Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Eur J Pharmacol ; 977: 176711, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38839029

ABSTRACT

Histone deacetylase (HDAC) inhibitors are potential candidates for treating pulmonary fibrosis. MPT0E028, a novel pan-HDAC inhibitor, has been reported to exhibit antitumor activity in several cancer cell lines. In this study, we investigated the mechanism underlying the inhibitory effects of MPT0E028 on the expression of fibrogenic proteins in human lung fibroblasts (WI-38). Our results revealed that MPT0E028 inhibited transforming growth factor-ß (TGF-ß)-, thrombin-, and endothelin 1-induced connective tissue growth factor (CTGF) expression in a concentration-dependent manner. In addition, MPT0E028 suppressed TGF-ß-stimulated expression of fibronectin, collagen I, and α-smooth muscle actin (α-SMA). Furthermore, MPT0E028 inhibited the TGF-ß-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK). MPT0E028 reduced the increase in SMAD3 and c-Jun phosphorylation, and SMAD3-and activator protein-1 (AP-1)-luciferase activities under TGF-ß stimulation. Transfection with mitogen-activated protein kinase phosphatase-1 (MKP-1) siRNA reversed the suppressive effects of MPT0E028 on TGF-ß-induced increases in CTGF expression; JNK, p38, and ERK phosphorylation; and SMAD3 and AP-1 activation. Moreover, MPT0E028 increased MKP-1 acetylation and activity in WI-38 cells. Pretreatment with MPT0E028 reduced the fibrosis score and fibronectin, collagen, and α-SMA expression in bleomycin-induced pulmonary fibrosis mice. In conclusion, MPT0E028 induced MKP-1 acetylation and activation, which in turn inhibited TGF-ß-stimulated JNK, p38, and ERK phosphorylation; SMAD3 and AP-1 activation; and subsequent CTGF expression in human lung fibroblasts. Thus, MPT0E028 may be a potential drug for treating pulmonary fibrosis.


Subject(s)
Connective Tissue Growth Factor , Dual Specificity Phosphatase 1 , Fibroblasts , Histone Deacetylase Inhibitors , Lung , Pulmonary Fibrosis , Transforming Growth Factor beta , Connective Tissue Growth Factor/metabolism , Humans , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/drug therapy , Animals , Histone Deacetylase Inhibitors/pharmacology , Mice , Lung/drug effects , Lung/pathology , Lung/cytology , Lung/metabolism , Transforming Growth Factor beta/metabolism , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Cell Line , Smad3 Protein/metabolism , Phosphorylation/drug effects , Male , Enzyme Activation/drug effects , Mice, Inbred C57BL
2.
Mol Neurobiol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769227

ABSTRACT

Accumulating evidence suggests that prenatal stress (PNS) increases offspring susceptibility to depression, but the underlying mechanisms remain unclear. We constructed a mouse model of prenatal stress by spatially restraining pregnant mice from 09:00-11:00 daily on Days 5-20 of gestation. In this study, western blot analysis, quantitative real-time PCR (qRT‒PCR), immunofluorescence, immunoprecipitation, chromatin immunoprecipitation (ChIP), and mifepristone rescue assays were used to investigate alterations in the GR/P300-MKP1 and downstream ERK/CREB/TRKB pathways in the brains of prenatally stressed offspring to determine the pathogenesis of the reduced neurogenesis and depression-like behaviors in offspring induced by PNS. We found that prenatal stress leads to reduced hippocampal neurogenesis and depression-like behavior in offspring. Prenatal stress causes high levels of glucocorticoids to enter the fetus and activate the hypothalamic‒pituitary‒adrenal (HPA) axis, resulting in decreased hippocampal glucocorticoid receptor (GR) levels in offspring. Furthermore, the nuclear translocation of GR and P300 (an acetylation modifying enzyme) complex in the hippocampus of PNS offspring increased significantly. This GR/P300 complex upregulates MKP1, which is a negative regulator of the ERK/CREB/TRKB signaling pathway associated with depression. Interestingly, treatment with a GR antagonist (mifepristone, RU486) increased hippocampal GR levels and decreased MKP1 expression, thereby ameliorating abnormal neurogenesis and depression-like behavior in PNS offspring. In conclusion, our study suggested that the regulation of the MKP1 signaling pathway by GR/P300 is involved in depression-like behavior in prenatal stress-exposed offspring and provides new insights and ideas for the fetal hypothesis of mental health.

3.
Cells ; 13(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38667302

ABSTRACT

Toll-like receptors (TLRs) induce innate immune responses through activation of intracellular signaling pathways, such as MAP kinase and NF-κB signaling pathways, and play an important role in host defense against bacterial or viral infections. Meanwhile, excessive activation of TLR signaling leads to a variety of inflammatory disorders, including autoimmune diseases. TLR signaling is therefore strictly controlled to balance optimal immune response and inflammation. However, its balancing mechanisms are not fully understood. In this study, we identified the E3 ubiquitin ligase LINCR/ NEURL3 as a critical regulator of TLR signaling. In LINCR-deficient cells, the sustained activation of JNK and p38 MAPKs induced by the agonists for TLR3, TLR4, and TLR5, was clearly attenuated. Consistent with these observations, TLR-induced production of a series of inflammatory cytokines was significantly attenuated, suggesting that LINCR positively regulates innate immune responses by promoting the activation of JNK and p38. Interestingly, our further mechanistic study identified MAPK phosphatase-1 (MKP1), a negative regulator of MAP kinases, as a ubiquitination target of LINCR. Thus, our results demonstrate that TLRs fine-tune the activation of MAP kinase pathways by balancing LINCR (the positive regulator) and MKP1 (the negative regulator), which may contribute to the induction of optimal immune responses.


Subject(s)
Dual Specificity Phosphatase 1 , Signal Transduction , Toll-Like Receptors , Ubiquitin-Protein Ligases , Ubiquitination , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Toll-Like Receptors/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Humans , Mice , Proteolysis , Immunity, Innate , p38 Mitogen-Activated Protein Kinases/metabolism , HEK293 Cells , Cytokines/metabolism
4.
Front Plant Sci ; 15: 1374194, 2024.
Article in English | MEDLINE | ID: mdl-38576784

ABSTRACT

Arabidopsis thaliana Mitogen-activated protein Kinase Phosphatase 1 (MKP1) negatively balances production of reactive oxygen species (ROS) triggered by Microbe-Associated Molecular Patterns (MAMPs) through uncharacterized mechanisms. Accordingly, ROS production is enhanced in mkp1 mutant after MAMP treatment. Moreover, mkp1 plants show a constitutive activation of immune responses and enhanced disease resistance to pathogens with distinct colonization styles, like the bacterium Pseudomonas syringae pv. tomato DC3000, the oomycete Hyaloperonospora arabidopsidis Noco2 and the necrotrophic fungus Plectosphaerella cucumerina BMM. The molecular basis of this ROS production and broad-spectrum disease resistance controlled by MKP1 have not been determined. Here, we show that the enhanced ROS production in mkp1 is not due to a direct interaction of MKP1 with the NADPH oxidase RBOHD, nor is it the result of the catalytic activity of MKP1 on RBHOD phosphorylation sites targeted by BOTRYTIS INDUCED KINASE 1 (BIK1) protein, a positive regulator of RBOHD-dependent ROS production. The analysis of bik1 mkp1 double mutant phenotypes suggested that MKP1 and BIK1 targets are different. Additionally, we showed that phosphorylation residues stabilizing MKP1 are essential for its functionality in immunity. To further decipher the molecular basis of disease resistance responses controlled by MKP1, we generated combinatory lines of mkp1-1 with plants impaired in defensive pathways required for disease resistance to pathogen: cyp79B2 cyp79B3 double mutant defective in synthesis of tryptophan-derived metabolites, NahG transgenic plant that does not accumulate salicylic acid, aba1-6 mutant impaired in abscisic acid (ABA) biosynthesis, and abi1 abi2 hab1 triple mutant impaired in proteins described as ROS sensors and that is hypersensitive to ABA. The analysis of these lines revealed that the enhanced resistance displayed by mkp1-1 is altered in distinct mutant combinations: mkp1-1 cyp79B2 cyp79B3 fully blocked mkp1-1 resistance to P. cucumerina, whereas mkp1-1 NahG displays partial susceptibility to H. arabidopsidis, and mkp1-1 NahG, mkp1-1 aba1-6 and mkp1-1 cyp79B2 cyp79B3 showed compromised resistance to P. syringae. These results suggest that MKP1 is a component of immune responses that does not directly interact with RBOHD but rather regulates the status of distinct defensive pathways required for disease resistance to pathogens with different lifestyles.

5.
Behav Brain Res ; 465: 114962, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38499157

ABSTRACT

BACKGROUND: Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in the hippocampus of patients with depression, while pharmacological inhibition of hippocampal MKP1 can mitigate depression-like behaviors in rodents. In addition, MAPK signaling regulates autophagy, and antidepressants were recently shown to target autophagic signaling pathways. We speculated that MKP1 contributes to depression by enhancing hippocampal autophagy through dephosphorylation of the MAPK isoform ERK1/2. METHODS: We established a rat depression model by exposure to chronic unpredictable mild stress (CUMS), and then examined depression-like behaviors in the sucrose preference test (SPT) and forced swimming test (FST) as well as expression changes in hippocampal MKP1, ERK1/2, phosphorylated ERK1/2, and autophagy-related proteins LC3II by Western blotting and immunostaining. These same measurements were repeated in rats exposed to CUMS following hippocampal infusion of a MKP1-targeted shRNA. Finally, the effects of MKP1 expression level on autophagy we examined in rat GMI-R1 microglia. RESULTS: CUMS-exposed rats demonstrated anhedonia in the SPT and helplessness in the FST, two core depression-like behaviors. Expression levels of MKP1 and LC3II were upregulated in the hippocampus of CUMS rats, suggesting enhanced autophagy, while pERK/ERK was downregulated. Knockdown of hippocampal MKP1 mitigated depression-like behaviors, downregulated hippocampal LC3II expression, and upregulated hippocampal pERK/ERK. Similarly, MKP1 knockdown in GMI-R1 cells upregulated pERK/ERK and reduced the number of LC3II autophagosomes, while MKP1 overexpression had the opposite effects. CONCLUSION: Enhanced hippocampal autophagy via MKP1-mediated ERK dephosphorylation may contribute to the development of depression.


Subject(s)
Depression , Hippocampus , Animals , Rats , Antidepressive Agents/pharmacology , Autophagy , Depression/metabolism , Disease Models, Animal , Hippocampus/metabolism , Signal Transduction , Stress, Psychological/metabolism
6.
Basic Clin Pharmacol Toxicol ; 134(5): 686-694, 2024 May.
Article in English | MEDLINE | ID: mdl-38439200

ABSTRACT

Glucocorticoids are widely used in the treatment of allergic and inflammatory diseases. Glucocorticoids have a widespread action on gene expression resulting in their pharmacological actions and also an array of adverse effects which limit their clinical use. It remains, however, to be studied which target gene effects are essential for the anti-allergic activity of glucocorticoids. Mitogen-activated protein kinase phosphatase-1 (MKP-1) inhibits proinflammatory signalling by suppressing the activity of mitogen activated protein kinase (MAP kinase) pathways. MKP-1 is one of the anti-inflammatory genes whose expression is enhanced by glucocorticoids. In the present study, we aimed to investigate the role of MKP-1 in the therapeutic effects of the glucocorticoid dexamethasone in acute allergic reaction. The effects of dexamethasone were studied in wild-type and MKP-1 deficient mice. The mice were first sensitized to ovalbumin, and the allergic reaction was then induced by a subcutaneous ovalbumin injection in the hind paw. Inflammatory edema was quantified with plethysmometer and expression of inflammatory factors was measured by quantitative reverse transcription polymerase chain reaction (RT-PCR). Dexamethasone reduced the ovalbumin-induced paw edema at 1.5, 3 and 6 h time points in wild-type mice by 70%, 95% and 89%, respectively. The effect was largely abolished in MKP-1 deficient mice. Furthermore, dexamethasone significantly attenuated the expression of ovalbumin-induced inflammatory factors cyclooxygenase-2 (COX-2); inducible nitric oxide synthase (iNOS); interleukins (IL) 1ß, 6 and 13; C-C motif chemokine 11 (CCL-11); tumour necrosis factor (TNF) and thymic stromal lymphopoietin (TSLP) in wild-type mice by more than 40%. In contrast, in MKP-1 deficient mice dexamethasone had no effect or even enhanced the expression of these inflammatory factors. The results suggest that dexamethasone alleviates allergic inflammation through an MKP-1-dependent mechanism. The results also demonstrate MKP-1 as an important conveyor of the favourable glucocorticoid effects in ovalbumin-induced type I allergic reaction. Together with previous findings, the present study supports the concept of MKP-1 enhancing compounds as potential novel anti-inflammatory and anti-allergic drugs.


Subject(s)
Anti-Allergic Agents , Hypersensitivity , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Dexamethasone/pharmacology , Edema , Glucocorticoids/pharmacology , Hypersensitivity/drug therapy , Inflammation/drug therapy , Interleukin-1beta , Mitogen-Activated Protein Kinase Phosphatases , Ovalbumin
7.
Front Immunol ; 15: 1316228, 2024.
Article in English | MEDLINE | ID: mdl-38370409

ABSTRACT

Background: It is well established that females are more susceptible to the toxic effects of alcohol, although the exact mechanisms are still poorly understood. Previous studies noted that alcohol reduces the expression of mitogen-activated protein kinase phosphatase 1 (MKP1), a negative regulator of mitogen-activated protein kinases (MAPK) in the liver. However, the role of hepatocyte- specific MKP1 in the pathogenesis of alcohol-associated liver disease (ALD) remains uncharacterized. This study aimed to evaluate the role of hepatocyte-specific MKP1 in the susceptibility and sexual dimorphism in alcohol-induced liver injury. Methods: C57Bl/6 mice were used in an intragastric ethanol feeding model of alcohol-associated steatohepatitis (ASH). Hepatocyte-specific Mkp1-/- knockout and (Mkp1+/+ "f/f" male and female mice were subjected to the NIAAA chronic plus binge model. Primary mouse hepatocytes were used for in vitro studies. Liver RNA sequencing was performed on an Illumina NextSeq 500. Liver injury was evaluated by plasma alanine transaminase (ALT), hepatic ER stress and inflammation markers. Statistical analysis was carried out using ANOVA and the unpaired Student's t-test. Results: ASH was associated with the severe injury accompanied by increased endoplasmic reticulum (ER) stress and significant downregulation of Dusp1 mRNA expression. In vitro, ethanol treatment resulted in a time-dependent decrease in Dusp1 mRNA and protein expression in primary hepatocytes in both males and females; however, this effect was significantly more pronounced in hepatocytes from females. In vivo, female mice developed more liver injury in a chronic plus binge model which was accompanied by a significant decrease in liver Dusp1 mRNA expression. In comparison, liver Dusp1 was not changed in male mice, while they developed milder injury to alcohol. Mkp1 deletion in hepatocytes led to increased alcohol induced liver injury, ER stress and inflammation in both sexes. Conclusion: Hepatocyte Mkp1 plays a significant role in alcohol induced liver injury. Alcohol downregulates Mkp1 expression in hepatocytes in a sex dependent manner and could play a role in sexual dimorphism in increased female susceptibility to alcohol.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Fatty Liver, Alcoholic , Liver Diseases, Alcoholic , Male , Female , Mice , Animals , Sex Characteristics , Hepatocytes/metabolism , Ethanol/toxicity , Fatty Liver, Alcoholic/genetics , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Inflammation/metabolism , Mice, Inbred C57BL , RNA, Messenger/metabolism , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Mitogen-Activated Protein Kinase Phosphatases/pharmacology
8.
Acta Pharm Sin B ; 14(2): 635-652, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38322333

ABSTRACT

Alzheimer's disease (AD) is a leading cause of dementia in the elderly. Mitogen-activated protein kinase phosphatase 1 (MKP-1) plays a neuroprotective role in AD. However, the molecular mechanisms underlying the effects of MKP-1 on AD have not been extensively studied. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level, thereby repressing mRNA translation. Here, we reported that the microRNA-429-3p (miR-429-3p) was significantly increased in the brain of APP23/PS45 AD model mice and N2AAPP AD model cells. We further found that miR-429-3p could downregulate MKP-1 expression by directly binding to its 3'-untranslated region (3' UTR). Inhibition of miR-429-3p by its antagomir (A-miR-429) restored the expression of MKP-1 to a control level and consequently reduced the amyloidogenic processing of APP and Aß accumulation. More importantly, intranasal administration of A-miR-429 successfully ameliorated the deficits of hippocampal CA1 long-term potentiation and spatial learning and memory in AD model mice by suppressing extracellular signal-regulated kinase (ERK1/2)-mediated GluA1 hyperphosphorylation at Ser831 site, thereby increasing the surface expression of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Together, these results demonstrate that inhibiting miR-429-3p to upregulate MKP-1 effectively improves cognitive and synaptic functions in AD model mice, suggesting that miR-429/MKP-1 pathway may be a novel therapeutic target for AD treatment.

9.
CNS Neurosci Ther ; 30(2): e14409, 2024 02.
Article in English | MEDLINE | ID: mdl-37602891

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is one of the most common neurodegenerative diseases leading to dementia in elderly people. Microglia-mediated neuroinflammation plays an important role in AD pathogenesis, so modulation of neuroinflammation has emerged as an essential therapeutic method to improve AD. The current study aims to investigate whether MKP-1 can regulate microglia phenotype and inflammatory factor release in AD and explore its possible mechanisms. METHODS: Amyloid precursor protein/PS1 double transgenic mice and wild-type mice were selected to study the locations of microglia and amyloid-ß (Aß) plaques in different regions of mice brains. Changes in MKP-1 of microglia were detected using AD model mice and AD model cells. Changes in phenotype and the release of inflammatory factors within immortalized BV2 murine microglia were investigated by regulating the expression of MKP-1. RESULTS: The distribution of microglia and Aß plaques in the AD brain was region-specific. MKP-1 expression was downregulated in AD mice, and in vitro, with increasing Aß concentrations, MKP-1 expression was reduced. MKP-1 over-expression increased M2 microglia but decreased M1 microglia accompanied by changes in inflammatory factors and inhibition of MKP-1 yielded the opposite result. CONCLUSION: MKP-1 regulated microglia phenotype and inflammatory factor release in AD through modulation of the p38 signaling pathway.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Disease Models, Animal , Mice, Transgenic , Microglia/pathology , Neuroinflammatory Diseases
10.
Acta Pharmaceutica Sinica B ; (6): 635-652, 2024.
Article in English | WPRIM (Western Pacific) | ID: wpr-1011260

ABSTRACT

Alzheimer's disease (AD) is a leading cause of dementia in the elderly. Mitogen-activated protein kinase phosphatase 1 (MKP-1) plays a neuroprotective role in AD. However, the molecular mechanisms underlying the effects of MKP-1 on AD have not been extensively studied. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level, thereby repressing mRNA translation. Here, we reported that the microRNA-429-3p (miR-429-3p) was significantly increased in the brain of APP23/PS45 AD model mice and N2AAPP AD model cells. We further found that miR-429-3p could downregulate MKP-1 expression by directly binding to its 3'-untranslated region (3' UTR). Inhibition of miR-429-3p by its antagomir (A-miR-429) restored the expression of MKP-1 to a control level and consequently reduced the amyloidogenic processing of APP and Aβ accumulation. More importantly, intranasal administration of A-miR-429 successfully ameliorated the deficits of hippocampal CA1 long-term potentiation and spatial learning and memory in AD model mice by suppressing extracellular signal-regulated kinase (ERK1/2)-mediated GluA1 hyperphosphorylation at Ser831 site, thereby increasing the surface expression of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Together, these results demonstrate that inhibiting miR-429-3p to upregulate MKP-1 effectively improves cognitive and synaptic functions in AD model mice, suggesting that miR-429/MKP-1 pathway may be a novel therapeutic target for AD treatment.

11.
Int Immunopharmacol ; 127: 111347, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38104367

ABSTRACT

BACKGROUND: Panax notoginseng saponin R1(PNS-R1), derived from Panax notoginseng roots, promotes wound repair, whereas glucocorticoids can inhibit the repair of airway epithelial damage in asthma. OBJECTIVE: This study investigated whether PNS-R1 counteracts the inhibitory effects of glucocorticoids on the repair of airway epithelial damage in asthma. METHODS: In vivo, female C57BL/6 mice were sensitized, challenged with house dust mites (HDM), and treated with dexamethasone, PNS-R1, and/or adenovirus GRß-shRNA. Airway epithelium damage was examined using pathological sections of the trachea and bronchi, markers of airway inflammation, epithelial cells in bronchoalveolar lavage fluid, and expression of the E-cadherin protein. In vitro, we treated 16HBE cells with dexamethasone, PNS-R1, and/or GRß-siRNA and detected cell proliferation and migration. The expression of GRß and key components of MKP-1 and Erk1/2 were detected by western blotting. RESULTS: In vivo, PNS-R1 reduced airway inflammation, hyperresponsiveness, and mucus hypersecretion; the combination of PNS-R1 and dexamethasone promoted airway epithelial integrity and reduced cell detachment. In vitro, PNS-R1 alleviated the inhibition of bronchial epithelial cell growth, migration, and proliferation by dexamethasone; PNS-R1 promoted GRß expression, inhibited MKP-1 protein expression, and activated MAPK signaling, thereby promoting airway epithelial cell proliferation and repair. CONCLUSIONS: Panax notoginseng saponin R1 alleviated the inhibitory effect of dexamethasone on the repair of airway epithelial damage in asthmatic mice, likely by promoting the proliferation of airway epithelial cells by stimulating GRß expression and activating the MAPK pathway.


Subject(s)
Asthma , Panax notoginseng , Receptors, Glucocorticoid , Saponins , Female , Mice , Animals , Glucocorticoids/pharmacology , Saponins/pharmacology , Saponins/therapeutic use , Mice, Inbred C57BL , Asthma/metabolism , Bronchi/pathology , Epithelium , Inflammation/pathology , Transcription Factors , Dexamethasone/pharmacology , Dexamethasone/therapeutic use
12.
Vet Res ; 54(1): 50, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37337278

ABSTRACT

Chick embryos are a valuable model for studying immunity and vaccines. Therefore, it is crucial to investigate the molecular mechanism of the Mycoplasma gallisepticum (MG)-induced immune response in chick embryos for the prevention and control of MG. In this study, we screened for downregulated let-7d microRNA in MG-infected chicken embryonic lungs to explore its involvement in the innate immune mechanism against MG. Here, we demonstrated that low levels of let-7d are a protective mechanism for chicken embryo primary type II pneumocytes (CP-II) in the presence of MG. Specifically, we found that depressed levels of let-7 in CP-II cells reduced the adhesion capacity of MG. This suppressive effect was achieved through the activated mitogen-activated protein kinase phosphatase 1 (MKP1) target gene and the inactivated mitogen-activated protein kinase (MAPK) pathway. Furthermore, MG-induced hyperinflammation and cell death were both alleviated by downregulation of let-7d. In conclusion, chick embryos protect themselves against MG infection through the innate immune molecule let-7d, which may result from its function as an inhibitor of the MAPK pathway to effectively mitigate MG adhesion, the inflammatory response and cell apoptosis. This study may provide new insight into the development of vaccines against MG.


Subject(s)
MicroRNAs , Mycoplasma gallisepticum , Chick Embryo , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mitogen-Activated Protein Kinases , Chickens/genetics , Immunity, Innate
13.
Phytomedicine ; 114: 154802, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37054486

ABSTRACT

BACKGROUND: A tri-herb formulation comprising Ganoderma (the dried fruiting body of Ganoderma lucidum), Puerariae Thomsonii Radix (the dried root of Pueraria thomsonii) and Hoveniae Semen (the dried mature seed of Hovenia acerba) -GPH for short- has been using for treating liver injury; however, the pharmacological basis of this application of GPH is unknown. This study aimed to investigate the liver protective effects and mechanisms of action of an ethanolic extract of GPH (GPHE) in mice. METHODS: To control the quality of GPHE, the contents of ganodermanontriol, puerarin and kaempferol in the extract were quantified by ultra-performance liquid chromatography. An ethanol (6 ml/kg, i.g.)-induced liver injury ICR mouse model was employed to investigate the hepatoprotective effects of GPHE. RNA-sequencing analysis and bioassays were performed to reveal the mechanisms of action of GPHE. RESULTS: The contents of ganodermanontriol, puerarin and kaempferol in GPHE were 0.0632%, 3.627% and 0.0149%, respectively. Daily i.g. administration of 0.25, 0.5 or 1 g/kg of GPHE for 15 consecutive days suppressed ethanol (6 ml/kg, i.g., at day 15)-induced upregulation of serum AST and ALT levels and improved histological conditions in mouse livers, indicating that GPHE protects mice from ethanol-induced liver injury. Mechanistically, GPHE downregulated the mRNA level of Dusp1 (encoding MKP1 protein, an inhibitor of the mitogen-activated protein kinases JNK, p38 and ERK), and upregulated expression and phosphorylation of JNK, p38 and ERK, which are involved in cell survival in mouse liver tissues. Also, GPHE increased PCNA (a cell proliferation marker) expression and reduced TUNEL-positive (apoptotic) cells in mouse livers. CONCLUSION: GPHE protects against ethanol-induced liver injury, and this effect of GPHE is associated with regulation of the MKP1/MAPK pathway. This study provides pharmacological justifications for the use of GPH in treating liver injury, and suggests that GPHE has potential to be developed into a modern medication for managing liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Ethanol , Mice , Animals , Ethanol/pharmacology , Kaempferols/pharmacology , Chemical and Drug Induced Liver Injury, Chronic/pathology , Mice, Inbred ICR , Liver , Mitogen-Activated Protein Kinase Phosphatases/pharmacology , p38 Mitogen-Activated Protein Kinases
14.
Infect Immun ; 91(4): e0045722, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36877073

ABSTRACT

Sepsis is among the most dangerous known diseases, resulting from the dysregulation of the innate immune system in a process that is characterized largely by proinflammatory cytokines. It manifests as an excessive immune response to a pathogen and often leads to life-threatening complications such as shock and multiple-organ failure. Within the past several decades, much progress has been made to better understand the pathophysiology of sepsis and improve treatment. However, the average case-fatality rate for sepsis remains high. Current anti-inflammatory therapeutics for sepsis are not effective for use as first-line treatments. Focusing on all-trans-retinoic acid (RA), or activated vitamin A, as a novel anti-inflammatory agent, we have shown both in vitro and in vivo that RA decreases the production of proinflammatory cytokines. In vitro studies using mouse RAW 264.7 macrophages show that RA decreases tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß) and increases mitogen-activated protein kinase phosphatase 1 (MKP-1). RA treatment was also associated with the reduced phosphorylation of key inflammatory signaling proteins. Using a lipopolysaccharide and cecal slurry sepsis model, we found that RA significantly reduced mortality rates in mice, downregulated proinflammatory cytokine production, decreased neutrophil infiltration into lung tissue, and reduced the destructive lung histopathology typically seen in sepsis. We propose that RA may increase the function of native regulatory pathways and serve as a novel treatment for sepsis.


Subject(s)
Sepsis , Tretinoin , Mice , Animals , Tretinoin/therapeutic use , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism , Anti-Inflammatory Agents/pharmacology , Lipopolysaccharides
15.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902103

ABSTRACT

Scleroderma is a chronic fibrotic disease, where proinflammatory and profibrotic events precede collagen accumulation. MKP-1 [mitogen-activated protein kinase (MAPK) phosphatase-1] downregulates inflammatory MAPK pathways suppressing inflammation. MKP-1 also supports Th1 polarization, which could shift Th1/Th2 balance away from profibrotic Th2 profile prevalent in scleroderma. In the present study, we investigated the potential protective role of MKP-1 in scleroderma. We utilized bleomycin-induced dermal fibrosis model as a well-characterized experimental model of scleroderma. Dermal fibrosis and collagen deposition as well as the expression of inflammatory and profibrotic mediators were analyzed in the skin samples. Bleomycin-induced dermal thickness and lipodystrophy were increased in MKP-1-deficient mice. MKP-1 deficiency enhanced collagen accumulation and increased expression of collagens, 1A1 and 3A1, in the dermis. Bleomycin-treated skin from MKP-1-deficient mice also showed enhanced expression of inflammatory and profibrotic factors IL-6, TGF-ß1, fibronectin-1 and YKL-40, and chemokines MCP-1, MIP-1α and MIP-2, as compared to wild-type mice. The results show, for the first time, that MKP-1 protects from bleomycin-induced dermal fibrosis, suggesting that MKP-1 favorably modifies inflammation and fibrotic processes that drive the pathogenesis of scleroderma. Compounds enhancing the expression or activity of MKP-1 could thus prevent fibrotic processes in scleroderma and possess potential as a novel immunomodulative drug.


Subject(s)
Dual Specificity Phosphatase 1 , Scleroderma, Systemic , Skin , Animals , Mice , Bleomycin , Collagen/metabolism , Disease Models, Animal , Fibrosis , Inflammation/pathology , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Skin/enzymology , Skin/pathology , Dual Specificity Phosphatase 1/deficiency
16.
Int Immunopharmacol ; 118: 110021, 2023 May.
Article in English | MEDLINE | ID: mdl-36966548

ABSTRACT

Metabolic reprogramming has been shown to aggravate sepsis-induced acute lung injury. In particular, enhanced glycolysis is closely associated with inflammation and oxidative stress. Eriocitrin (ERI) is a natural flavonoid found in citrus fruit that exhibits various pharmacological activities, with antioxidant, anti-inflammatory, anti-diabetic, and anti-tumor properties. However, the role of ERI in lung injury is not well understood. We established a septic mouse model of acute lung injury (ALI) using lipopolysaccharide (LPS) for induction. Primary peritoneal macrophages were isolated to verify the relevant molecular mechanism. Tissues were assessed for lung pathology, pro-inflammatory cytokines, markers of oxidative stress, and protein and mRNA expression levels. In vivo experiments showed that ERI effectively alleviated LPS-induced pathological injury, suppress the inflammatory response (TNF-α, IL-1ß, IL-6 levels) and decreased oxidative stress (MDA, ROS) in murine lung tissue. In vitro, ERI increased the resistance of LPS-treated cells to excessive inflammation and oxidative stress by inhibiting the enhancement of glycolysis (indicated by expression levels of HIF-1α, HK2, LDHA, PFKFB3, and PKM2). Specifically, the beneficial effects of ERI following LPS-induced lung injury occurred through promoting the expression of MKP1, which mediates the inactivation of the MAPK pathway to inhibit enhanced glycolysis. These results demonstrate that ERI has a protective effect on sepsis-induced ALI by regulating MKP1/MAPK pathway mediated-glycolysis. Hence, ERI is a promising candidate against ALI via inhibiting glycolysis.


Subject(s)
Acute Lung Injury , Sepsis , Animals , Mice , Acute Lung Injury/chemically induced , Glycolysis , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Lung/pathology , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , MAP Kinase Signaling System
17.
Int J Mol Sci ; 24(4)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36834565

ABSTRACT

It is difficult to evaluate the pre-symptomatic state of mental disorders and prevent its onset. Since stress could be a trigger of mental disorders, it may be helpful to identify stress-responsive biomarkers (stress markers) for the evaluation of stress levels. We have so far performed omics analyses of the rat brain and peripheral blood after various kinds of stress and have found numerous factors that respond to stress. In this study, we investigated the effects of relatively moderate stress on these factors in the rat to identify stress marker candidates. Adult male Wistar rats underwent water immersion stress for 12 h, 24 h, or 48 h. Stress caused weight loss and elevated serum corticosterone levels, and alterations regarded as anxiety and/or fear-like behaviors. Reverse-transcription PCR and Western blot analyses revealed significant alterations in the expressions of hippocampal genes and proteins by the stress for no longer than 24 h, such as mitogen-activated protein kinase phosphatase 1 (MKP-1), CCAAT/enhancer-binding protein delta (CEBPD), small ubiquitin-like modifier proteins 1/sentrin-specific peptidase 5 (SENP5), matrix metalloproteinase-8 (MMP-8), kinase suppressor of Ras 1 (KSR1), and MKP-1, MMP-8, nerve growth factor receptor (NGFR). Similar alterations were observed in three genes (MKP-1, CEBPD, MMP-8) in the peripheral blood. The present results strongly suggest that these factors may serve as stress markers. The correlation of these factors in the blood and brain may enable the evaluation of stress-induced changes in the brain by blood analysis, which will contribute to preventing the onset of mental disorders.


Subject(s)
Mental Disorders , Protein Tyrosine Phosphatases , Rats , Animals , Male , Protein Phosphatase 1/metabolism , Protein Tyrosine Phosphatases/metabolism , Cell Cycle Proteins/metabolism , Matrix Metalloproteinase 8/metabolism , Immersion , Rats, Wistar , Hippocampus/metabolism , Biomarkers , Water , Dual Specificity Phosphatase 1/genetics
18.
Front Pharmacol ; 14: 1096309, 2023.
Article in English | MEDLINE | ID: mdl-36817145

ABSTRACT

Glutamine (Gln) is an immunomodulatory protein that mediates oxidative stress, inflammation, and apoptosis, but has not been reported in the treatment of hyperoxia (Hyp)-induced brain injury. The aim of this study was to determine whether Gln could improve hyp-induced brain injury in neonatal rats to and later learning and memory dysfunction, and to explore its possible mechanisms. We prepared a model of neonatal rat brain injury caused by normobaric hyperoxia while administered with Gln for 7 days for evaluation. Learning memory function was assessed with the Morris water maze test. Histological analysis, protein expression analysis, oxidative stress and inflammation level analysis were performed using hippocampal tissue. Gln treatment significantly reduced brain tissue water content, oxidative stress levels, microglia activation and inflammatory factor expression, and attenuated tissue damage and apoptosis in the hippocampal region. Gln ameliorates hyp-induced learning, memory impairment in neonatal rats in water maze test. It also increased MKP-1 protein expression and decreased p-p38, p-ERK and p-JNK. Therefore, it is hypothesized that Gln may exert neuroprotective effects by increasing MKP-1 expression to negatively regulate MAPK signaling, with potential cognitive improvement in hyp-induced brain injury.

19.
Comput Struct Biotechnol J ; 21: 1292-1311, 2023.
Article in English | MEDLINE | ID: mdl-36817960

ABSTRACT

Transcriptome analysis of head and neck squamous cell carcinoma (HNSCC) has been pivotal to comprehending the convoluted biology of HNSCC tumors. MAPKAPK2 or MK2 is a critical modulator of the mRNA turnover of crucial genes involved in HNSCC progression. However, MK2-centric transcriptome profiles of tumors are not well known. This study delves into HNSCC progression with MK2 at the nexus to delineate the biological relevance and intricate crosstalk of MK2 in the tumor milieu. We performed next-generation sequencing-based transcriptome profiling of HNSCC cells and xenograft tumors to ascertain mRNA expression profiles in MK2-wild type and MK2-knockdown conditions. The findings were validated using gene expression assays, immunohistochemistry, and transcript turnover studies. Here, we identified a pool of crucial MK2-regulated candidate genes by annotation and differential gene expression analyses. Regulatory network and pathway enrichment revealed their significance and involvement in the HNSCC pathogenesis. Additionally, 3'-UTR-based filtering recognized important MK2-regulated downstream target genes and validated them by nCounter gene expression assays. Finally, immunohistochemistry and transcript stability studies revealed the putative role of MK2 in regulating the transcript turnover of IGFBP2, MUC4, and PRKAR2B in HNSCC. Conclusively, MK2-regulated candidate genes were identified in this study, and their plausible involvement in HNSCC pathogenesis was elucidated. These genes possess investigative values as targets for diagnosis and therapeutic interventions for HNSCC.

20.
J Affect Disord ; 2022 12 12.
Article in English | MEDLINE | ID: mdl-36521668

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal

SELECTION OF CITATIONS
SEARCH DETAIL
...