostics (Basel) ; 10(10)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003303

ABSTRACT

BACKGROUND: Various cell types undergo activation and stress during atherosclerosis resulting in the development of acute myocardial infarction (AMI) in coronary artery disease (CAD). Major histocompatibility complex class I related chain A and B (MICA/B) can be expressed on the surface of activated and stressed cells and released into blood circulation in several forms including microparticles (MICA/B+ MPs) from various cell types. We aimed to investigate the association of these MICA/B+ MPs with the presence of AMI. Fifty-one AMI and 46 age-matched control subjects were recruited. METHODS: Levels of MICA/B+ MPs derived from various parent cells including endothelial cells, platelets, monocytes, neutrophils, and T lymphocytes were determined by flow cytometry. RESULTS: The levels and proportion of MICA/B+ MPs from all types of cell origin were significantly increased in AMI patients compared to those of the controls. A multivariate regression model showed an independent association between MICA/B+ MPs and AMI (OR = 11.6; 95% CI = 2.8, 47.3). Interestingly, based on the disease severity, we found that the levels of MICA/B+ MPs were significantly elevated in the ST-segment elevation myocardial infarction (STEMI) compared to the non-STEMI (NSTEMI) patients. Moreover, an independent association of MICA/B+ MPs with the occurrence of STEMI was also demonstrated (OR = 4.1; 95% CI = 1.5, 16.7). CONCLUSIONS: These results suggest that MICA/B+ MPs are associated with AMI and disease severity. They may act as mediators contributing to the pathological process of AMI. Alternatively, they are the results of various cell activations contributing to AMI.

15.
Cancers (Basel) ; 12(7)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645836

ABSTRACT

Natural killer group 2D (NKG2D) receptor plays a pivotal role in cytokine-induced killer (CIK) cell-mediated cytotoxicity against malignancies, and the expression of NKG2D ligands might allow targets to be more susceptible to the CIK cell-mediated destruction. In this study, we investigated the synergistic effects of CIK cells antitumor activity and antibody-mediated inhibition of MICA/B shedding. This monoclonal antibody (7C6) has been previously shown to be able to specifically target MICA/B a3 domain on tumor cells, resulting in the increase in cell surface MICA/B expression by inhibition of their shedding. In the current study, we show that 7C6 antibody could substantially inhibit MICA shedding and stabilize the expression of MICA/B on Hela cells and MDA-MB-231 cells. In combination with 7C6, CIK cells showed higher degranulation rate, more IFN-γ production and elevated cytotoxic capacity against tumor cells. Furthermore, we demonstrate that NKG2D-MICA/B ligation could lead to activation of both CD3+ CD56- T cells and CD3+CD56+ NKT subset cells of CIK culture and NKT subset was more sensitive to NKG2D signaling than the counterpart T cells. 7C6-mediated inhibition of MICA shedding could strengthen this signal and eventually enhance the antitumor activity of CIK cells. With multiple advantages of easy ex vivo expansion, minor GVHD, natural tumor trafficking and non-MHC restricted, CIK cell-based therapy may serve as a potent combination partner with MICA antibody-mediated immunotherapy.

16.
Cancers (Basel) ; 12(4)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283827

ABSTRACT

Hepatocellular carcinoma (HCC) still represents a significant complication of chronic liver disease, particularly when cirrhosis ensues. Current treatment options include surgery, loco-regional procedures and chemotherapy, according to specific clinical practice guidelines. Immunotherapy with check-point inhibitors, aimed at rescuing T-cells from exhaustion, has been applied as second-line therapy with limited and variable success. Natural killer (NK) cells are an essential component of innate immunity against cancer and changes in phenotype and function have been described in patients with HCC, who also show perturbations of NK activating receptor/ligand axes. Here we discuss the current status of NK cell treatment of HCC on the basis of existing evidence and ongoing clinical trials on adoptive transfer of autologous or allogeneic NK cells ex vivo or after activation with cytokines such as IL-15 and use of antibodies to target cell-expressed molecules to promote antibody-dependent cellular cytotoxicity (ADCC). To this end, bi-, tri- and tetra-specific killer cell engagers are being devised to improve NK cell recognition of tumor cells, circumventing tumor immune escape and efficiently targeting NK cells to tumors. Moreover, the exciting technique of chimeric antigen receptor (CAR)-engineered NK cells offers unique opportunities to create CAR-NK with multiple specificities along the experience gained with CAR-T cells with potentially less adverse effects.

17.
Oncotarget ; 10(63): 6805-6815, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31827723

ABSTRACT

UL16-binding protein (ULBP) 1-6 and MHC class I chain-related molecule A and B (MICA/B) are NK group 2, member D (NKG2D) ligands, which are specifically expressed in infected or transformed cells and are recognized by NK cells via NKG2D-NKG2D ligand interactions. We previously reported that MICA/B overexpression predicted improved clinical outcomes in patients with resected non-small cell lung cancer (NSCLC). However, the clinicopathological features and prognostic significance of ULBPs in NSCLC remain unclear. Here,ULBP1-6 expression was evaluated based on immunohistochemistry of 91 NSCLC samples from patients following radical surgery. ULBPs were expressed by the majority of NSCLC. Either ULBP1 or ULBP2/5/6 overexpression was associated with squamous-cell carcinoma histology, whereas ULBP4 overexpression was associated with younger age and adenocarcinoma histology. Although overexpression of ULBP1-6 did not impact clinical outcomes in NSCLC patients, integrative profiling with cluster analysis classified patients into 3 subgroups based on the expression pattern of NKG2D ligands. The subgroup characterized by ULBP1 or ULBP2/5/6 high expressing but ULBP4 low expressing tumors showed poor overall survival. Taken together with previous results, NSCLC histological subtype strongly correlates with NKG2D ligands expression pattern. NKG2D ligands expression levels assessed by multiple immune parameters could predict clinical outcomes of patients with NSCLC.

18.
J Exp Clin Cancer Res ; 38(1): 192, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31088566

ABSTRACT

BACKGROUND: Modulation of cell surface expression of MHC class I chain-related protein A/B (MICA/B) has been proven to be one of the mechanisms by which tumor cells escape from NK cell-mediated killing. Abnormal metabolic condition, such as high glucose, may create a cellular stress milieu to induce immune dysfunction. Hyperglycemia is frequently presented in the majority of pancreatic cancer patients and is associated with poor prognosis. In this study, we aimed to detect the effects of high glucose on NK cell-mediated killing on pancreatic cancer cells through reduction of MICA/B expression. METHODS: The lysis of NK cells on pancreatic cancer cells were compared at different glucose concentrations through lactate dehydrogenase release assay. Then, qPCR, Western Blot, Flow cytometry and Immunofluorescence were used to identify the effect of high glucose on expression of MICA/B, Bmi1, GATA2, phosphorylated AMPK to explore the underlying mechanisms in the process. Moreover, an animal model with diabetes mellitus was established to explore the role of high glucose on NK cell-mediated cytotoxicity on pancreatic cancer in vivo. RESULTS: In our study, high glucose protects pancreatic cancer from NK cell-mediated killing through suppressing MICA/B expression. Bmi1, a polycomb group (PcG) protein, was found to be up-regulated by high glucose, and mediated the inhibition of MICA/B expression through promoting GATA2 in pancreatic cancer. Moreover, high glucose inhibited AMP-activated protein kinase signaling, leading to high expression of Bmi1. CONCLUSION: Our findings identify that high glucose may promote the immune escape of pancreatic cancer cells under hyperglycemic tumor microenvironment. In this process, constitutive activation of AMPK-Bmi1-GATA2 axis could mediate MICA/B inhibition, which may serve as a therapeutic target for further intervention of pancreatic cancer immune evasion.


Subject(s)
AMP-Activated Protein Kinases/metabolism , GATA2 Transcription Factor/metabolism , Glucose/metabolism , Histocompatibility Antigens Class I/immunology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Polycomb Repressive Complex 1/metabolism , Tumor Escape/immunology , Animals , Blood Glucose , Cell Line, Tumor , Cell Membrane/metabolism , Cytotoxicity, Immunologic , Gene Expression , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Mice , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/genetics , Signal Transduction , Tumor Microenvironment
19.
J Immunother Cancer ; 7(1): 74, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30871626

ABSTRACT

BACKGROUND: Immunotherapies still fail to benefit colorectal cancer (CRC) patients. Relevant functional assays aimed at studying these failures and the efficacy of cancer immunotherapy in human are scarce. 3D tumor cultures, called tumor organoids or spheroids, represent interesting models to study cancer treatments and could help to challenge these issues. METHODS: We analyzed heterotypic cocultures of human colon tumor-derived spheroids with immune cells to assess the infiltration, activation and function of T and NK cells toward human colorectal tumors in vitro. RESULTS: We showed that allogeneic T and NK cells rapidly infiltrated cell line-derived spheroids, inducing immune-mediated tumor cell apoptosis and spheroid destruction. NKG2D, a key activator of cytotoxic responses, was engaged on infiltrating cells. We thus assessed the therapeutic potential of an antibody targeting the specific ligands of NKG2D, MICA and MICB, in this system. Anti-MICA/B enhanced immune-dependent destruction of tumor spheroid by driving an increased NK cells infiltration and activation. Interestingly, tumor cells reacted to immune infiltration by upregulating HLA-E, ligand of the inhibitory receptor NKG2A expressed by CD8 and NK cells. NKG2A was increased after anti-MICA/B treatment and, accordingly, combination of anti-MICA/B and anti-NKG2A was synergistic. These observations were ultimately confirmed in a clinical relevant model of coculture between CRC patients-derived spheroids and autologous tumor-infiltrating lymphocytes. CONCLUSIONS: Altogether, we show that tumor spheroids represent a relevant tool to study tumor-lymphocyte interactions on human tissues and revealed the antitumor potential of immunomodulatory antibodies targeting MICA/B and NKG2A.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Colorectal Neoplasms/immunology , Histocompatibility Antigens Class I/metabolism , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Spheroids, Cellular/cytology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coculture Techniques , Colorectal Neoplasms/drug therapy , HT29 Cells , Humans , Killer Cells, Natural/immunology , Molecular Targeted Therapy , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , T-Lymphocytes/immunology
20.
Oncoimmunology ; 8(4): e1557372, 2019.
Article in English | MEDLINE | ID: mdl-30906652

ABSTRACT

Immune escape is a hallmark of cancer. In human lung cancer, we have identified a unique microRNA (miR)-based pathway employed by tumor cells to repress detection by immune cells via the NKG2D-MICA/B receptor-ligand system. MICA/B is readily induced by cell transformation and serves as a danger signal and ligand to alert NK and activated CD8+ T cells. However, immunohistochemical analysis indicated that human lung adenocarcinoma and squamous cell carcinoma specimens express little MICA/B while high levels of miR-183 were detected in both tumor types in a TCGA database. Human lung tumor cell lines confirmed the reverse relationship in expression of MICA/B and miR-183. Importantly, a miR-183 binding site was identified on the 3'untranslated region (UTR) of both MICA and MICB, suggesting its role in MICA/B regulation. Luciferase reporter constructs bearing the 3'UTR of MICA or MICB in 293 cells supported the function of miR-183 in repressing MICA/B expression. Additionally, anti-sense miR-183 transfection into H1355 or H1299 tumor cells caused the upregulation of MICA/B. Abundant miR-183 expression in tumor cells was traced to transforming growth factor-beta (TGFß), as evidenced by antisense TGFß transfection into H1355 or H1299 tumor cells which subsequently lost miR-183 expression accompanied by MICA/B upregulation. Most significantly, anti-sense miR-183 transfected tumor cells became more sensitive to lysis by activated CD8+ T cells that express high levels of NKG2D. Thus, high miR-183 triggered by TGFß expressed in lung tumor cells can target MICA/B expression to circumvent detection by NKG2D on immune cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...