Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 349
Filter
1.
Sci Rep ; 14(1): 15957, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987376

ABSTRACT

We previously identified that serum EFNA1 and MMP13 were potential biomarker for early detection of esophageal squamous cell carcinoma. In this study, our aim is to explore the diagnostic value of serum EFNA1 and MMP13 for gastric cancer. We used enzyme-linked immunosorbent assay (ELISA) to detect the expression levels of serum EFNA1 and MMP13 in 210 GCs and 223 normal controls. The diagnostic value of EFNA1 and MMP13 was evaluated in an independent cohorts of GC patients and normal controls (n = 238 and 195, respectively). Receiver operating characteristics were used to calculate diagnostic accuracy. In training and validation cohorts, serum EFNA1 and MMP13 levels in the GC groups were significantly higher than those in the normal controls (P < 0.001). The area under the curve (AUC) of the combined detection of serum EFNA1 and MMP13 for GC was improved (0.794), compared with single biomarker used. Similar results were observed in the validation cohort. Importantly, the combined measurement of serum EFNA1 and MMP13 to detect early-stage GC also had acceptable diagnostic accuracy in training and validation cohort. Combined detection of serum EFNA1 and MMP13 could help identify early-stage GC, suggesting that it may be a promising tool for the early detection of GC.


Subject(s)
Biomarkers, Tumor , Matrix Metalloproteinase 13 , Stomach Neoplasms , Humans , Stomach Neoplasms/blood , Stomach Neoplasms/diagnosis , Biomarkers, Tumor/blood , Female , Male , Middle Aged , Matrix Metalloproteinase 13/blood , Aged , ROC Curve , Adult , Case-Control Studies , Early Detection of Cancer/methods
3.
FASEB J ; 38(11): e23731, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38855909

ABSTRACT

Ca2+ permeation through TRPV4 in fibroblasts is associated with pathological matrix degradation. In human gingival fibroblasts, IL-1ß binding to its signaling receptor (IL-1R1) induces activation of extracellular regulated kinase (ERK) and MMP1 expression, processes that require Ca2+ flux across the plasma membrane. It is not known how IL-1R1, which does not conduct Ca2+, generates Ca2+ signals in response to IL-1. We examined whether TRPV4 mediates the Ca2+ fluxes required for ERK signaling in IL-1 stimulated gingival fibroblasts. TRPV4 was immunostained in fibroblasts of human gingival connective tissue and in focal adhesions of cultured mouse gingival fibroblasts. Human gingival fibroblasts treated with IL-1ß showed no change of TRPV4 expression but there was increased MMP1 expression. In mouse, gingival fibroblasts expressing TRPV4, IL-1 strongly increased [Ca2+]i. Pre-incubation of cells with IL-1 Receptor Antagonist blocked Ca2+ entry induced by IL-1 or the TRPV4 agonist GSK101. Knockout of TRPV4 or expression of a non-Ca2+-conducting TRPV4 pore-mutant or pre-incubation with the TRPV4 inhibitor RN1734, blocked IL-1-induced Ca2+ transients and expression of the mouse interstitial collagenase, MMP13. Treatment of mouse gingival fibroblasts with GSK101 phenocopied Ca2+ and ERK responses induced by IL-1; these responses were absent in TRPV4-null cells or cells expressing a non-conducting TRPV4 pore-mutant. Immunostained IL-1R1 localized with TRPV4 in adhesions within cell extensions. While TRPV4 immunoprecipitates analyzed by mass spectrometry showed no association with IL-1R1, TRPV4 associated with Src-related proteins and Src co-immunoprecipitated with TRPV4. Src inhibition reduced IL-1-induced Ca2+ responses. The functional linkage of TRPV4 with IL-1R1 expands its repertoire of innate immune signaling processes by mediating IL-1-driven Ca2+ responses that drive matrix remodeling in fibroblasts. Thus, inhibiting TRPV4 activity may provide a new pharmacological approach for blunting matrix degradation in inflammatory diseases.


Subject(s)
Calcium Signaling , Fibroblasts , Gingiva , TRPV Cation Channels , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Animals , Humans , Mice , Fibroblasts/metabolism , Gingiva/metabolism , Gingiva/cytology , Calcium/metabolism , MAP Kinase Signaling System , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Interleukin-1/metabolism , Interleukin-1/pharmacology , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacology
4.
Polymers (Basel) ; 16(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38891518

ABSTRACT

Osteoarthritis (OA) is a chronic joint disease characterized by irreversible cartilage degradation. Current clinical treatment options lack effective pharmaceutical interventions targeting the disease's root causes. MMP (matrix metalloproteinase) inhibitors represent a new approach to slowing OA progression by addressing cartilage degradation mechanisms. However, very few drugs within this class are in preclinical or clinical trial phases. Hydrogel-based 3D in vitro models have shown promise as preclinical testing platforms due to their resemblance to native extracellular matrix (ECM), abundant availability, and ease of use. Metalloproteinase-13 (MMP-13) is thought to be a major contributor to the degradation of articular cartilage in OA by aggressively breaking down type II collagen. This study focused on testing MMP-13 inhibitors using a GelMA-alginate hydrogel-based OA model induced by cytokines interleukin-1 beta (IL-1ß) and tumor necrosis factor alpha (TNF-α). The results demonstrate a significant inhibition of type II collagen breakdown by measuring C2C concentration using ELISA after treatment with MMP-13 inhibitors. However, inconsistencies in human cartilage explant samples led to inconclusive results. Nonetheless, the study highlights the GelMA-alginate hydrogel-based OA model as an alternative to human-sourced cartilage explants for in vitro drug screening.

5.
In Vivo ; 38(4): 1775-1782, 2024.
Article in English | MEDLINE | ID: mdl-38936942

ABSTRACT

BACKGROUND/AIM: Matrix metalloproteinase 13 (MMP13) has been reported to be involved in tumor development and progression, including of colorectal cancer (CRC). This study aimed at evaluating whether the MMP13 rs2252070 gene polymorphism is associated with clinicopathological factors and its influence on long-term survival in Swedish patients with CRC. PATIENTS AND METHODS: A total of 723 patients with CRC were genotyped using TaqMan single nucleotide polymorphism assays based on polymerase chain reaction. RESULTS: Assessing clinicopathological factors, we demonstrated that having the G/G genotype for MMP13 rs2252070 was significantly associated with poor differentiation, higher serum level of carcinoembryonic antigen and higher lymph node status. Moreover, the presence of a G allele was significantly related to larger tumor size in rectal cancer but had a significantly protective role against mucinous cancer, perineural invasion and lymphovascular invasion. Kaplan-Meier analysis showed no difference between genotypes regarding cancer-specific survival. CONCLUSION: Our findings highlight the potential of MMP13 rs2252070 polymorphism as a useful predictor of poor differentiation, serum level of carcinoembryonic antigen, lymph node status, tumor size, mucinous cancer, perineural invasion and lymphovascular invasion in patients with CRC.


Subject(s)
Colorectal Neoplasms , Genotype , Matrix Metalloproteinase 13 , Polymorphism, Single Nucleotide , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Male , Female , Sweden/epidemiology , Matrix Metalloproteinase 13/genetics , Aged , Middle Aged , Genetic Predisposition to Disease , Prognosis , Alleles , Kaplan-Meier Estimate , Aged, 80 and over , Adult , Carcinoembryonic Antigen/blood , Neoplasm Staging , Biomarkers, Tumor/genetics , Genetic Association Studies
6.
Bioact Mater ; 37: 378-392, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38689658

ABSTRACT

Posttraumatic osteoarthritis (PTOA) patients are often diagnosed by X-ray imaging at a middle-late stage when drug interventions are less effective. Early PTOA is characterized by overexpressed matrix metalloprotease 13 (MMP13). Herein, we constructed an integrated diagnosis and treatment micelle modified with MMP13 enzyme-detachable, cyanine 5 (Cy5)-containing PEG, black hole quencher-3 (BHQ3), and cRGD ligands and loaded with siRNA silencing MMP13 (siM13), namely ERMs@siM13. ERMs@siM13 could be cleaved by MMP13 in the diseased cartilage tissues to detach the PEG shell, causing cRGD exposure. Accordingly, the ligand exposure promoted micelle uptake by the diseased chondrocytes by binding to cell surface αvß3 integrin, increasing intracellular siM13 delivery for on-demand MMP13 downregulation. Meanwhile, the Cy5 fluorescence was restored by detaching from the BHQ3-containing micelle, precisely reflecting the diseased cartilage state. In particular, the intensity of Cy5 fluorescence generated by ERMs@siM13 that hinged on the MMP13 levels could reflect the PTOA severity, enabling the physicians to adjust the therapeutic regimen. Finally, in the murine PTOA model, ERMs@siM13 could diagnose the early-stage PTOA, perform timely interventions, and monitor the OA progression level during treatment through a real-time detection of MMP13. Therefore, ERMs@siM13 represents an appealing approach for early-stage PTOA theranostics.

7.
Cureus ; 16(4): e57426, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38699090

ABSTRACT

BACKGROUND: Chronic periodontitis is a multifactorial inflammatory condition influenced by genetic factors. Matrix metalloproteinase (MMP)-13, serving as a crucial enzyme involved in extracellular matrix remodeling, is associated with the degradation of periodontal tissues. Therefore, this study assesses the genetic link between the MMP-13 (rs2252070) genetic variation and chronic periodontitis in a Southern Indian demographic. METHODOLOGY: The study was conducted at Saveetha Dental College in Chennai, India. It involved a total of 100 subjects, 50 individuals affected with periodontitis (classified as stage II and above, American Association of Periodontology 2018 criteria) and 50 individuals who were periodontally healthy or were diagnosed as having mild gingivitis. We isolated DNA from the blood samples obtained from the participants. Specific primers that flank the BsrI region of the MMP-13 receptor gene were used in the process of DNA amplification. Subsequently, a restriction fragment length analysis using the BsrI enzyme was carried out for genotyping of the amplicon. Based on the restriction fragment length polymorphism pattern, we obtained certain genotypes. These were further recorded and followed by statistical analysis. We conducted a chi-square test to draw a comparison in terms of their genotype and allele frequencies. We calculated the odds ratio, along with 95% confidence intervals. RESULTS: The frequency of genotypes and distribution of MMP-13 polymorphism did not exhibit a statistically significant difference at χ2 degrees of freedom (P = 0.913). We inferred from our study that there was no significant difference between the groups concerning homozygous and heterozygous mutant genotypes (AA vs. AG + GG), with a P-value of 0.6871. The observed frequencies of GG (47% vs. 43%) and AG+AA (41% vs. 42%) genotypes did not indicate a significant difference between the groups. Similarly, there was no noteworthy distinction between the A allele (62% vs. 65%) and G allele (38% vs. 35%) in the case and control groups. CONCLUSION: The findings of the study reveal that there is no correlation between MMP-13 (rs2252070) gene polymorphism and periodontitis.

8.
Front Pharmacol ; 15: 1384731, 2024.
Article in English | MEDLINE | ID: mdl-38774209

ABSTRACT

Background: The tumor microenvironment (TME) impacts the therapeutic efficacy of immune checkpoint inhibitors (ICIs). No liquid biomarkers are available to evaluate TME heterogeneity. Here, we investigated the clinical significance of PD-1-binding soluble PD-L1 (bsPD-L1) in gastric cancer (GC) patients and non-small cell lung cancer (NSCLC) patients treated with PD-1/PD-L1 blockade. Methods: We examined bsPD-L1, matrix metalloproteinases (MMPs), and IFN-γ levels in plasma samples from GC patients (n = 117) prior to surgery and NSCLC patients (n = 72) prior to and 2 months after ICI treatment. We also examined extracellular matrix (ECM) integrity, PD-L1 expression, and T cell infiltration in tumor tissues from 25 GC patients by Elastica Masson-Goldner staining and immunohistochemical staining for PD-L1 and CD3, respectively. Results: bsPD-L1 was detected in 17/117 GC patients and 16/72 NSCLC patients. bsPD-L1 showed strong or moderate correlations with plasma MMP13 or MMP3 levels, respectively, in both GC and NSCLC patients. bsPD-L1 expression in GC was associated with IFN-γ levels and intra-tumoral T cell infiltration, whereas MMP13 levels were associated with loss of ECM integrity, allowing tumor cells to access blood vessels. Plasma MMP3 and MMP13 levels were altered during ICI treatment. Combined bsPD-L1 and MMP status had higher predictive accuracy to identify two patient groups with favorable and poor prognosis than tumor PD-L1 expression: bsPD-L1+MMP13high in GC and bsPD-L1+(MMP3 and MMP13)increased in NSCLC were associated with poor prognosis, whereas bsPD-L1+MMP13low in GC and bsPD-L1+(MMP3 or MMP13)decreased in NSCLC were associated with favorable prognosis. Conclusion: Plasma bsPD-L1 and MMP13 levels indicate T cell response and loss of ECM integrity, respectively, in the TME. The combination of bsPD-L1 and MMPs may represent a non-invasive tool to predict recurrence in GC and the efficacy of ICIs in NSCLC.

9.
PeerJ ; 12: e17032, 2024.
Article in English | MEDLINE | ID: mdl-38770093

ABSTRACT

Purpose: This study seeks to identify potential clinical biomarkers for osteoarthritis (OA) using bioinformatics and investigate OA mechanisms through cellular assays. Methods: Differentially Expressed Genes (DEGs) from GSE52042 (four OA samples, four control samples) were screened and analyzed with protein-protein interaction (PPI) analysis. Overlapping genes in GSE52042 and GSE206848 (seven OA samples, and seven control samples) were identified and evaluated using Gene Set Enrichment Analysis (GSEA) and clinical diagnostic value analysis to determine the hub gene. Finally, whether and how the hub gene impacts LPS-induced OA progression was explored by in vitro experiments, including Western blotting (WB), co-immunoprecipitation (Co-IP), flow cytometry, etc. Result: Bioinformatics analysis of DEGs (142 up-regulated and 171 down-regulated) in GSE52042 identified two overlapping genes (U2AF2, TPX2) that exhibit significant clinical diagnostic value. These genes are up-regulated in OA samples from both GSE52042 and GSE206848 datasets. Notably, TPX2, which AUC = 0.873 was identified as the hub gene. In vitro experiments have demonstrated that silencing TPX2 can alleviate damage to chondrocytes induced by lipopolysaccharide (LPS). Furthermore, there is a protein interaction between TPX2 and MMP13 in OA. Excessive MMP13 can attenuate the effects of TPX2 knockdown on LPS-induced changes in OA protein expression, cell growth, and apoptosis. Conclusion: In conclusion, our findings shed light on the molecular mechanisms of OA and suggested TPX2 as a potential therapeutic target. TPX2 could promote the progression of LPS-induced OA by up-regulating the expression of MMP13, which provides some implications for clinical research.


Subject(s)
Cell Cycle Proteins , Chondrocytes , Disease Progression , Lipopolysaccharides , Matrix Metalloproteinase 13 , Microtubule-Associated Proteins , Osteoarthritis , Up-Regulation , Lipopolysaccharides/pharmacology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/chemically induced , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Chondrocytes/drug effects , Computational Biology , Protein Interaction Maps
10.
J Control Release ; 369: 493-505, 2024 May.
Article in English | MEDLINE | ID: mdl-38582335

ABSTRACT

Osteoarthritis (OA) is the most prevalent degenerative cartilage disease, but no effective treatment is currently available to ameliorate the dysregulation of cartilage catabolism. Cartilage degeneration is closely related to the change in the physiology of chondrocytes: for example, chondrocytes of the OA patients overexpress matrix metallopeptidase 13 (MMP13), a.k.a. collagenase 3, which damages the extracellular matrix (ECM) of the cartilage and deteriorate the disease progression. Inhibiting MMP13 has shown to be beneficial for OA treatments, but delivering therapeutics to the chondrocytes embedded in the dense cartilage is a challenge. Here, we engineered the exosome surface with the cartilage affinity peptide (CAP) through lipid insertion to give chondrocyte-targeting exosomes, CAP-Exo, which was then loaded with siRNA against MMP13 (siMMP13) in the interior to give CAP-Exo/siMMP13. Intra-articular administration of CAP-Exo/siMMP13 reduced the MMP13 level and increased collagen COL2A1 and proteoglycan in cartilage in a rat model of anterior cruciate ligament transection (ACLT)-induced OA. Proteomic analysis showed that CAP-Exo/siMMP13 treatment restored the altered protein levels in the IL-1ß-treated chondrocytes. Taken together, a facile exosome engineering method enabled targeted delivery of siRNA to chondrocytes and chondrocyte-specific silencing of MMP13 to attenuate cartilage degeneration.


Subject(s)
Chondrocytes , Exosomes , Matrix Metalloproteinase 13 , Osteoarthritis , RNA, Small Interfering , Rats, Sprague-Dawley , Regeneration , Exosomes/metabolism , Animals , Chondrocytes/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , RNA, Small Interfering/administration & dosage , Osteoarthritis/therapy , Male , Cartilage, Articular/metabolism , Peptides/administration & dosage , Peptides/chemistry , Cells, Cultured , Humans , Rats , Cartilage/metabolism
11.
Food Sci Biotechnol ; 33(7): 1715-1725, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38623430

ABSTRACT

Skin photoaging, characterized by collagen degradation and upregulation of matrix metalloproteinases (MMPs), is a major concern caused by UVB irradiation. In this study, we investigated the potential of Acanthopanax sessiliflorum extract (ASE) and Chaenomeles sinensis (CSE) extracts to mitigate the effects of UVB-induced photodamage in human fibroblast and hairless mice. Water extracts of AS (ASE) and CS (CSE) were found to inhibit the expression of MMP-1/-3 in vitro. Furthermore, the extract of mixture of AS and CS (ACE) showed more potent inhibitor effect, as compared to ASE and CSE. In UVB-irradiated hairless mice, oral administration of ACE effectively reduced wrinkle formation, skin roughness, and epidermal thickness while promoting the deposition of collagenous fibers. These results indicate that ACE has the potential to protect against skin photoaging by restoring the impaired skin via downregulation of MMP-1/-3 expression and secretion. Our findings highlight the therapeutic potential of ACE in mitigating skin photoaging. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01462-3.

12.
Adv Healthc Mater ; 13(16): e2303510, 2024 06.
Article in English | MEDLINE | ID: mdl-38545904

ABSTRACT

Targeted drug delivery and the reduction of off-target effects are crucial for the promising clinical application of nucleic acid drugs. To address this challenge, a new approach for treating osteoarthritis (OA) that accurately delivers antisense oligonucleotides (ASO) targeting matrix metalloproteinase-13 (ASO-MMP13) to chondrocytes, is developed. Small extracellular vesicles (exos) are ligated with chondrocyte affinity peptide (CAP) using Sortase A and subsequently incubated with cholesterol-modified ASO-MMP13 to construct a chondrocyte-targeted drug delivery exo (CAP-exoASO). Compared with exos without CAP (ExoASO), CAP-exoASOs attenuate IL-1ß-induced chondrocyte damage and prolong the retention time of ASO-MMP13 in the joint without distribution in major organs following intra-articular injection. Notably, CAP-exoASOs decrease MMP13 expression (P < 0.001) and upregulate COL2A1 expression (P = 0.006), resulting in reorganization of the cartilage matrix and alleviation of progression in the OA model. Furthermore, the Osteoarthritis Research Society International (OARSI) score of articular cartilage tissues treated with CAP-exoASO is comparable with that of healthy rats (P = 0.148). A mechanistic study demonstrates that CAP-exoASO may reduce inflammation by suppressing the IL-17 and TNF signaling pathways. Based on the targeted delivery effect, CAP-exoASOs successfully accomplish cartilage repair and have considerable potential for development as a promising therapeutic modality for satisfactory OA therapy.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Chondrocytes , Cysteine Endopeptidases , Extracellular Vesicles , Matrix Metalloproteinase 13 , Osteoarthritis , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Animals , Osteoarthritis/therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Chondrocytes/metabolism , Rats , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Aminoacyltransferases/metabolism , Aminoacyltransferases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Male , Drug Delivery Systems/methods , Rats, Sprague-Dawley , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/administration & dosage , Cartilage, Articular/metabolism , Cartilage, Articular/pathology
13.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338721

ABSTRACT

We investigated the effects of a Tankyrase (TNKS-1/2) inhibitor on mechanical stress-induced gene expression in human chondrocytes and examined TNKS-1/2 expression in human osteoarthritis (OA) cartilage. Cells were seeded onto stretch chambers and incubated with or without a TNKS-1/2 inhibitor (XAV939) for 12 h. Uni-axial cyclic tensile strain (CTS) (0.5 Hz, 8% elongation, 30 min) was applied and the gene expression of type II collagen a1 chain (COL2A1), aggrecan (ACAN), SRY-box9 (SOX9), TNKS-1/2, a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), and matrix metalloproteinase-13 (MMP-13) were examined by real-time PCR. The expression of ADAMTS-5, MMP-13, nuclear translocation of nuclear factor-κB (NF-κB), and ß-catenin were examined by immunocytochemistry and Western blotting. The concentration of IL-1ß in the supernatant was examined by enzyme-linked immunosorbent assay (ELISA). TNKS-1/2 expression was assessed by immunohistochemistry in human OA cartilage obtained at the total knee arthroplasty. TNKS-1/2 expression was increased after CTS. The expression of anabolic factors were decreased by CTS, however, these declines were abrogated by XAV939. XAV939 suppressed the CTS-induced expression of catabolic factors, the release of IL-1ß, as well as the nuclear translocation of NF-κB and ß-catenin. TNKS-1/2 expression increased in mild and moderate OA cartilage. Our results demonstrated that XAV939 suppressed mechanical stress-induced expression of catabolic proteases by the inhibition of NF-κB and activation of ß-catenin, indicating that TNKS-1/2 expression might be associated with OA pathogenesis.


Subject(s)
Cartilage, Articular , Osteoarthritis , Tankyrases , Humans , beta Catenin/metabolism , Cartilage, Articular/metabolism , Cells, Cultured , Chondrocytes/drug effects , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , NF-kappa B/metabolism , Osteoarthritis/metabolism , Peptide Hydrolases/drug effects , Peptide Hydrolases/metabolism , Stress, Mechanical , Tankyrases/antagonists & inhibitors
14.
Mol Carcinog ; 63(4): 714-727, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38251858

ABSTRACT

The histone variant, macroH2A (mH2A) influences gene expression through epigenetic regulation. Tumor suppressive function of mH2A isoforms has been reported in various cancer types, but few studies have investigated the functional role of mH2A2 in breast cancer pathophysiology. This study aimed to determine the significance of mH2A2 in breast cancer development and progression by exploring its downstream regulatory mechanisms. Knockdown of mH2A2 facilitated the migration and invasion of breast cancer cells, whereas its overexpression exhibited the opposite effect. In vivo experiments revealed that augmenting mH2A2 expression reduced tumor growth and lung metastasis. Microarray analysis showed that TM4SF1 emerged as a likely target linked to mH2A2 owing to its significant suppression in breast cancer cell lines where mH2A2 was overexpressed among the genes that exhibited over twofold upregulation upon mH2A2 knockdown. Suppressing TM4SF1 reduced the migration, invasion, tumor growth, and metastasis of breast cancer cells in vitro and in vivo. TM4SF1 depletion reversed the increased aggressiveness triggered by mH2A2 knockdown, suggesting a close interplay between mH2A2 and TM4SF1. Our findings also highlight the role of the mH2A2/TM4SF1 axis in activating the AKT/NF-κB pathway. Consequently, activated NF-κB signaling leads to increased expression and secretion of MMP13, a potent promoter of metastasis. In summary, we propose that the orchestrated regulation of the mH2A2/TM4SF1 axis in conjunction with the AKT/NF-κB pathway and the subsequent elevation in MMP13 expression constitute pivotal factors governing the malignancy of breast cancer.


Subject(s)
Breast Neoplasms , NF-kappa B , Humans , Female , NF-kappa B/genetics , NF-kappa B/metabolism , Histones/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Breast Neoplasms/metabolism , Epigenesis, Genetic , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Neoplasm Proteins/genetics , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/physiology , Antigens, Surface/genetics , Antigens, Surface/metabolism
15.
Pathol Res Pract ; 253: 155045, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38176307

ABSTRACT

BACKGROUND: Elevated serum levels of MMP-13 are linked to tumor growth and metastasis, while miR-138 dysregulation is observed in breast cancer cases. The aim of this study is to investigate the expression of miR-138 and MMP-13 levels as potential biomarkers for the prognosis of breast cancer. PATIENTS AND METHOD: In this retrospective case-control study, 119 female subjects were recruited and divided into three groups. MMP-13 level was measured using Enzyme Linked Immunosorbent Assay (ELISA), while real-time PCR technique was employed to quantify miR-138 expression. RESULTS: Both non-metastatic and metastatic groups showed significantly higher levels of serum MMP-13 compared to other groups. MMP-13 levels are significantly increased among patients with advanced tumor size, lymph node metastasis, and triple-negative breast cancer cases. An inverse significant association between MMP-13 levels and response to treatment was observed. Expression of miR-138 underwent a significant down-regulation in breast cancer patients, and a statistically significant association was established between miR-138 expression and triple-negative breast cancer cases. A positive association was detected between the increase in miR-138 expression and the good response to treatment. The expression of miR-138 was inversely correlated with the MMP-13 levels. CONCLUSION: MMP-13 levels were significantly higher in breast cancer, especially in advanced cases, suggesting its role in promoting tumor invasion and metastasis. MiR-138 was down-regulated in breast cancer, especially in triple-negative breast cancer patients, rendering it a promising biomarker for triple-negative breast cancer. Modulation of miR-138 expression and MMP-13 levels may represent therapeutic targets for breast cancer.


Subject(s)
Breast Neoplasms , MicroRNAs , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Prognosis , Case-Control Studies , Retrospective Studies , Egypt , Matrix Metalloproteinase 13/metabolism , Biomarkers, Tumor/analysis , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
16.
Curr Mol Med ; 24(2): 244-251, 2024.
Article in English | MEDLINE | ID: mdl-36617714

ABSTRACT

BACKGROUND: Cystic echinococcosis (CE) is a zoonotic disease caused by the Echinococcus granulosus senso lato (E. granulosus s.l.) larval stages. Parasitederived products have been shown to regulate host matrix metalloproteinases (MMPs), contributing to CE pathogenesis and progressive liver fibrosis in intermediate hosts. The current study aimed to investigate the potential role of MMP1, 7, 8, and 13 in E. granulosus s.l-induced liver fibrosis. METHODS: Thirty CE patients with active, transitional, or inactive hydatid cysts were enrolled in this study to determine the inductive effects of E. granulosus on the expression of MMP-1, MMP-7, MMP-8, and MMP-13 in healthy liver tissue and fibrotic liver tissue using qRT-PCR. RESULTS: According to the WHO-IWGE classification, patients with functional cysts (CE1 and CE2) had the highest percentage (46.6%). MMP-1, MMP-7, MMP-8, and MMP-13 expression levels were significantly higher in fibrotic liver than in normal liver tissue. MMP-13 and MMP-1 had the highest and lowest expression levels among MMPs. Compared to the normal group, the fold change for MMP-13 in the fibrotic group was greater than 12 and had the highest AUC value (AUC= 0.8283). CONCLUSION: Our findings suggest that E. granulosus-derived products might be involved in regulating host MMPs. Thus, MMPs may be considered potential biomarkers for predicting CE prognosis. Because of the non-normal distribution of our patients' CE types, further research, particularly on circulation MMPs, is needed to confirm the potential role of MMPs in CE pathogenesis and to follow up on CE patients.


Subject(s)
Echinococcosis , Matrix Metalloproteinase 1 , Humans , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 7 , Matrix Metalloproteinase 8 , Echinococcosis/genetics , Liver Cirrhosis
17.
Cell Biochem Biophys ; 82(1): 259-270, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38129709

ABSTRACT

Excessive aggressive migration and invasion are important factors that increase the mortality of cancer patients. Matrix metalloproteinase 13 (MMP13) expression is positively correlated with lung cancer malignancy. However, the mechanism underlying an elevated MMP13 expression is not clearly defined. In this study, we demonstrated that hypoxia induced by CoCl2 enhanced the expression of HIF1α, JAK2, STAT3 and MMP13 in A549 cells. A positive correlation between HIF1α and MMP13 expression was observed in lung adenocarcinoma patients. Mechanically, hypoxia upregulated HIF1α/JAK2/STAT3 signal axis, promoted transcription factor STAT3 to bind to MMP13 promoter region, and activated MMP13 transcription, finally promoted cell invasion and migration. However, stattic (STAT3 inhibitor) could reverse this effect caused by STAT3 in A549 cells. Together our data indicated that hypoxia might promote lung cancer cell migration and invasion through the HIF1α/JAK2/STAT3 axis by activating MMP13 transcription. MMP13 could be a promising therapeutic target for lung adenocarcinoma metastasis.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Lung Neoplasms/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Hypoxia/metabolism , Cell Movement , STAT3 Transcription Factor/metabolism , Cell Line, Tumor , Janus Kinase 2/metabolism , Janus Kinase 2/pharmacology , Cell Proliferation
18.
BMC Cancer ; 23(1): 1213, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066539

ABSTRACT

BACKGROUND: Breast cancer (BC) patients tend to suffer from distant metastasis, especially bone metastasis. METHODS: All the analysis based on open-accessed data was performed in R software, dependent on multiple algorithms and packages. The RNA levels of specific genes were detected using quantitative Real-time PCR as a method of detecting the RNA levels. To assess the ability of BC cells to proliferate, we utilized the CCK8 test, colony formation, and the 5-Ethynyl-20-deoxyuridine assay. BC cells were evaluated for invasion and migration by using Transwell assays and wound healing assays. RESULTS: In our study, we identified the molecules involved in BC bone metastasis based on the data from multiple BC cohorts. Then, we comprehensively investigated the effect pattern and underlying biological role of these molecules. We found that in the identified molecules, the EMP1, ACKR3, ITGA10, MMP13, COL11A1, and THY1 were significantly correlated with patient prognosis and mainly expressed in CAFs. Therefore, we explored the CAFs in the BC microenvironment. Results showed that CAFs could activate multiple carcinogenic pathways and most of these pathways play an important role in cancer metastasis. Meanwhile, we noticed the interaction between CAFs and malignant, endothelial, and M2 macrophage cells. Moreover, we found that CAFs could induce the remodeling of the BC microenvironment and promote the malignant behavior of BC cells. Then, we identified MMP13 for further analysis. It was found that MMP13 can enhance the malignant phenotype of BC cells. Meanwhile, biological enrichment and immune infiltration analysis were conducted to present the effect pattern of MMP13 in BC. CONCLUSIONS: Our result can improve the understanding of researchers on the underlying mechanisms of BC bone metastasis.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , Breast Neoplasms/pathology , MicroRNAs/genetics , Matrix Metalloproteinase 13 , Cell Movement/genetics , Breast/pathology , Tumor Microenvironment
19.
Cells ; 12(23)2023 11 26.
Article in English | MEDLINE | ID: mdl-38067138

ABSTRACT

The role of desmoglein-3 (DSG3) in oncogenesis is unclear. This study aimed to uncover molecular mechanisms through comparative transcriptome analysis in oral cancer cells, defining potential key genes and associated biological processes related to DSG3 expression. Four mRNA libraries of oral squamous carcinoma H413 cell lines were sequenced, and 599 candidate genes exhibited differential expression between DSG3-overexpressing and matched control lines, with 12 genes highly significantly differentially expressed, including 9 upregulated and 3 downregulated. Genes with known implications in cancer, such as MMP-13, KRT84, OLFM4, GJA1, AMOT and ADAMTS1, were strongly linked to DSG3 overexpression. Gene ontology analysis indicated that the DSG3-associated candidate gene products participate in crucial cellular processes such as junction assembly, focal adhesion, extracellular matrix formation, intermediate filament organisation and keratinocyte differentiation. Validation of RNA-Seq was performed through RT-qPCR, Western blotting and immunofluorescence analyses. Furthermore, using transmission electron microscopy, we meticulously examined desmosome morphology and revealed a slightly immature desmosome structure in DSG3-overexpressing cells compared to controls. No changes in desmosome frequency and diameter were observed between the two conditions. This study underscores intricate and multifaceted alterations associated with DSG3 in oral squamous carcinoma cells, implying a potential oncogenic role of this gene in biological processes that enable cell communication, motility and survival.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Desmoglein 3/genetics , Desmoglein 3/analysis , Desmoglein 3/metabolism , Desmosomes/metabolism , Gene Expression Profiling , Keratinocytes/metabolism , Keratins, Hair-Specific/analysis , Keratins, Hair-Specific/genetics , Keratins, Hair-Specific/metabolism , Keratins, Type II/analysis , Keratins, Type II/genetics , Keratins, Type II/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Oncogenes , Transcriptome
20.
Zhongguo Gu Shang ; 36(11): 1075-80, 2023 Nov 25.
Article in Chinese | MEDLINE | ID: mdl-38012878

ABSTRACT

OBJECTIVE: To explore the effect of miR-143 regulating matrix metalloproteinase(MMP)-13 expression on migration and invasion of osteosarcoma cells. METHODS: The mouse osteosarcoma cell line 143B cells were cultured in 96-well plates, and blank group, negative group, positive group, and intervention group were set up. Then, the blank group did no treatment 50 µg miR-143 mimic was added to positive group, negative group added equal mimic NC (control sequence of miR-143 mimic), the intervention group was added 50 µg miR-143 mimic and 10 µg MMP-13 protein, all groups continued to culture for 3 to 6 hours, and finally the serum was aspirated to treat for half an hour. The protein expressions of miR-143 and MMP-13 in each group were measured by fluorescence quantitative PCR experiment and Western blot experiment, respectively, and the invasion and migration abilities of cells were measured by Transwell and scratch experiments. RESULTS: The expression of MMP-13 protein in the positive group and the intervention group was significantly lower than that in the blank group, and the positive group was lower than the intervention group (P<0.05);The mean numbers of invasive cells in blank group, negative group, positive group and intervention group were (1 000.01±44.77), (959.25±46.32), (245.04±4.33), (634.06±33.78) cells/field, respectively;the scratch healing rate of the positive group and the intervention group was significantly lower than that of the blank group, and the positive group was lower than the intervention group (P<0.05). CONCLUSION: MMP-13 is a target of miR-143, which can reduce the migration and invasion ability of osteosarcoma cells by inhibiting the expression of MMP-13.


Subject(s)
Matrix Metalloproteinase 13 , MicroRNAs , Osteosarcoma , Osteosarcoma/genetics , Osteosarcoma/pathology , MicroRNAs/genetics , Matrix Metalloproteinase 13/genetics , Neoplasm Invasiveness , Animals , Mice , Cell Line, Tumor , Cell Movement
SELECTION OF CITATIONS
SEARCH DETAIL
...