Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.819
Filter
1.
Cureus ; 16(6): e62095, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38989381

ABSTRACT

We present a case of a fetus acquiring two different balanced translocations from each parent and subsequent uniparental isodisomy from postzygotic loss of a paternal chromosome. Balanced chromosomal translocations occur in 0.14% of the population and increase the risk of other genetic abnormalities, such as uniparental disomy (UPD) and mosaicism. Preimplantation genetic testing (PGT) can identify some genetic abnormalities. Translocations t(6;21) and t(5;15) have been reported individually but never together in a viable fetus. A non-consanguineous couple who were known carriers of two different balanced translocations conceived via classic in vitro fertilization (IVF). They had a normal PGT completed. Chorionic villus sampling (CVS) revealed that the fetus had received t(6;21) from the mother and t(5;15) from the father. The probability of the fetus acquiring both translocations was 2.8%. CVS also revealed UPD of chromosome 14. Amniocentesis was performed, which was consistent with the CVS in detecting the balanced translocations but provided more information about the UPD, determining that it was a mosaic maternal uniparental isodisomy of chromosome 14 (UPD(14)mat). The couple underwent genetic counseling to discuss the above findings and ultimately decided on dilation and evacuation at 17 weeks of gestation. The likelihood of conception of this fetus and survival past the first trimester is extremely rare. These specific chromosomal translocations and (UPD(14)mat) have never been reported before. This case emphasizes the concomitant nature of imprinted genes, resulting in multiple genetically unique alterations. This report also highlights the limitations of PGT, CVS, and amniocentesis in being reproducibly consistent, which is important to discuss prior to IVF conception.

2.
J Pediatr Surg ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38955626

ABSTRACT

INTRODUCTION: Predicted 1-year survival of children with trisomy 18 (T18) has increased to 59.3%. We aimed to systematically review the characteristics, management, and outcomes of children with T18 and hepatoblastoma. METHODS: A systematic literature review of the PubMed, Embase, Scopus, Web of Science, and Cochrane Library databases was performed according to the PRISMA 2020 statement (end-of-search date: 03/03/2024). RESULTS: Fifty studies reporting on 70 patients were included. The median age at diagnosis was 11.5 months, 85.9% were female (n = 55/64), and 15.0% had mosaic T18 (n = 6/40). Diagnosis was made during symptom evaluation (most commonly hepatomegaly or abdominal mass) in 45.5% (n = 15/33), incidentally in 24.2% (n = 8/33), during surveillance with abdominal ultrasound in 18.2% (n = 6/33), and at autopsy in 12.1% (n = 4/33). The median tumor size was 6.4 cm, 33.3% had multiple tumors (n = 14/42), and metastasis was present in one patient (3.8%; n = 1/26). Neoadjuvant chemotherapy was administered in 42.6% (n = 26/61) and adjuvant chemotherapy in 31.6% (n = 18/57). Surgical treatment was performed in 64.2% (n = 43/67). Of the patients not diagnosed on autopsy, overall mortality was 35.5% (n = 22/62) over a median follow-up of 11.0 months. Among the 26 deceased patients (including those diagnosed on autopsy), the most common causes of death were cardiopulmonary disease (38.5%, n = 10/26) and tumor progression (30.8%, n = 8/26). CONCLUSIONS: T18 does not preclude resection with curative intent for hepatoblastoma. Combination of surgery and chemotherapy should be considered in children on an individualized basis depending on tumor characteristics and underlying cardiopulmonary comorbidities. Locoregional modalities may have a role in the setting of severe comorbidities. LEVEL OF EVIDENCE: Level IV evidence.

3.
Birth Defects Res ; 116(7): e2380, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980211

ABSTRACT

BACKGROUND: Fontaine progeroid syndrome (FPS, OMIM 612289) is a recently identified genetic disorder stemming from pathogenic variants in the SLC25A24 gene, encoding a mitochondrial carrier protein. It encompasses Gorlin-Chaudry-Moss syndrome and Fontaine-Farriaux syndrome, primarily manifesting as craniosynostosis with brachycephaly, distinctive dysmorphic facial features, hypertrichosis, severe prenatal and postnatal growth restriction, limb shortening, and early aging with characteristic skin changes, phalangeal anomalies, and genital malformations. CASES: All known occurrences of FPS have been postnatally observed until now. Here, we present the first two prenatal cases identified during the second trimester of pregnancy. While affirming the presence of most postnatal abnormalities in prenatal cases, we note the absence of a progeroid appearance in young fetuses. Notably, our reports introduce new phenotypic features like encephalocele and nephromegaly, which were previously unseen postnatally. Moreover, paternal SLC25A24 mosaicism was detected in one case. CONCLUSIONS: We present the initial two fetal instances of FPS, complemented by thorough phenotypic and genetic assessments. Our findings expand the phenotypical spectrum of FPS, unveiling new fetal phenotypic characteristics. Furthermore, one case underscores a potential novel inheritance pattern in this disorder. Lastly, our observations emphasize the efficacy of exome/genome sequencing in both prenatal and postmortem diagnosis of rare polymalformative syndromes with a normal karyotype and array-based comparative genomic hybridization (CGH).


Subject(s)
Genotype , Mosaicism , Phenotype , Prenatal Diagnosis , Humans , Mosaicism/embryology , Female , Pregnancy , Prenatal Diagnosis/methods , Male , Fetus , Adult , Mitochondrial Proteins/genetics , Mutation/genetics , Progeria/genetics , Calcium-Binding Proteins , Antiporters
4.
Neurogenetics ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976082

ABSTRACT

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with considerable genetic heterogeneity. The disorder is clinically diagnosed based on DSM-5 criteria, featuring deficits in social communication and interaction, along with restricted and repetitive behaviours. Here, we performed whole-genome sequencing (WGS) on four individuals with ASD from two multiplex families (MPX), where more than one individual is affected, to identify potential single nucleotide variants (SNVs) and structural variants (SVs) in coding and non-coding regions. A rigorous bioinformatics pipeline was employed for variant detection, followed by segregation analysis. Our investigation revealed an unreported splicing variant in the DYRK1A gene (c.-77 + 2T > C; IVS1 + 2T > C; NM_001396.5), in heterozygote form in two affected children in one of the families (family B), which was absent in the healthy parents and siblings. This finding suggests the presence of gonadal mosaicism in one of the parents, representing the first documented instance of such inheritance for a variant in the DYRK1A gene associated with ASD. Furthermore, we identified a 50 bp deletion in intron 9 of the DLG2 gene in two affected patients from the same family, confirmed by PCR and Sanger sequencing. In Family A, we identified potential candidate variants associated with ASD shared by the two patients. These findings enhance our understanding of the genetic landscape of ASD, particularly in MPX families, and highlight the utility of WGS in uncovering novel genetic contributions to neurodevelopmental disorders.

5.
BMC Vet Res ; 20(1): 298, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971779

ABSTRACT

BACKGROUND: Sex chromosome abnormalities associated with disorders of sexual development (DSD) are rarely described in cats, mainly due to the lack of chromossome studies that precisely reveal the condition. Genetic approaches are therefore required in order to detect sex chromossomes abnormalities as variations in the number and structure of chromosomes, or the presence of a second cell line as mosaicim or chimerism. CASE PRESENTATION: A male Shorthair cryptorchid cat was presented with clinical signs of anorexia, tenesmus and hyperthermia. Ultrasonography revealed a fluid-filled structure, with approximately 1 cm in diameter, adjacent to the descending colon. Computed tomography evidenced a tubular structure, ventral to the descending colon and caudal to the bladder, which extended cranially, through two branches. Histopathological evaluation confirmed the presence of two atrophic uterine horns and one hypoplastic testicle with epididymis at the end of one of the uterine horns. The end of the other uterine horn was attached to a structure composed by a mass of adipocytes. Cytogenetic analysis revealed a mosaic 37,X/38,XY karyotype. The two cell lines were found in 15% and 85% of the lymphocytes, respectively. Genetic analysis confirmed the presence of SRY and ZFY genes in blood and hair bulbs, and revealed a marked reduction in SRY expression in the testicle. Additionally, this case presented exceptionally rare features, such as a Leydig' cell tumour and a chronic endometritis in both uterine horns. CONCLUSIONS: Complete imaging workup, cytogenetic analysis and SRY gene expression should be systematically realized, in order to properly classify disorders of sexual development (DSD) in cats.


Subject(s)
Cat Diseases , Karyotype , Mosaicism , Animals , Cats , Male , Cat Diseases/genetics , Cat Diseases/pathology , Cat Diseases/diagnostic imaging , Disorders of Sex Development/veterinary , Disorders of Sex Development/genetics , Disorders of Sex Development/pathology
6.
Placenta ; 154: 137-144, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38972082

ABSTRACT

INTRODUCTION: A high frequency of single nucleotide somatic mutations in the placenta has been recently described, but its relationship to placental dysfunction is unknown. METHODS: We performed a pilot case-control study using paired fetal, maternal, and placental samples collected from healthy live birth controls (n = 10), live births with fetal growth restriction (FGR) due to placental insufficiency (n = 7), and stillbirths with FGR and placental insufficiency (n = 11). We quantified single nucleotide and structural somatic variants using bulk whole genome sequencing (30-60X coverage) in four biopsies from each placenta. We also assessed their association with clinical and histological evidence of placental dysfunction. RESULTS: Seventeen pregnancies had sufficiently high-quality placental, fetal, and maternal DNA for analysis. Each placenta had a median of 473 variants (range 111-870), with 95 % arising in just one biopsy within each placenta. In controls, live births with FGR, and stillbirths, the median variant counts per placenta were 514 (IQR 381-779), 582 (450-735), and 338 (245-441), respectively. After adjusting for depth of sequencing coverage and gestational age at birth, the somatic mutation burden was similar between groups (FGR live births vs. controls, adjusted diff. 59, 95 % CI -218 to +336; stillbirths vs controls, adjusted diff. -34, -351 to +419), and with no association with placental dysfunction (p = 0.7). DISCUSSION: We confirmed the high prevalence of somatic mutation in the human placenta and conclude that the placenta is highly clonal. We were not able to identify any relationship between somatic mutation burden and clinical or histologic placental insufficiency.

7.
Eur J Obstet Gynecol Reprod Biol ; 300: 12-16, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972161

ABSTRACT

OBJECTIVE: In preimplantation genetic testing for aneuploidy, opinions regarding the handling of mosaic embryos vary. In this study, we aimed to investigate the effects of freeze-thawing, the number of cells obtained, and the number of laser irradiation cycles on the degree of embryonic mosaicism. STUDY DESIGN: This study was conducted in three parts. First, we classified specimens into the normal biopsy (control) (119 patients, 304 blastocysts) and thawed-biopsy (TB group) (26 patients, 72 blastocysts)) groups. The control and TB groups were then classified into three categories (euploidy, mosaic and aneuploidy) according to next-generation sequencing (NGS) results, and the number of cells collected and laser irradiation cycles were compared for each category. Subsequently, the effects of differences in the number of cells collected and laser irradiation cycles on NGS results were investigated in the control and TB groups. Finally, data on cell collection and laser irradiation cycles and NGS analysis results for the groups were compared. RESULTS: The TB group had a significantly higher incidence of chromosomal mosaicism than the control group. Neither the number of cells collected nor the laser irradiation cycles affected the percentage of chromosomal mosaicism. However, the freeze-thaw process increased the occurrence of mosaicism. CONCLUSIONS: This study showed that repeated freeze-thaw cycles increase the incidence of mosaicism, but the embryos are not aneuploid and are therefore suitable for transfer.

8.
Br J Haematol ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973155

ABSTRACT

Routine ABO blood group typing of apparently healthy individuals sporadically uncovers unexplained mixed-field reactions. Such blood group discrepancies can either result from a haematopoiesis-confined or body-wide dispersed chimerism or mosaicism. Taking the distinct clinical consequences of these four different possibilities into account, we explored the responsible cause in nine affected individuals. Genotype analyses revealed that more than three-quarters were chimaeras (two same-sex females, four same-sex males, one sex-mismatched male), while two were mosaics. Short tandem repeat analyses of buccal swab, hair root and nail DNA suggested a body-wide involvement in all instances. Moreover, genome-wide array analyses unveiled that in both mosaic cases the causative genetic defect was a unique copy-neutral loss of heterozygosity encompassing the entire long arm of chromosome 9. The practical transfusion- or transplantation-associated consequences of such incidental discoveries are well known and therefore easily manageable. Far less appreciated is the fact that such findings also call attention to potential problems that directly ensue from their specific genetic make-up. In case of chimerism, these are the appearance of seemingly implausible family relationships and pitfalls in forensic testing. In case of mosaicism, they concern with the necessity to delineate innocuous pre-existent or age-related from disease-predisposing and disease-indicating cell clones.

9.
Article in English | MEDLINE | ID: mdl-38973169

ABSTRACT

OBJECTIVES: 45,X/46,XY mosaicism is a rare condition with clinical and genetic heterogeneity and have a greatly increased risk of developing germ cell tumors. We describe a rare 45,X/46,XY Chinese girl with malignant tumors, especially focusing on the molecular genetics of gonadal tumor. CASE PRESENTATION: We report a phenotypically Turner-like Chinese adolescent girl who presented primary amenorrhea and a pelvic mass as the chief complaint, which finally demonstrated dysgerminoma replacing the left gonad and gonadoblastoma arising from right gonad respectively. Her chromosome karyotype was 45,X(4)/46,XY(46); Y-chromosome microdeletions in AZFb regions were found on gonadal DNA rather than peripheral blood lymphocyte (PBL) DNA, while no variants were found in the promoter and coding region of SRY gene in both PBL and gonadal tissues. She underwent bilateral gonadectomy; no recurrence or serious complications were identified after 3 years of follow-up. CONCLUSIONS: This case emphasizes the probable correlation between Y chromosome microdeletions in gonadal tissue and the severity of the phenotype in patients with 45,X/46,XY mosaicism and highlights the importance of clinical genetic testing at the chromosomal and molecular level.

10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 535-541, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948294

ABSTRACT

Genomic mosaicism arising from mosaic variants is a phenomenon that describes the presence of a cell or cell populations with different genome compositions from the germline cells of an individual. It comprises all types of genetic variants. A large proportion of childhood genetic disorders are defined as being de novo, meaning that the disease-causing mutations are only detected in the proband, not in any of the parents. Population studies show that 80% of the de novo mutations arise from the paternal haplotype, that is, from paternal sperm mosaicism. This review provides a summary of the types and detection strategies of sperm mosaicism. In addition, it provides discussions on how recent studies demonstrated that genomic mosaic mutations in parents, especially those in the paternal sperms, could be inherited by the offspring and cause childhood disorders. According to the previous findings of the author's research team, sperm mosaicism derived from early embryogenesis and primordial germ cell stages can explain 5% to 20% of the de novo mutations related to clinical phenotypes and can serve as an important predictor of both rare and complex disorders. Sperm mosaicism shows great potential for clinical genetic diagnosis and consultations. Based on the published literature, the author suggests that, large-scale screening for de novo sperm mosaic mutations and population-based genetic screening should be conducted in future studies, which will greatly enhance the risk assessment in the offspring and effectively improve the genetic health at the population level. Implementation of direct sperm detection for de novo mutations will significantly increase the efficiency of the stratification of patient cohorts and improve recurrence risk assessment for future births. Future research in the field should be focused on the impact of environmental and lifestyle factors on the health of the offspring through sperms and their modeling of mutation signatures. In addition, targeted in vitro modeling of sperm mutations will also be a promising direction.


Subject(s)
Mosaicism , Spermatozoa , Humans , Male , Mutation , Genetic Testing , Child
11.
Fam Cancer ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822937

ABSTRACT

Peutz-Jeghers syndrome (PJS) is an autosomal dominant disorder, caused by germline variants in the serine/threonine kinase 11 (STK11) gene. However, mosaic variants in STK11 gene have been rarely described. A 25-year-old woman diagnosed with PJS due to multiple hamartomatous polyps in the gastrointestinal tract was referred to our clinic. In the molecular diagnosis, the patient was evaluated using the STK11 gene sequence analysis and multiplex ligation-dependent probe amplification (MLPA) method, which suggested no pathogenic variant to account for the clinical picture. Given that the clinical findings of the patient were consistent with those of PJS, the raw data from next-generation sequencing (NGS) were re-examined for mosaicism which led to the detection of a novel mosaic c.920 + 1G > T variant in STK11 gene with a rate of 23% (1860x). Deep read-level NGS was performed on buccal mucosa and polyp samples to determine mosaicism levels in other tissues. Variant frequencies were 29% (710x) and 31% (1301x), respectively. Mosaicism should be considered in cases with clear clinical diagnostic criteria, such as PJS, where the pathogenic variant cannot be detected by sequence analysis and MLPA methods. Identification of mosaicism in these patients is very important as it can have an impact on patient follow-up and genetic counseling for relatives.

12.
Brain ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916065

ABSTRACT

Somatic mosaicism in a fraction of brain cells causes neurodevelopmental disorders, including childhood intractable epilepsy. However, the threshold for somatic mosaicism leading to brain dysfunction is unknown. In this study, we induced various mosaic burdens in focal cortical dysplasia type II (FCD II) mice, featuring mTOR somatic mosaicism and spontaneous behavioral seizures. The mosaic burdens ranged from approximately 1,000 to 40,000 neurons expressing the mTOR mutant in the somatosensory (SSC) or medial prefrontal (PFC) cortex. Surprisingly, approximately 8,000 to 9,000 neurons expressing the MTOR mutant, which are extrapolated to constitute 0.08-0.09% of total cells or roughly 0.04% of variant allele frequency (VAF) in the mouse hemicortex, were sufficient to trigger epileptic seizures. The mutational burden was correlated with seizure frequency and onset, with a higher tendency for electrographic inter-ictal spikes and beta- and gamma-frequency oscillations in FCD II mice exceeding the threshold. Moreover, mutation-negative FCD II patients in deep sequencing of their bulky brain tissues revealed somatic mosaicism of the mTOR pathway genes as low as 0.07% in resected brain tissues through ultra-deep targeted sequencing (up to 20 million reads). Thus, our study suggests that extremely low levels of somatic mosaicism can contribute to brain dysfunction.

13.
Methods Mol Biol ; 2825: 67-78, 2024.
Article in English | MEDLINE | ID: mdl-38913303

ABSTRACT

Somatic chromosomal mosaicism, chromosome instability, and cancer are intimately linked together. Addressing the role of somatic genome variations (encompassing chromosomal mosaicism and instability) in cancer yields paradoxical results. Firstly, somatic mosaicism for specific chromosomal rearrangement causes cancer per se. Secondly, chromosomal mosaicism and instability are associated with a variety of diseases (chromosomal disorders demonstrating less severe phenotypes, complex diseases), which exhibit cancer predisposition. Chromosome instability syndromes may be considered the best examples of these diseases. Thirdly, chromosomal mosaicism and instability are able to result not only in cancerous diseases but also in non-cancerous disorders (brain diseases, autoimmune diseases, etc.). Currently, the molecular basis for these three outcomes of somatic chromosomal mosaicism and chromosome instability remains incompletely understood. Here, we address possible mechanisms for the aforementioned scenarios using a system analysis model. A number of theoretical models based on studies dedicated to chromosomal mosaicism and chromosome instability seem to be valuable for disentangling and understanding molecular pathways to cancer-causing genome chaos. In addition, technological aspects of uncovering causes and consequences of somatic chromosomal mosaicism and chromosome instability are discussed. In total, molecular cytogenetics, cytogenomics, and system analysis are likely to form a powerful technological alliance for successful research against cancer.


Subject(s)
Chromosomal Instability , Mosaicism , Neoplasms , Humans , Neoplasms/genetics , Chromosome Aberrations
14.
Genes (Basel) ; 15(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927714

ABSTRACT

Mosaicism for autosomal trisomy is uncommon in clinical practice. However, despite its rarity among both prenatally and postnatally diagnoses, there are a large number of characterized and published cases. Surprisingly, in contrast to regular trisomies, no attempts at systematic analyses of mosaic carriers' demographics were undertaken. This is the first study aimed to address this gap. For that, we have screened more than eight hundred publications on mosaic trisomies, reviewing data including gender and clinical status of mosaic carriers, maternal age and reproductive history. In total, 596 publications were eligible for analysis, containing data on 948 prenatal diagnoses, including true fetal mosaicism (TFM) and confined placental mosaicism (CPM), and on 318 cases of postnatally detected mosaicism (PNM). No difference was found in maternal age between normal pregnancy outcomes with appropriate birth weight and those with intrauterine growth restriction. Unexpectedly, a higher proportion of advanced maternal ages (AMA) was found in normal outcomes compared to abnormal ones (abnormal fetus or newborn) and fetal losses, 73% vs. 56% and 50%, p = 0.0015 and p = 0.0011, correspondingly. Another intriguing finding was a higher AMA proportion in mosaic carriers with concomitant uniparental disomy (UPD) for chromosomes 7, 14, 15, and 16 compared to carriers with biparental disomy (BPD) (72% vs. 58%, 92% vs. 55%, 87% vs. 78%, and 65% vs. 24%, correspondingly); overall figures were 78% vs. 48%, p = 0.0026. Analysis of reproductive histories showed a very poor reporting but almost two-fold higher rate of mothers reporting a previous fetal loss from PNM cohort (in which almost all patients were clinically abnormal) compared to mothers from the TFM and CPM cohorts (with a large proportion of normal outcomes), 30% vs. 16%, p = 0.0072. The occurrence of a previous pregnancy with a chromosome abnormality was 1 in 13 in the prenatal cohort and 1 in 16 in the postnatal cohort, which are five-fold higher compared to published studies on non-mosaic trisomies. We consider the data obtained in this study to be preliminary despite the magnitude of the literature reviewed since reporting of detailed data was mostly poor, and therefore, the studied cohorts do not represent "big data". Nevertheless, the information obtained is useful both for clinical genetic counseling and for modeling further studies.


Subject(s)
Mosaicism , Trisomy , Chromosomes, Human , Maternal Age , Humans , Female , Young Adult , Adult , Middle Aged , Male , Pregnancy , Pregnancy Outcome , Diploidy
16.
Cell Stem Cell ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38917807

ABSTRACT

Clonal hematopoiesis (CH) arises when hematopoietic stem cells (HSCs) acquire mutations, most frequently in the DNMT3A and TET2 genes, conferring a competitive advantage through mechanisms that remain unclear. To gain insight into how CH mutations enable gradual clonal expansion, we used single-cell multi-omics with high-fidelity genotyping on human CH bone marrow (BM) samples. Most of the selective advantage of mutant cells occurs within HSCs. DNMT3A- and TET2-mutant clones expand further in early progenitors, while TET2 mutations accelerate myeloid maturation in a dose-dependent manner. Unexpectedly, both mutant and non-mutant HSCs from CH samples are enriched for inflammatory and aging transcriptomic signatures, compared with HSCs from non-CH samples, revealing a non-cell-autonomous effect. However, DNMT3A- and TET2-mutant HSCs have an attenuated inflammatory response relative to wild-type HSCs within the same sample. Our data support a model whereby CH clones are gradually selected because they are resistant to the deleterious impact of inflammation and aging.

17.
J Genet Couns ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895972

ABSTRACT

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are the most common inherited neuromuscular diseases. Following the identification of a pathogenic causative variant in the DMD gene of a proband, potential carriers can be informed of their risk of having offspring with the disease. Germline mosaicism is a variant that is confined to the gonads that can be transmitted to offspring and is usually reported when a non-carrier of a DMD pathogenic variant has two or more offspring carrying the variant in question. On average, one third of cases are the result of a de novo variant, and as DMD and BMD are prone to germline mosaicism, its inclusion in genetic counseling is mandatory. In this retrospective cohort study, we presented clinical data from an unpublished DMD/BMD cohort of 332 families with incidence of germline mosaicism in families with de novo transmission of 8.1%. This is also the first systematic literature review searching PubMed to provide an accurate assessment of the current literature on germline mosaicism in DMD and BMD, including 17 case reports and 20 original studies. The incidence of documented germline mosaicism in de novo event families ranged from 6.0 to 40%, with a mean of 8.3%. The estimated recurrence risk for mothers of a patient with a proven de novo causal variant ranged from 4.3 to 11%, with a mean of 5.8% for a male fetus. By providing an up-to-date and comprehensive overview of the literature, this review aims to improve our understanding of germline mosaicism in DMD and to promote the development of effective strategies and reliable data for occurrence risk assessment in genetic counseling of de novo event families.

18.
Front Genet ; 15: 1382371, 2024.
Article in English | MEDLINE | ID: mdl-38894719

ABSTRACT

Overgrowth disorders comprise a group of entities with a variable phenotypic spectrum ranging from tall stature to isolated or lateralized overgrowth of body parts and or organs. Depending on the underlying physiological pathway affected by pathogenic genetic alterations, overgrowth syndromes are associated with a broad spectrum of neoplasia predisposition, (cardio) vascular and neurodevelopmental anomalies, and dysmorphisms. Pathologic overgrowth may be of prenatal or postnatal onset. It either results from an increased number of cells (intrinsic cellular hyperplasia), hypertrophy of the normal number of cells, an increase in interstitial spaces, or from a combination of all of these. The underlying molecular causes comprise a growing number of genetic alterations affecting skeletal growth and Growth-relevant signaling cascades as major effectors, and they can affect the whole body or parts of it (mosaicism). Furthermore, epigenetic modifications play a critical role in the manifestation of some overgrowth diseases. The diagnosis of overgrowth syndromes as the prerequisite of a personalized clinical management can be challenging, due to their clinical and molecular heterogeneity. Physicians should consider molecular genetic testing as a first diagnostic step in overgrowth syndromes. In particular, the urgent need for a precise diagnosis in tumor predisposition syndromes has to be taken into account as the basis for an early monitoring and therapy. With the (future) implementation of next-generation sequencing approaches and further omic technologies, clinical diagnoses can not only be verified, but they also confirm the clinical and molecular spectrum of overgrowth disorders, including unexpected findings and identification of atypical cases. However, the limitations of the applied assays have to be considered, for each of the disorders of interest, the spectrum of possible types of genomic variants has to be considered as they might require different methodological strategies. Additionally, the integration of artificial intelligence (AI) in diagnostic workflows significantly contribute to the phenotype-driven selection and interpretation of molecular and physiological data.

19.
Placenta ; 154: 60-65, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38901306

ABSTRACT

OBJECTIVE: Non-invasive prenatal testing (NIPT) investigates placental DNA and may detect confined placental mosaicism (CPM). The aim of this study was to confirm CPM in the term placenta in cases with abnormal NIPT but normal follow-up cytogenetic studies of fetus and mother. Additionally we examined the distribution of abnormal cells over the placenta. METHODS: Four chorionic villus (CV) biopsies from four placental quadrants were requested in cases where CPM was assumed. Both cell lineages of the CV, cytotrophoblast (CTB) and mesenchymal core (MC), were analyzed separately with SNP array. RESULTS: The chromosome aberration was confirmed in 67 % of the placentas. Three quarters of the CTB and MC biopsies from these mosaic placentas were uniformly normal (57 %) or abnormal (20 %), and a minority showed mosaicism. Among 16 cases of CPM where first trimester CV were examined as well, 11 had chromosomally normal results during pregnancy. DISCUSSION: Cytogenetic investigations of term placental biopsies suspected to be affected with CPM did not reveal the chromosome aberration in one third of the placentas. This is caused by the patchy pattern in which chromosomally abnormal cells are distributed over the placenta with the majority of the biopsies being uniformly normal. Further CPM research, including its clinical impact, requires the analysis of more than four biopsies to get insight into the extent of the affected part. Moreover, a subset of CPM type 1 and 3 seems to be only detectable with NIPT and not with first trimester CVS.

20.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891897

ABSTRACT

Heterozygous mutations in the FOXP1 gene (OMIM#605515) are responsible for a well-characterized neurodevelopmental syndrome known as "intellectual developmental disorder with language impairment with or without autistic features" (OMIM#613670) or FOXP1 syndrome for short. The main features of the condition are global developmental delay/intellectual disability; speech impairment in all individuals, regardless of their level of cognitive abilities; behavioral abnormalities; congenital anomalies, including subtle dysmorphic features; and strabismus, brain, cardiac, and urogenital abnormalities. Here, we present two siblings with a de novo heterozygous FOXP1 variant, namely, a four-year-old boy and 14-month-old girl. Both children have significantly delayed early psychomotor development, hypotonia, and very similar, slightly dysmorphic facial features. A lack of expressive speech was the leading symptom in the case of the four-year-old boy. We performed whole-exome sequencing on the male patient, which identified a pathogenic heterozygous c.1541G>A (p.Arg514His) FOXP1 mutation. His sister's targeted mutation analysis also showed the same heterozygous FOXP1 variant. Segregation analysis revealed the de novo origin of the mutation, suggesting the presence of parental gonadal mosaicism. To the best of our knowledge, this is the first report of gonadal mosaicism in FOXP1-related neurodevelopmental disorders in the medical literature.


Subject(s)
Forkhead Transcription Factors , Mosaicism , Neurodevelopmental Disorders , Repressor Proteins , Humans , Forkhead Transcription Factors/genetics , Male , Female , Child, Preschool , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis , Infant , Repressor Proteins/genetics , Mutation , Exome Sequencing , Heterozygote
SELECTION OF CITATIONS
SEARCH DETAIL
...