Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
Int J Cancer ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924040

ABSTRACT

The MRE11, RAD50, and NBN genes encode the MRN complex sensing DNA breaks and directing their repair. While carriers of biallelic germline pathogenic variants (gPV) develop rare chromosomal instability syndromes, the cancer risk in heterozygotes remains controversial. We performed a systematic review and meta-analysis of 53 studies in patients with different cancer diagnoses to better understand the cancer risk. We found an increased risk (odds ratio, 95% confidence interval) for gPV carriers in NBN for melanoma (7.14; 3.30-15.43), pancreatic cancer (4.03; 2.14-7.58), hematological tumors (3.42; 1.14-10.22), and prostate cancer (2.44, 1.84-3.24), but a low risk for breast cancer (1.29; 1.00-1.66) and an insignificant risk for ovarian cancer (1.53; 0.76-3.09). We found no increased breast cancer risk in carriers of gPV in RAD50 (0.93; 0.74-1.16; except of c.687del carriers) and MRE11 (0.87; 0.66-1.13). The secondary burden analysis compared the frequencies of gPV in MRN genes in patients from 150 studies with those in the gnomAD database. In NBN gPV carriers, this analysis additionally showed a high risk for brain tumors (5.06; 2.39-9.52), a low risk for colorectal (1.64; 1.26-2.10) and hepatobiliary (2.16; 1.02-4.06) cancers, and no risk for endometrial, and gastric cancer. The secondary burden analysis showed also a moderate risk for ovarian cancer (3.00; 1.27-6.08) in MRE11 gPV carriers, and no risk for ovarian and hepatobiliary cancers in RAD50 gPV carriers. These findings provide a robust clinical evidence of cancer risks to guide personalized clinical management in heterozygous carriers of gPV in the MRE11, RAD50, and NBN genes.

2.
Anticancer Res ; 44(7): 2827-2836, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925844

ABSTRACT

BACKGROUND/AIM: A deep ultraviolet (DUV) light-emitting diode (LED) is a device that can irradiate electromagnetic waves from 250 nm to 350 nm. Tousled-like kinase 1 (TLK1) encodes a nuclear serine/threonine kinase, which is thought to influence the effects of DUV irradiation in cancer. The aim of this study was to clarify the interaction of TLK1 with DUV irradiation-induced DNA damage in cancer cells. MATERIALS AND METHODS: Pancreatic cancer cell lines were treated with or without DUV. TLK1 expression and phosphorylation in the two groups were examined. Then, these cancer cell lines were treated with thioridazine (THD), DUV or both. Thereafter, cytomorphology and apoptosis were assessed. Several proteins related to DNA damage, were analyzed in cancer cells treated with DUV and THD. Tumors in a subcutaneous xenograft model were treated with THD, DUV, or both for six weeks. RESULTS: DUV irradiation induced the phosphorylation of TLK1 in pancreatic cancer cell lines. Cytomorphology was significantly changed in pancreatic cancer cells treated with DUV and THD. TLK1 inhibition enhanced DUV irradiation-induced apoptosis in cancer cells. Interestingly, CHK1 and pCHK1 expression was suppressed after TLK1 inhibition. In addition, inhibition of MRE11 led to a decrease in the expression of CHK1 and pCHK1, accompanied by a notable increase in apoptosis. In the subcutaneous xenograft models, the tumor volume in the DUV and THD groups was lower than that in the other groups. CONCLUSION: TLK1 phosphorylation is an important event in DUV irradiation. DUV irradiation combined with TLK1 inhibition has therapeutic potential in pancreatic cancer cells.


Subject(s)
Apoptosis , Checkpoint Kinase 1 , DNA Damage , Pancreatic Neoplasms , Protein Serine-Threonine Kinases , Ultraviolet Rays , Xenograft Model Antitumor Assays , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/antagonists & inhibitors , Humans , Animals , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Apoptosis/drug effects , Apoptosis/radiation effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Cell Line, Tumor , Phosphorylation , DNA Damage/radiation effects , DNA Damage/drug effects , Mice , Mice, Nude
3.
Hum Mol Genet ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888340

ABSTRACT

The MRE11/RAD50/NBS1 (MRN) complex plays critical roles in cellular responses to DNA double-strand breaks. MRN is involved in end binding and processing, and it also induces cell cycle checkpoints by activating the ataxia-telangiectasia mutated (ATM) protein kinase. Hypomorphic pathogenic variants in the MRE11, RAD50, or NBS1 genes cause autosomal recessive genome instability syndromes featuring variable degrees of dwarfism, neurological defects, anemia, and cancer predisposition. Disease-associated MRN alleles include missense and nonsense variants, and many cause reduced protein levels of the entire MRN complex. However, the dramatic variability in the disease manifestation of MRN pathogenic variants is not understood. We sought to determine if low protein levels are a significant contributor to disease sequelae and therefore generated a transgenic murine model expressing MRE11 at low levels. These mice display dramatic phenotypes including small body size, severe anemia, and impaired DNA repair. We demonstrate that, distinct from ataxia telangiectasia-like disorder caused by MRE11 pathogenic missense or nonsense variants, mice and cultured cells expressing low MRE11 levels do not display the anticipated defects in ATM activation. Our findings indicate that ATM signaling can be supported by very low levels of the MRN complex and imply that defective ATM activation results from perturbation of MRN function caused by specific hypomorphic disease mutations. These distinct phenotypic outcomes underline the importance of understanding the impact of specific pathogenic MRE11 variants, which may help direct appropriate early surveillance for patients with these complicated disorders in a clinical setting.

4.
EMBO Rep ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943005

ABSTRACT

Cyclosporin A (CsA) induces DNA double-strand breaks in LIG4 syndrome fibroblasts, specifically upon transit through S-phase. The basis underlying this has not been described. CsA-induced genomic instability may reflect a direct role of Cyclophilin A (CYPA) in DNA repair. CYPA is a peptidyl-prolyl cis-trans isomerase (PPI). CsA inhibits the PPI activity of CYPA. Using an integrated approach involving CRISPR/Cas9-engineering, siRNA, BioID, co-immunoprecipitation, pathway-specific DNA repair investigations as well as protein expression interaction analysis, we describe novel impacts of CYPA loss and inhibition on DNA repair. We characterise a direct CYPA interaction with the NBS1 component of the MRE11-RAD50-NBS1 complex, providing evidence that CYPA influences DNA repair at the level of DNA end resection. We define a set of genetic vulnerabilities associated with CYPA loss and inhibition, identifying DNA replication fork protection as an important determinant of viability. We explore examples of how CYPA inhibition may be exploited to selectively kill cancers sharing characteristic genomic instability profiles, including MYCN-driven Neuroblastoma, Multiple Myeloma and Chronic Myelogenous Leukaemia. These findings propose a repurposing strategy for Cyclophilin inhibitors.

5.
Int J Biol Macromol ; 272(Pt 1): 132654, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38810854

ABSTRACT

Mre11 is one of important proteins that are involved in DNA repair and recombination by processing DNA ends to produce 3'-single stranded DNA, thus providing a platform for other DNA repair and recombination proteins. In this work, we characterized the Mre11 protein from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tba-Mre11) biochemically and dissected the roles of its four conserved residues, which is the first report on Mre11 proteins from Thermococcus. Tba-Mre11 possesses exonuclease activity for degrading ssDNA and dsDNA in the 5'-3' direction, which contrasts with other reported Mre11 homologs. Maximum degradation efficiency was observed with Mn2+ at 80 °C and at pH 7.5-9.5. In addition to possessing 5'-3' exonuclease activity, Tba-Mre11 has endonuclease activity that nicks plasmid DNA and circular ssDNA. Mutational data show that residues D10, D51 and N86 in Tba-Mre11 are essential for DNA degradation since almost no activity was observed for the D10A, D51A and N86A mutants. By comparison, residue D44 in Tba-Mre11 is not responsible for DNA degradation since the D44A mutant possessed the similar WT protein activity. Notably, the D44A mutant almost completely abolished the ability to bind DNA, suggesting that residue D44 is essential for binding DNA.


Subject(s)
Archaeal Proteins , DNA, Single-Stranded , Thermococcus , Thermococcus/enzymology , Thermococcus/genetics , Archaeal Proteins/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , DNA, Single-Stranded/metabolism , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/chemistry , Amino Acid Sequence , Endonucleases/metabolism , Endonucleases/chemistry , Endonucleases/genetics , Mutation , Endodeoxyribonucleases
6.
Cell Rep ; 43(4): 114024, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38581679

ABSTRACT

Mouse embryonic stem cells (mESCs) in the primed pluripotency state, which resembles the post-implantation epiblast, can be de-differentiated in culture to a naive state that resembles the pre-implantation inner cell mass. We report that primed-to-naive mESC transition entails a significant slowdown of DNA replication forks and the compensatory activation of dormant origins. Using isolation of proteins on nascent DNA coupled to mass spectrometry, we identify key changes in replisome composition that are responsible for these effects. Naive mESC forks are enriched in MRE11 nuclease and other DNA repair proteins. MRE11 is recruited to newly synthesized DNA in response to transcription-replication conflicts, and its inhibition or genetic downregulation in naive mESCs is sufficient to restore the fork rate of primed cells. Transcriptomic analyses indicate that MRE11 exonuclease activity is required for the complete primed-to-naive mESC transition, demonstrating a direct link between DNA replication dynamics and the mESC de-differentiation process.


Subject(s)
DNA Replication , MRE11 Homologue Protein , Animals , Mice , MRE11 Homologue Protein/metabolism , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Cell Dedifferentiation , DNA-Binding Proteins/metabolism
7.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 232-241, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38686720

ABSTRACT

DNA is susceptible to various factors in vitro and in vivo and experience different forms of damage,among which double-strand break(DSB)is a deleterious form.To maintain the stability of genetic information,organisms have developed multiple mechanisms to repair DNA damage.Among these mechanisms,homologous recombination(HR)is praised for the high accuracy.The MRE11-RAD50-NBS1(MRN)complex plays an important role in HR and is conserved across different species.The knowledge on the MRN complex mainly came from the previous studies in Saccharomyces cerevisiae and Caenorhabditis elegans,while studies in the last decades have revealed the role of mammalian MRN complex in DNA repair of higher animals.In this review,we first introduces the MRN complex regarding the composition,structure,and roles in HR.In addition,we discuss the human diseases such as ataxia-telangiectasia-like disorder,Nijmegen breakage syndrome,and Nijmegen breakage syndrome-like disorder that are caused by dysfunctions in the MRN complex.Furthermore,we summarize the mouse models established to study the clinical phenotypes of the above diseases.


Subject(s)
Acid Anhydride Hydrolases , Cell Cycle Proteins , DNA Repair Enzymes , DNA-Binding Proteins , MRE11 Homologue Protein , Nuclear Proteins , Humans , Acid Anhydride Hydrolases/metabolism , Acid Anhydride Hydrolases/genetics , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Animals , DNA Repair , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/metabolism , Nijmegen Breakage Syndrome/metabolism , Nijmegen Breakage Syndrome/genetics
8.
Cell Mol Biol Lett ; 29(1): 37, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486171

ABSTRACT

BACKGROUND: DNA mismatch repair (MMR) is a highly conserved pathway that corrects DNA replication errors, the loss of which is attributed to the development of various types of cancers. Although well characterized, MMR factors remain to be identified. As a 3'-5' exonuclease and endonuclease, meiotic recombination 11 homolog A (MRE11A) is implicated in multiple DNA repair pathways. However, the role of MRE11A in MMR is unclear. METHODS: Initially, short-term and long-term survival assays were used to measure the cells' sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Meanwhile, the level of apoptosis was also determined by flow cytometry after MNNG treatment. Western blotting and immunofluorescence assays were used to evaluate the DNA damage within one cell cycle after MNNG treatment. Next, a GFP-heteroduplex repair assay and microsatellite stability test were used to measure the MMR activities in cells. To investigate the mechanisms, western blotting, the GFP-heteroduplex repair assay, and chromatin immunoprecipitation were used. RESULTS: We show that knockdown of MRE11A increased the sensitivity of HeLa cells to MNNG treatment, as well as the MNNG-induced DNA damage and apoptosis, implying a potential role of MRE11 in MMR. Moreover, we found that MRE11A was largely recruited to chromatin and negatively regulated the DNA damage signals within the first cell cycle after MNNG treatment. We also showed that knockdown of MRE11A increased, while overexpressing MRE11A decreased, MMR activity in HeLa cells, suggesting that MRE11A negatively regulates MMR activity. Furthermore, we show that recruitment of MRE11A to chromatin requires MLH1 and that MRE11A competes with PMS2 for binding to MLH1. This decreases PMS2 levels in whole cells and on chromatin, and consequently comprises MMR activity. CONCLUSIONS: Our findings reveal that MRE11A is a negative regulator of human MMR.


Subject(s)
DNA Mismatch Repair , Methylnitronitrosoguanidine , Humans , Chromatin , HeLa Cells , Methylnitronitrosoguanidine/pharmacology , Mismatch Repair Endonuclease PMS2
9.
EMBO J ; 43(6): 1043-1064, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360996

ABSTRACT

Eukaryotic cells rely on several mechanisms to ensure that the genome is duplicated precisely once in each cell division cycle, preventing DNA over-replication and genomic instability. Most of these mechanisms limit the activity of origin licensing proteins to prevent the reactivation of origins that have already been used. Here, we have investigated whether additional controls restrict the extension of re-replicated DNA in the event of origin re-activation. In a genetic screening in cells forced to re-activate origins, we found that re-replication is limited by RAD51 and enhanced by FBH1, a RAD51 antagonist. In the presence of chromatin-bound RAD51, forks stemming from re-fired origins are slowed down, leading to frequent events of fork reversal. Eventual re-initiation of DNA synthesis mediated by PRIMPOL creates ssDNA gaps that facilitate the partial elimination of re-duplicated DNA by MRE11 exonuclease. In the absence of RAD51, these controls are abrogated and re-replication forks progress much longer than in normal conditions. Our study uncovers a safeguard mechanism to protect genome stability in the event of origin reactivation.


Subject(s)
DNA-Binding Proteins , Rad51 Recombinase , DNA/genetics , DNA Replication , DNA-Binding Proteins/metabolism , MRE11 Homologue Protein/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Humans
10.
Mol Cell ; 84(5): 883-896.e7, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38309275

ABSTRACT

DNA loop-extruding SMC complexes play crucial roles in chromosome folding and DNA immunity. Prokaryotic SMC Wadjet (JET) complexes limit the spread of plasmids through DNA cleavage, yet the mechanisms for plasmid recognition are unresolved. We show that artificial DNA circularization renders linear DNA susceptible to JET nuclease cleavage. Unlike free DNA, JET cleaves immobilized plasmid DNA at a specific site, the plasmid-anchoring point, showing that the anchor hinders DNA extrusion but not DNA cleavage. Structures of plasmid-bound JetABC reveal two presumably stalled SMC motor units that are drastically rearranged from the resting state, together entrapping a U-shaped DNA segment, which is further converted to kinked V-shaped cleavage substrate by JetD nuclease binding. Our findings uncover mechanical bending of residual unextruded DNA as molecular signature for plasmid recognition and non-self DNA elimination. We moreover elucidate key elements of SMC loop extrusion, including the motor direction and the structure of a DNA-holding state.


Subject(s)
DNA , Endonucleases , DNA/metabolism , Plasmids/genetics , Prokaryotic Cells , Cell Cycle Proteins/metabolism
11.
Plant Commun ; 5(4): 100789, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38160258

ABSTRACT

Plants are constantly exposed to microbial pathogens in the environment. One branch of innate plant immunity is mediated by cell-membrane-localized receptors, but less is known about associations between DNA damage and plant immune responses. Here, we show that rice (Oryza sativa) mesophyll cells are prone to DNA double-stranded breaks (DSBs) in response to ZJ173, a strain of Xanthomonas oryzae pv. oryzae (Xoo). The DSB signal transducer ataxia telangiectasia mutated (ATM), but not the ATM and Rad3-related branch, confers resistance against Xoo. Mechanistically, the MRE11-ATM module phosphorylates suppressor of gamma response 1 (SOG1), which activates several phenylpropanoid pathway genes and prompts downstream phytoalexin biosynthesis during Xoo infection. Intriguingly, overexpression of the topoisomerase gene TOP6A3 causes a switch from the classic non-homologous end joining (NHEJ) pathway to the alternative NHEJ and homologous recombination pathways at Xoo-induced DSBs. The enhanced ATM signaling of the alternative NHEJ pathway strengthens the SOG1-regulated phenylpropanoid pathway and thereby boosts Xoo-induced phytoalexin biosynthesis in TOP6A3-OE1 overexpression lines. Overall, the MRE11-ATM-SOG1 pathway serves as a prime example of plant-pathogen interactions that occur via host non-specific recognition. The function of TOP6-facilitated ATM signaling in the defense response makes it a promising target for breeding of rice germplasm that exhibits resistance to bacterial blight disease without a growth penalty.


Subject(s)
Ataxia Telangiectasia , Oryza , Xanthomonas , Oryza/metabolism , Phytoalexins , Signal Transduction
12.
Cell ; 187(2): 294-311.e21, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38128537

ABSTRACT

Lactylation is a lactate-induced post-translational modification best known for its roles in epigenetic regulation. Herein, we demonstrate that MRE11, a crucial homologous recombination (HR) protein, is lactylated at K673 by the CBP acetyltransferase in response to DNA damage and dependent on ATM phosphorylation of the latter. MRE11 lactylation promotes its binding to DNA, facilitating DNA end resection and HR. Inhibition of CBP or LDH downregulated MRE11 lactylation, impaired HR, and enhanced chemosensitivity of tumor cells in patient-derived xenograft and organoid models. A cell-penetrating peptide that specifically blocks MRE11 lactylation inhibited HR and sensitized cancer cells to cisplatin and PARPi. These findings unveil lactylation as a key regulator of HR, providing fresh insights into the ways in which cellular metabolism is linked to DSB repair. They also imply that the Warburg effect can confer chemoresistance through enhancing HR and suggest a potential therapeutic strategy of targeting MRE11 lactylation to mitigate the effects.


Subject(s)
DNA-Binding Proteins , MRE11 Homologue Protein , Recombinational DNA Repair , Humans , DNA , DNA Breaks, Double-Stranded , DNA Repair , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Homologous Recombination , MRE11 Homologue Protein/metabolism , Lactic Acid/metabolism
13.
Cells ; 12(23)2023 12 04.
Article in English | MEDLINE | ID: mdl-38067190

ABSTRACT

Homology-directed repair (HDR) of double-strand DNA breaks (DSBs) is dependent on enzymatic resection of DNA ends by the Mre11/Rad50/Nbs1 complex. DNA resection is triggered by the CtIP/Sae2 protein, which allosterically promotes Mre11-mediated endonuclease DNA cleavage at a position internal to the DSB. Although the mechanics of resection, including the initial endonucleolytic step, are largely conserved in eucaryotes, CtIP and its functional counterpart in Saccharomyces cerevisiae (Sae2) share only a modest stretch of amino acid homology. Nonetheless, this stretch contains two highly conserved phosphorylation sites for cyclin-dependent kinases (T843 in mouse) and the damage-induced ATM/ATR kinases (T855 in mouse), both of which are required for DNA resection. To explore the function of ATM/ATR phosphorylation at Ctip-T855, we generated and analyzed mice expressing the Ctip-T855A mutant. Surprisingly, unlike Ctip-null mice and Ctip-T843A-expressing mice, both of which undergo embryonic lethality, homozygous CtipT855A/T855A mice develop normally. Nonetheless, they are hypersensitive to ionizing radiation, and CtipT855A/T855A mouse embryo fibroblasts from these mice display marked defects in DNA resection, chromosomal stability, and HDR-mediated repair of DSBs. Thus, although ATM/ATR phosphorylation of CtIP-T855 is not required for normal animal development, it enhances CtIP-mediated DNA resection in response to acute stress, such as genotoxin exposure.


Subject(s)
Carrier Proteins , Cell Cycle Proteins , Mutagens , Animals , Mice , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA/metabolism , DNA-Binding Proteins/metabolism , Phosphorylation , Saccharomyces cerevisiae/metabolism
14.
Mutagenesis ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38099488

ABSTRACT

Chemoresistance poses one of the most significant challenges of cancer therapy. Carboplatin (CbPt) is one of the most used chemotherapeutics in ovarian cancer (OVC) treatment. MRE11 constitutes a part of homologous recombination (HR), which is responsible for the repair of CbPt-induced DNA damage, particularly DNA crosslinks. The study's main aim was to address the role of HR in CbPt chemoresistance in OVC and to evaluate the possibility of overcoming CbPt chemoresistance by Mirin-mediated MRE11 inhibition in an OVC cell line. Lower expression of MRE11 was associated with better overall survival in a cohort of OVC patients treated with platinum drugs (TCGA dataset, p < 0.05). Using in vitro analyses, we showed that the high expression of HR genes drives the CbPt chemoresistance in our CbPt-resistant cell line model. Moreover, the HR inhibition by Mirin not only increased sensitivity to carboplatin (p < 0.05) but also rescued the sensitivity in the CbPt-resistant model (p < 0.05). Our results suggest that MRE11 inhibition with Mirin may represent a promising way to overcome OVC resistance. More therapy options will ultimately lead to better personalized cancer therapy and improvement of patients' survival.

15.
Viruses ; 15(12)2023 11 30.
Article in English | MEDLINE | ID: mdl-38140597

ABSTRACT

The adenovirus C5 E1B-55K protein is crucial for viral replication and is expressed early during infection. It can interact with E4orf6 to form a complex that functions as a ubiquitin E3 ligase. This complex targets specific cellular proteins and marks them for ubiquitination and, predominantly, subsequent proteasomal degradation. E1B-55K interacts with various proteins, with p53 being the most extensively studied, although identifying binding sites has been challenging. To explain the diverse range of proteins associated with E1B-55K, we hypothesized that other binding partners might recognize the simple p53 binding motif (xWxxxPx). In silico analyses showed that many known E1B-55K binding proteins possess this amino acid sequence; therefore, we investigated whether other xWxxxPx-containing proteins also bind to E1B-55K. Our findings revealed that many cellular proteins, including ATR, CHK1, USP9, and USP34, co-immunoprecipitate with E1B-55K. During adenovirus infection, several well-characterized E1B-55K binding proteins and newly identified interactors, including CSB, CHK1, and USP9, are degraded in a cullin-dependent manner. Notably, certain binding proteins, such as ATR and USP34, remain undegraded during infection. Structural predictions indicate no conservation of structure around the proposed binding motif, suggesting that the interaction relies on the correct arrangement of tryptophan and proline residues.


Subject(s)
Adenoviridae Infections , Adenovirus E4 Proteins , Adenoviruses, Human , Humans , Adenoviridae/metabolism , Adenovirus E1B Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Adenoviridae Infections/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Adenovirus E4 Proteins/genetics , Adenovirus E4 Proteins/metabolism , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism
16.
J Clin Immunol ; 43(8): 2136-2145, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37794136

ABSTRACT

PURPOSE: The MRE11-RAD50-NBN (MRN) complex plays a key role in recognizing and signaling DNA double-strand breaks. Pathogenic variants in NBN and MRE11 give rise to the autosomal-recessive diseases, Nijmegen breakage syndrome (NBS) and ataxia telangiectasia-like disorder, respectively. The clinical consequences of pathogenic variants in RAD50 are incompletely understood. We aimed to characterize a newly identified RAD50 deficiency/NBS-like disorder (NBSLD) patient with bone marrow failure and immunodeficiency. METHODS: We report on a girl with microcephaly, mental retardation, bird-like face, short stature, bone marrow failure and B-cell immunodeficiency. We searched for candidate gene by whole-exome sequencing and analyzed the cellular phenotype of patient-derived fibroblasts using immunoblotting, radiation sensitivity assays and lentiviral complementation experiments. RESULTS: Compound heterozygosity for two variants in the RAD50 gene (p.Arg83His and p.Glu485Ter) was identified in this patient. The expression of RAD50 protein and MRN complex formation was maintained in the cells derived from this patient. DNA damage-induced activation of the ATM kinase was markedly decreased, which was restored by the expression of wild-type (WT) RAD50. Radiosensitivity appeared inconspicuous in the patient-derived cell line as assessed by colony formation assay. The RAD50R83H missense substitution did not rescue the mitotic defect in complementation experiments using RAD50-deficient fibroblasts, whereas RAD50WT did. The RAD50E485X nonsense variant was associated with in-frame skipping of exon 10 (p.Glu485_545del). CONCLUSION: These findings indicate important roles of RAD50 in human bone marrow and immune cells. RAD50 deficiency/NBSLD can manifest as a distinct inborn error of immunity characterized by bone marrow failure and B-cell immunodeficiency.


Subject(s)
Immunologic Deficiency Syndromes , Nijmegen Breakage Syndrome , Female , Humans , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Tumor Suppressor Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Nijmegen Breakage Syndrome/genetics , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/genetics , Bone Marrow Failure Disorders
17.
Biomolecules ; 13(10)2023 10 13.
Article in English | MEDLINE | ID: mdl-37892200

ABSTRACT

Exposure to high acute doses of ionizing radiation (IR) can induce cutaneous radiation syndrome. Weeks after such radiation insults, keratinocyte nuclei of the epidermis exhibit persisting genomic lesions that present as focal accumulations of DNA double-strand break (DSB) damage marker proteins. Knowledge about the nanostructure of these genomic lesions is scarce. Here, we compared the chromatin nano-architecture with respect to DNA damage response (DDR) factors in persistent genomic DNA damage regions and healthy chromatin in epidermis sections of two minipigs 28 days after lumbar irradiation with ~50 Gy γ-rays, using single-molecule localization microscopy (SMLM) combined with geometric and topological mathematical analyses. SMLM analysis of fluorochrome-stained paraffin sections revealed, within keratinocyte nuclei with perisitent DNA damage, the nano-arrangements of pATM, 53BP1 and Mre11 DDR proteins in γ-H2AX-positive focal chromatin areas (termed macro-foci). It was found that persistent macro-foci contained on average ~70% of 53BP1, ~23% of MRE11 and ~25% of pATM single molecule signals of a nucleus. MRE11 and pATM fluorescent tags were organized in focal nanoclusters peaking at about 40 nm diameter, while 53BP1 tags formed nanoclusters that made up super-foci of about 300 nm in size. Relative to undamaged nuclear chromatin, the enrichment of DDR protein signal tags in γ-H2AX macro-foci was on average 8.7-fold (±3) for 53BP1, 3.4-fold (±1.3) for MRE11 and 3.6-fold (±1.8) for pATM. The persistent macro-foci of minipig epidermis displayed a ~2-fold enrichment of DDR proteins, relative to DSB foci of lymphoblastoid control cells 30 min after 0.5 Gy X-ray exposure. A lasting accumulation of damage signaling and sensing molecules such as pATM and 53BP1, as well as the DSB end-processing protein MRE11 in the persistent macro-foci suggests the presence of diverse DNA damages which pose an insurmountable problem for DSB repair.


Subject(s)
DNA Repair , Histones , Animals , Swine , Swine, Miniature/genetics , Swine, Miniature/metabolism , Histones/metabolism , Dose-Response Relationship, Radiation , DNA Damage , Chromatin , Epidermis/metabolism , Discoidin Domain Receptors/genetics , Discoidin Domain Receptors/metabolism
18.
Front Neurol ; 14: 1243535, 2023.
Article in English | MEDLINE | ID: mdl-37808486

ABSTRACT

Ataxia-telangiectasia-like disorder 1 (ATLD1) is a rare neurodegenerative disorder associated with early onset ataxia and oculomotor apraxia. The genetic determination of ATLD1 is a mutation in the MRE11 gene (meiotic recombination 11 gene), which causes DNA-double strand break repair deficits. Clinical features of patients with ATLD1 resemble those of ataxia telangiectasia (AT), with slower progression and milder presentation. Main symptoms include progressive cerebellar ataxia, oculomotor apraxia, cellular hypersensitivity to ionizing radiations. Facial dyskinesia, dystonia, dysarthria have also been reported. Here we present a 45-year old woman with cervical and facial dystonia, dysarthria and ataxia, who turned out to be the first case of ATLD without oculomotor apraxia, and with dystonia as a main manifestation of the disease. She had presented those non-specific symptoms for years, before whole exome sequencing confirmed the diagnosis.

19.
Cancers (Basel) ; 15(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894339

ABSTRACT

Radiotherapy and cisplatin-based chemotherapy belong to the main treatment modalities for head and neck squamous cell carcinoma (HNSCC) and induce cancer cell death by generating DNA damage, including the most severe double-strand breaks (DSBs). Alterations in DSB response and repair genes may affect individual DNA repair capacity and treatment sensitivity, contributing to the therapy resistance and poor prognosis often observed in HNSCC. In this study, we investigated the association of a panel of single-nucleotide polymorphisms (SNPs) in 20 DSB signaling and repair genes with therapy results and prognosis in 505 HNSCC patients treated non-surgically with DNA damage-inducing therapies. In the multivariate analysis, there were a total of 14 variants associated with overall, locoregional recurrence-free or metastasis-free survival. Moreover, we identified 10 of these SNPs as independent predictors of therapy failure and unfavorable prognosis in the whole group or in two treatment subgroups. These were MRE11 rs2155209, XRCC5 rs828907, RAD51 rs1801321, rs12593359, LIG4 rs1805388, CHEK1 rs558351, TP53 rs1042522, ATM rs1801516, XRCC6 rs2267437 and NBN rs2735383. Only CHEK1 rs558351 remained statistically significant after correcting for multiple testing. These results suggest that specific germline variants related to DSB response and repair may be potential genetic modifiers of therapy effects and disease progression in HNSCC treated with radiotherapy and cisplatin-based chemoradiation.

20.
Cell Biosci ; 13(1): 178, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759323

ABSTRACT

BACKGROUND: Although the clinical application of PARP inhibitors has brought hope to ovarian cancer, the problem of its resistance has become increasingly prominent. Therefore, clinical experts have been focused on finding specific indicators and therapeutic targets that can be used for resistance monitoring of PARP inhibitors. RESULTS: By cfDNA detecting during Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer, we found the presence of MRE11:p.K464R mutation was strongly associated with acquired Olaparib resistance. Structural analysis revealed that the MRE11:p.K464R mutation is situated at a critical site where the MRE11 protein interacts with other biomolecules, leading to potential structural and functional abnormalities of MRE11 protein. Functionally, MRE11:p.K464R mutation enhanced the tolerance of Olaparib by reducing the DNA damage. Mechanistically, MRE11:p.K464R mutation improved the efficiency of DNA damage repair and induce Olaparib resistance by enhancing its binding activity with the interacting proteins (including RAD50 and RPS3). Among them, the enhanced binding of MRE11:p.K464R mutation to RAD50/RPS3 facilitated non-homologous end joining (NHEJ) repair in tumor cells, thereby expanding the scope of research into acquired resistance to PARP inhibitors. CONCLUSIONS: Our findings provide a theoretical basis for MRE11:p.K464R mutation as a specific indicator of resistance monitoring in Olaparib treatment, and the exploration of its resistance mechanism provides a novel insights for the formulation of combination ther therapies after Olaparib resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...