Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 327(3): R291-R303, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38881411

ABSTRACT

Multidrug resistance proteins type 4 (MRP4) and 5 (MRP5) play pivotal roles in the transport of cyclic nucleotides in various tissues. However, their specific functions within the lower urinary tract remain relatively unexplored. This study aimed to investigate the effect of pharmacological inhibition of MRPs on cyclic nucleotide signaling in isolated pig bladder. The relaxation responses of the bladder were assessed in the presence of the MRP inhibitor, MK571. The temporal changes in intra- and extracellular levels of cAMP and cGMP in stimulated tissues were determined by mass spectrometry. The gene (ABCC4) and protein (MRP4) expression were also determined. MK571 administration resulted in a modest relaxation effect of approximately 26% in carbachol-precontracted bladders. The relaxation induced by phosphodiesterase inhibitors such as cilostazol, tadalafil, and sildenafil was significantly potentiated in the presence of MK571. In contrast, no significant potentiation was observed in the relaxation induced by substances elevating cAMP levels or stimulators of soluble guanylate cyclase. Following forskolin stimulation, both intracellular and extracellular cAMP concentrations increased by approximately 15.8-fold and 12-fold, respectively. Similarly, stimulation with tadalafil + BAY 41-2272 resulted in roughly 8.2-fold and 3.4-fold increases in intracellular and extracellular cGMP concentrations, respectively. The presence of MK571 reduced only the extracellular levels of cGMP. This study reveals the presence and function of MRP4 transporters within the porcine bladder and paves the way for future research exploring the role of this transporter in both underactive and overactive bladder disorders.NEW & NOTEWORTHY This study investigates the impact of pharmacological inhibition of MRP4 and MRP5 transporters on cyclic nucleotide signaling in isolated pig bladders. MK571 administration led to modest relaxation, with enhanced effects observed in the presence of phosphodiesterase inhibitors. However, substances elevating cAMP levels remained unaffected. MK571 selectively reduced extracellular cGMP levels. These findings shed light on the role of MRP4 transporters in the porcine bladder, opening avenues for further research into bladder disorders.


Subject(s)
Cyclic GMP , Multidrug Resistance-Associated Proteins , Urinary Bladder , Animals , Urinary Bladder/metabolism , Urinary Bladder/drug effects , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Cyclic GMP/metabolism , Swine , Quinolines/pharmacology , Cyclic AMP/metabolism , Muscle Relaxation/drug effects , Male , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Female , Signal Transduction , Phosphodiesterase Inhibitors/pharmacology , Propionates
2.
Chem Biol Interact ; 382: 110630, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37442289

ABSTRACT

ß2-adrenoceptors agonists and phosphodiesterase (PDE) inhibitors are effective bronchodilators, due to their ability to increase intracellular cyclic AMP (cAMP) levels and induce airway smooth muscle (ASM) relaxation. We have shown that increment of intracellular cAMP induced by ß2-adrenoceptors agonist fenoterol is followed by efflux of cAMP, which is converted by ecto-PDE and ecto-5'-nucleotidases (ecto-5'NT) to adenosine, leading to ASM contraction. Here we evaluate whether other classical bronchodilators used to treat asthma and chronic obstructive pulmonary disease (COPD) could induce cAMP efflux and, as consequence, influence the ASM contractility. Our results showed that ß2-adrenoceptor agonists formoterol and PDE inhibitors IBMX, aminophylline and roflumilast induced cAMP efflux and a concentration-dependent relaxation of rat trachea precontracted with carbachol. Pretreatment of tracheas with MK-571 (MRP transporter inhibitor), AMP-CP (ecto-5'NT inhibitor) or CGS-15943 (nonselective adenosine receptor antagonist) potentiated the relaxation induced by ß2-adrenoceptor agonists but did not change the relaxation induced by PDE inhibitors. These data showed that all bronchodilators tested were able to induce cAMP efflux. However, only ß2-adrenoceptor-induced relaxation of tracheal smooth muscle was affected by cAMP efflux and extracellular cAMP-adenosine pathway.


Subject(s)
Adenosine , Cyclic AMP , Rats , Animals , Cyclic AMP/metabolism , Adenosine/pharmacology , Formoterol Fumarate/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Bronchodilator Agents/pharmacology , Muscle Relaxation , Adrenergic beta-Agonists , Trachea , Receptors, Adrenergic
3.
Andrology ; 11(3): 611-620, 2023 03.
Article in English | MEDLINE | ID: mdl-36375168

ABSTRACT

BACKGROUND: Intracellular levels of cyclic nucleotides can also be controlled by the action of multidrug resistance protein types 4 (MRP4) and 5 (MRP5). To date, no studies evaluated the role of their inhibition in an animal model of erectile dysfunction (ED). OBJECTIVES: To evaluate the effect of a 2-week treatment with MK571, an inhibitor of the efflux of cyclic nucleotides in the ED of obese mice. MATERIALS AND METHODS: Mice were divided in three groups: (i) lean, (ii) obese, and (iii) obese + MK571. The corpus cavernosum (CC) were isolated, and concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), and tadalafil in addition to electrical field stimulation (EFS) were carried out in phenylephrine pre-contracted tissues. Expression of ABCC4 and ABCC5, intracellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), the protein levels for pVASPSer157 and pVASPSer239 , and the intracavernous pressure (ICP) were also determined. The intracellular and extracellular (supernatant) ratios in CC from obese and lean stimulated with a cGMP-increasing substance (BAY 58-2667) in the absence and presence of MK571 (20 µM, 30 min) were also assessed. RESULTS: The treatment with MK571 completely reversed the lower relaxing responses induced by EFS, ACh, SNP, and tadalafil observed in obese mice CC in comparison with untreated obese mice. Cyclic GMP and p-VASPSer239 expression were significantly reduced in CC from obese groups. MK571 promoted a sixfold increase in cGMP without interfering in the protein expression of p-VASPSer239 . Neither the cAMP levels nor p-VASPSer157 were altered in MK571-treated animals. The ICP was ∼50% lower in obese than in the lean mice; however, the treatment with MK571 fully reversed this response. Expressions of ABCC4 and ABCC5 were not different between groups. The intra/extracellular ratio of cGMP was similar in CC from obese and lean mice stimulated with BAY 58-2667. CONCLUSIONS: The MRPs inhibition by MK571 favored the accumulation of cGMP in the smooth muscle cells, thus improving the smooth muscle relaxation and the erectile function in obese mice.


Subject(s)
Erectile Dysfunction , Male , Humans , Mice , Animals , Erectile Dysfunction/drug therapy , ATP Binding Cassette Transporter, Subfamily B/therapeutic use , Tadalafil/pharmacology , Tadalafil/therapeutic use , Mice, Obese , Nitroprusside/pharmacology , Nitroprusside/metabolism , Nitroprusside/therapeutic use , Cyclic GMP/metabolism , Acetylcholine/pharmacology , Acetylcholine/therapeutic use , Obesity
4.
Exp Lung Res ; 47(8): 355-367, 2021 10.
Article in English | MEDLINE | ID: mdl-34468256

ABSTRACT

PURPOSE: Eosinophils are one of the main cells responsible to the inflammatory response in asthma by the release of inflammatory molecules such as cytokines, reactive oxygen species (ROS), cytotoxic granule, eosinophil extracellular trap (EET), and lipid mediators as cysteinyl leukotriene (cysLT). The interconnections between these molecules are not fully understood. Here, we attempted to investigate the cysLT participation in the mechanisms of EET formation in an asthma model of OVA challenge. MATERIALS AND METHODS: Before intranasal challenge with OVA, BALB/cJ mice were treated with a 5-lipoxygenase-activating protein (FLAP) inhibitor (MK-886), or with a cysLT1 receptor antagonist (MK-571) and the lung and bronchoalveolar lavage fluid (BALF) were analyzed. RESULTS: We showed that OVA-challenged mice treated with MK-886 or MK-571 had a decrease in inflammatory cells, goblet cells hyperplasia, and eosinophil peroxidase (EPO) activity in the airway. However, only OVA-challenged mice treated with MK-571 had an improvement in lung function. Also, treatments with MK-886 or MK-571 decreased Th2 cytokines levels in the airway. Moreover, we observed that OVA-challenged mice treated with MK-886 or MK-571 had a decrease in EET formation in BALF. We also verified that EET release was not due to cell death because the cell viability remained the same among the groups. CONCLUSION: We revealed that the decrease in cysLT production or cysLT1 receptor inhibition by MK-886 or/and MK-571 treatments, respectively reduced EET formation in BALF, showing that cysLT regulates the activation process of EET release in asthma.


Subject(s)
Asthma , Extracellular Traps , Receptors, Leukotriene , Animals , Asthma/drug therapy , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Eosinophils , Leukotriene Antagonists/pharmacology , Leukotrienes , Lung , Mice , Mice, Inbred BALB C
5.
Biochem Pharmacol ; 152: 165-173, 2018 06.
Article in English | MEDLINE | ID: mdl-29605625

ABSTRACT

The intracellular levels of cyclic GMP are controlled by its rate of formation through nitric oxide-mediated stimulation of soluble guanylate cyclase (sGC) and its degradation by phosphodiesterases. Multidrug resistance protein 4 (MRP4) expressed in human platelets pumps cyclic nucleotides out of cells. In search for new antiplatelet strategies, we tested the hypothesis that sGC activation concomitant with MRP4 inhibition confers higher antiplatelet efficacy compared with monotherapy alone. This study was undertaken to investigate the pharmacological association of the sGC activator BAY 60-2770 with the MRP4 inhibitor MK571 on human washed platelets. Collagen- and thrombin-induced platelet aggregation and ATP-release reaction assays were performed. BAY 60-2770 (0.001-10 µM) produced significant inhibitions of agonist-induced platelet aggregation accompanied by reduced ATP-release. Pre-incubation with 10 µM MK571 alone had no significant effect on platelet aggregation and ATP release, but it produced a left displacement by about of 10-100-fold in the concentration-response curves to BAY 60-2770. Pre-incubation with MK571increased and decreased, respectively, the intracellular and extracellular levels of cGMP to BAY 60-2770, whereas the cAMP levels remained unchanged. The increased VASP-serine 239 phosphorylation in BAY 60-2770-treated platelets was enhanced by MK571. In Fluo-4-loaded platelets, BAY 60-2770 reduced the intracellular Ca2+ levels, an effect significantly potentiated by MK571. Flow cytometry assays showed that BAY 60-2770 reduces the αIIbß3 integrin activation, which was further reduced by MK571 association. Blocking the MRP4-mediated efflux of cGMP may be a potential mechanism to enhance the antiplatelet efficacy of sGC activators.


Subject(s)
Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Platelet Aggregation Inhibitors/pharmacology , Propionates/pharmacology , Quinolines/pharmacology , Soluble Guanylyl Cyclase/metabolism , Blood Platelets , Calcium/metabolism , Cells, Cultured , Humans
SELECTION OF CITATIONS
SEARCH DETAIL