Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
1.
Curr Mol Med ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38984570

ABSTRACT

BACKGROUND: Increased expression of MRP 1 in AML patients results in the efflux of drugs from the cells, preventing the patient from achieving remission or potentially leading to relapse. Several studies have demonstrated that early identification of ABC transporter may yield favorable outcomes. AIMS AND OBJECTIVES: The objectives of the study were to investigate the correlation between MRP 1 gene expression and MRP 1 protein levels and the response to remission induction in AML patients. METHOD: A total of 40 AML patients were recruited from March 2021 to June 2022. Peripheral blood was collected in two tubes (yellow and purple top) to assess the MRP 1 gene and protein. For MRP 1 gene assessment, RNA was isolated from blood samples, cDNA was prepared, and qRT-PCR was performed to analyze gene expression. The relationship between the gene and complete remission was determined. Identification of MRP 1 protein was conducted using ELISA, and the relationship between protein levels and complete remission (CR) was explored. RESULTS: Most of the patients were aged between 25 and 39 years, encompassing both males and females. This study observed a clinical correlation between MRP 1 gene expression and complete remission. The findings revealed that 69.2 percent of patients with high gene expression failed to achieve complete remission, whereas the analysis of MRP 1 protein in relation to complete remission showed no statistical significance. The MRP1 gene showed high expression (66.7%) in patients with FLT3 mutation, whereas low expression of MRP1 was associated with a high occurrence (60%) of NMP1 mutation. CONCLUSION: Further comprehensive multicenter studies with larger sample sizes are required to validate the findings of this study. It is recommended to pinpoint the mechanism and regulation of MRP 1 and its interaction with other molecular pathways.

2.
Biomed Pharmacother ; 178: 117167, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032285

ABSTRACT

Selective inhibition of overexpressed ATP binding cassette (ABC) transporters is an attractive approach to enhancing the efficacy of chemotherapeutics in multidrug resistant cancers. Previously, we reported that the cancer sensitizing effect of deazaflavin analogs, an important chemotype for developing combination treatments with topoisomerase II (TOP2) poisons, is associated with increased intracellular drug accumulation. Here we report the characterization of ZW-1226, a deazaflavin analog, as a potent inhibitor of multidrug resistance-associated protein 1 (MRP1). Specifically, ZW-1226 inhibited MRP1 with a 16-fold higher potency than the most widely used positive control MK-571 in vesicular transport assay and displayed excellent selectivity indices exceeding 100 over other major ABC transporters, including P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), MRP2 and MRP3. Mechanistically, we revealed that its MRP1 inhibitory action requires the participation of GSH. In chemo-sensitization test, ZW-1226 fully reversed the MRP1-mediated drug resistance to TOP2 poisons etoposide (ETP) and doxorubicin (DOX) in H69AR cells and conferred CC50s comparable to those in the sensitive parental NCI-H69 cells. The sensitization was associated with boosted intracellular accumulation of ETP and DOX and elevated endogenous GSH. Moreover, ZW-1226 showed potential to occupy the leukotriene C4 binding site in molecular docking with bovine MRP1, presumably with the help of GSH. Lastly, ZW-1226 exhibited high tissue to plasma partitions in mice but did not alter ETP distribution to normal tissues, suggesting it could be a viable lead with desirable pharmacokinetic properties to warrant further investigation.

3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 911-919, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926988

ABSTRACT

OBJECTIVE: To screen interleukin (IL)-1ß secretion-related membrane transporters by macrophage experiment in vitro and conventional knockout mice. METHODS: THP-1 cell line was differentiated to obtain human THP-1-derived macrophages, and the primary macrophages were obtained from human peripheral blood. FVB wild-type mice with the same sex and age were used as the controls of MRP1 knockout mice. The macrophages in abdominal cavity and bone marrow of mice were cultivated. The cells were treated with ABCC1/MRP1, ABCG2/BCRP, ABCB1/P-gp, OATP1B1, and MATE transporter inhibitors, then stimulated by lipopolysaccharide and adenosine triphosphate. The secretion level of IL-1ß was detected by ELISA, Western blot, and immunofluorescence. RESULTS: After inhibiting ABCC1/MRP1 transporter, the secretion of IL-1ß decreased significantly, while inhibition of the other 4 transporters had no effect. In animal experiment, the level of IL-1ß secreted by macrophages in bone marrow of MRP1 knockout mice was significantly lower than control group (P < 0.05). CONCLUSION: ABCC1/MRP1 transporter is a newly discovered IL-1ß secretion pathway, which is expected to become a new target for solving clinical problems such as cytokine release syndrome.


Subject(s)
Down-Regulation , Interleukin-1beta , Macrophages , Mice, Knockout , Multidrug Resistance-Associated Proteins , Animals , Humans , Mice , Interleukin-1beta/metabolism , Lipopolysaccharides , Macrophages/metabolism , Multidrug Resistance-Associated Proteins/metabolism , THP-1 Cells
4.
Inhal Toxicol ; 36(4): 250-260, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38738559

ABSTRACT

OBJECTIVE: The purpose of these studies was to investigate the uptake of atrazine across the nasal mucosa to determine whether direct transport to the brain through the olfactory epithelium is likely to occur. These studies were undertaken to provide important new information about the potential for the enhanced neurotoxicity of herbicides following nasal inhalation. MATERIALS AND METHODS: Transport of atrazine from aqueous solution and from commercial atrazine-containing herbicide products was assessed using excised nasal mucosal tissues. The permeation rate and the role of membrane transporters in the uptake of atrazine across the nasal mucosa were also investigated. Histological examination of the nasal tissues was conducted to assess the effects of commercial atrazine-containing products on nasal tissue morphology. RESULTS: Atrazine showed high flux across both nasal respiratory and olfactory tissues, and efflux transporters were found to play an essential role in limiting its uptake at low exposure concentrations. Commercial atrazine-containing herbicide products showed remarkably high transfer across the nasal tissues, and histological evaluation showed significant changes in the morphology of the nasal epithelium following exposure to the herbicide products. DISCUSSION: Lipophilic herbicides such as atrazine can freely permeate across the nasal mucosa despite the activity of efflux transporters. The adjuvant compounds in commercial herbicide products disrupt the nasal mucosa's epithelial barrier, resulting in even greater atrazine permeation across the tissues. The properties of the herbicide itself and those of the formulated products play crucial roles in the potential for the enhanced neurotoxicity of herbicides following nasal inhalation.


Subject(s)
Atrazine , Herbicides , Nasal Mucosa , Atrazine/toxicity , Atrazine/pharmacokinetics , Herbicides/toxicity , Herbicides/pharmacokinetics , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Animals , Membrane Transport Proteins/metabolism , Male , Administration, Intranasal , Nasal Absorption/drug effects
5.
Cells ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38727275

ABSTRACT

ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.


Subject(s)
ATP-Binding Cassette Transporters , Central Nervous System , Neuroglia , Humans , ATP-Binding Cassette Transporters/metabolism , Neuroglia/metabolism , Animals , Central Nervous System/metabolism , Central Nervous System/pathology , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/pathology
6.
J Pediatr Surg ; 59(7): 1334-1341, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38570263

ABSTRACT

BACKGROUND: Chemoresistance contributes to relapse in high-risk neuroblastoma. Cancer cells acquire resistance through multiple mechanisms, including drug efflux pumps. In neuroblastoma, multidrug resistance-associated protein-1 (MRP1/ABCC1) efflux pump expression correlates with worse outcomes. These pumps are regulated by PIM kinases, a family of serine-threonine kinases, overexpressed in neuroblastoma. We hypothesized PIM kinase inhibition would sensitize neuroblastoma cells by modulating MRP1. METHODS: Kocak database query evaluated ABCC1, PIM1, PIM2, and PIM3 expression in neuroblastoma patients. SK-N-AS and SK-N-BE(2) cells were treated with doxorubicin or the pan-PIM kinase inhibitor, AZD1208. Flow cytometry assessed intracellular doxorubicin accumulation. AlamarBlue assay measured viability. The lethal dose 50% (LD50) of each drug and combination indices (CI) were calculated and isobolograms constructed to determine synergy. RESULTS: Kocak database query demonstrated positive correlation between PIM genes and ABCC1. PIM kinase inhibition increased intracellular doxorubicin accumulation in both cell lines, suggesting PIM kinase regulation of MRP1. Isobolograms showed synergy between AZD1208 and doxorubicin. CONCLUSIONS: The correlation between PIM and ABCC1 gene expression suggests PIM kinases may contribute to neuroblastoma chemotherapeutic resistance. PIM kinase inhibition increased intracellular doxorubicin accumulation. Combination treatment with AZD1208 and doxorubicin decreased neuroblastoma cell viability in a synergistic fashion. These findings support further investigations of PIM kinase inhibition in neuroblastoma. TYPE OF STUDY: Basic Science Research. LEVEL OF EVIDENCE: NA.


Subject(s)
Doxorubicin , Drug Resistance, Neoplasm , Multidrug Resistance-Associated Proteins , Neuroblastoma , Proto-Oncogene Proteins c-pim-1 , Humans , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Neuroblastoma/genetics , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Cell Line, Tumor , Antibiotics, Antineoplastic/therapeutic use , Antibiotics, Antineoplastic/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Synergism , Biphenyl Compounds , Thiazolidines
7.
Pharmaceutics ; 16(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38675154

ABSTRACT

Reversing the multiple drug resistance (MDR) arising from the overexpression of the efflux transporters often fails mainly due to the high toxicity or the poor water solubility of the inhibitors of these transporters. Here, we demonstrate the delivery of an inhibitor targeting three ABC transporters (ABCB1, ABCC1 and ABCG2) directly to the cell membrane using membrane-fusing vehicles (MFVs). Three different transfected MDCK II cell lines, along with parental cells, were used to investigate the inhibitory effect of cyclosporine A (CsA) in solution versus direct delivery to the cell membrane. CsA-loaded MFVs successfully reversed MDR for all three investigated efflux transporters at significantly lower concentrations compared with CsA in solution. Results showed a 15-fold decrease in the IC50 value for ABCB1, a 7-fold decrease for ABCC1 and an 11-fold decrease for ABCG2. We observed binding site specificity for ABCB1 and ABCG2 transporters. Lower concentrations of empty MFVs along with CsA contribute to the inhibition of Hoechst 33342 efflux. However, higher concentrations of CsA along with the high amount of MFVs activated transport via the H-binding site. This supports the conclusion that MFVs can be useful beyond their role as delivery systems and also help to elucidate differences between these transporters and their binding sites.

8.
Arch Pharm (Weinheim) ; 357(6): e2300704, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38442326

ABSTRACT

Hepatocellular carcinoma is the most common type of primary liver cancer. However, multidrug resistance (MDR) is a major obstacle to the effective chemotherapy of cancer cells. This report documents the rational design, synthesis, and biological evaluation of a novel series of triazolotriazines substituted with CH2NH-linked pyridine for use as dual c-Met/MDR inhibitors. Compound 12g with IC50 of 3.06 µM on HepG2 cells showed more potency than crizotinib (IC50 = 5.15 µM) in the MTT assay. In addition, 12g inhibited c-Met kinase at a low micromolar level (IC50 = 0.052 µM). 12g significantly inhibited P-gp and MRP1/2 efflux pumps in both cancerous HepG2 and BxPC3 cells starting from the lower concentrations of 3 and 0.3 µM, respectively. 12g did not inhibit MDR1 and MRP1/2 in noncancerous H69 cholangiocytes up to the concentration of 30 and 60 µM, respectively. Current results highlighted that cancerous cells were more susceptible to the effect of 12g than normal cells, in which the inhibition occurred only at the highest concentrations, suggesting a further interest in 12g as a selective anticancer agent. Overall, 12g, as a dual c-Met and P-gp/MRP inhibitor, is a promising lead compound for developing a new generation of anticancer agents.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Multidrug Resistance-Associated Proteins , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Structure-Activity Relationship , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Dose-Response Relationship, Drug , Hep G2 Cells , Molecular Structure , Drug Resistance, Multiple/drug effects , Cell Line, Tumor , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Triazines/pharmacology , Triazines/chemistry , Triazines/chemical synthesis
9.
EJNMMI Radiopharm Chem ; 9(1): 10, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334858

ABSTRACT

BACKGROUND: Multidrug resistance-associated protein 1 (MRP1), an energy-dependent efflux pump, is expressed widely in various tissues and contributes to many physiological and pathophysiological processes. 6-Bromo-7-[11C]methylpurine ([11C]7m6BP) is expected to be useful for the assessment of MRP1 activity in the human brain and lungs. However, the radiochemical yield (RCY) in the synthesis of [11C]7m6BP was low, limiting its clinical application, because the methylation of the precursor with [11C]CH3I provided primarily the undesired isomer, 6-bromo-9-[11C]methylpurine ([11C]9m6BP). To increase the RCY of [11C]7m6BP, we investigated conditions for improving the [11C]7m6BP/[11C]9m6BP selectivity of the methylation reaction. RESULTS: [11C]7m6BP was manually synthesized via the methylation of 6-bromopurine with [11C]CH3I in various solvents and at different temperatures in the presence of potassium carbonate for 5 min. Several less polar solvents, including tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), and ethyl acetate (AcOEt) improved the [11C]7m6BP/[11C]9m6BP selectivity from 1:1 to 2:1, compared with the conventionally used solvents for the alkylation of 6-halopurines, acetone, acetonitrile, and N,N-dimethylformamide. However, a higher temperature (140 °C or 180 °C) was needed to progress the 11C-methylation in the less polar solvents, and the manual conditions could not be directly translated to an automated synthesis. [11C]Methyl triflate ([11C]CH3OTf) was thus used as a methylating agent to increase the conversion at a lower temperature. The 11C-methylation using [11C]CH3OTf at 100 °C proceeded efficiently in THF, 2-MeTHF, and AcOEt with maintenance of the improved selectivity. Starting from 28 to 34 GBq [11C]CO2, [11C]7m6BP was produced with 2.3-2.6 GBq for THF, 2.7-3.3 GBq for AcOEt, and 2.8-3.9 GBq for 2-MeTHF at approximately 30 min after the end of bombardment (n = 3 per solvent). The isolated RCYs (decay corrected) for THF, 2-MeTHF, and AcOEt were 24-28%, 29-35%, and 22-31% (n = 3), respectively. CONCLUSIONS: The use of THF, 2-MeTHF, and AcOEt improved the [11C]7m6BP/[11C]9m6BP selectivity in the methylation reaction, and the improved method provided [11C]7m6BP with sufficient radioactivity for clinical use.

10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 71-77, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38387902

ABSTRACT

OBJECTIVE: To investigate the effect of TCP1 expression on the proliferation and the accumulation of intracellular drug of HL60/A and HL60 cells and its possible molecular mechanism. METHODS: Lentiviral transfection technology was used to construct HL60/A and HL60 cells with knocked down or overexpressed TCP1 and their control cells. The efficiency of knockdown and overexpression was evaluated by Western blot. The cell proliferation was detected by CCK-8 assay. The intracellular drug accumulation was detected by laser confocal detection and flow cytometry. The expression levels of MRP1, P-gP and p-AKT were evaluated by flow cytometry and Western blot. RESULTS: After TCP1 was knocked down,the proliferation ability of HL60/A cells was significantly reduced, the accumulation of intracellular drug was significantly increased and the expression of MRP1 and P-gP protein were decreased. After TCP1 was overexpressed, the proliferation ability of HL60 was significantly increased, the accumulation of intracellular drug was significantly decreased and the expression of MRP1 and P-gP protein were increased. Intervention of LY294002 significantly antagonized the promotion on cell proliferation, the inhibition on intracellular drug accumulation and the expression of MRP1 and P-gP mediated by TCP1 overexpressing in HL60 cells. CONCLUSION: TCP1 can promote cell proliferation, improve the expression of MRP1 and P-gP by activating PI3K/AKT signal, and reduce intracellular drug accumulation.


Subject(s)
Drug Resistance, Neoplasm , Proto-Oncogene Proteins c-akt , Humans , HL-60 Cells , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation , Chaperonin Containing TCP-1
11.
Neurochem Res ; 49(1): 66-84, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37603214

ABSTRACT

The Multidrug Resistance Protein 1 (Mrp1) is an ATP-dependent efflux transporter and a major facilitator of drug resistance in mammalian cells during cancer and HIV therapy. In brain, Mrp1-mediated GSH export from astrocytes is the first step in the supply of GSH precursors to neurons. To reveal potential mechanisms underlying the drug-induced modulation of Mrp1-mediated transport processes, we investigated the effects of the antiviral drug ritonavir on cultured rat primary astrocytes. Ritonavir strongly stimulated the Mrp1-mediated export of glutathione (GSH) by decreasing the Km value from 200 nmol/mg to 28 nmol/mg. In contrast, ritonavir decreased the export of the other Mrp1 substrates glutathione disulfide (GSSG) and bimane-glutathione. To give explanation for these apparently contradictory observations, we performed in silico docking analysis and molecular dynamics simulations using a homology model of rat Mrp1 to predict the binding modes of ritonavir, GSH and GSSG to Mrp1. The results suggest that ritonavir binds to the hydrophilic part of the bipartite binding site of Mrp1 and thereby differently affects the binding and transport of the Mrp1 substrates. These new insights into the modulation of Mrp1-mediated export processes by ritonavir provide a new model to better understand GSH-dependent detoxification processes in brain cells.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Astrocytes , Rats , Animals , Glutathione Disulfide/metabolism , Astrocytes/metabolism , Ritonavir/pharmacology , Ritonavir/metabolism , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Cells, Cultured , Glutathione/metabolism , Biological Transport , Multidrug Resistance-Associated Proteins/metabolism , Mammals/metabolism
12.
Drug Resist Updat ; 72: 101035, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38141369

ABSTRACT

Zebrafish have proved to be invaluable for modeling complex physiological processes shared by all vertebrate animals. Resistance of cancers and other diseases to drug treatment can occur owing to expression of the ATP-dependent multidrug transporters ABCB1, ABCG2, and ABCC1, either because of expression of these transporters by the target cells to reduce intracellular concentrations of cytotoxic drugs at barrier sites such as the blood-brain barrier (BBB) to limit penetration of drugs into privileged compartments, or by affecting the absorption, distribution, and excretion of drugs administered orally, through the skin, or directly into the bloodstream. We describe the drug specificity, cellular localization, and function of zebrafish orthologs of multidrug resistance ABC transporters with the goal of developing zebrafish models to explore the physiological and pathophysiological functions of these transporters. Finally, we provide context demonstrating the utility of zebrafish in studying cancer drug resistance. Our ultimate goal is to improve treatment of cancer and other diseases which are affected by ABC multidrug resistance transporters.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Membrane Transport Proteins , Drug Resistance, Multiple/genetics , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics
13.
Front Pharmacol ; 14: 1290255, 2023.
Article in English | MEDLINE | ID: mdl-38026953

ABSTRACT

Cancer is one of the leading causes of death worldwide, and the development of resistance to chemotherapy drugs is a major challenge in treating malignancies. In recent years, researchers have focused on understanding the mechanisms of multidrug resistance (MDR) in cancer cells and have identified the overexpression of ATP-binding cassette (ABC) transporters, including ABCC1/MRP1 and ABCC10/MRP7, as a key factor in the development of MDR. In this study, we aimed to investigate whether three drugs (sertraline, fluoxetine, and citalopram) from the selective serotonin reuptake inhibitor (SSRI) family, commonly used as antidepressants, could be repurposed as inhibitors of MRP1 and MRP7 transporters and reverse MDR in cancer cells. Using a combination of in silico predictions and in vitro validations, we analyzed the interaction of MRP1 and MRP7 with the drugs and evaluated their ability to hinder cell resistance. We used computational tools to identify and analyze the binding site of these three molecules and determine their binding energy. Subsequently, we conducted experimental assays to assess cell viability when treated with various standard chemotherapies, both with and without the presence of SSRI inhibitors. Our results show that all three SSRI drugs exhibited inhibitory/reversal effects in the presence of chemotherapies on both MRP1-overexpressed cells and MRP7-overexpressed cells, suggesting that these medications have the potential to be repurposed to target MDR in cancer cells. These findings may open the door to using FDA-approved medications in combination therapy protocols to treat highly resistant malignancies and improve the efficacy of chemotherapy treatment. Our research highlights the importance of investigating and repurposing existing drugs to overcome MDR in cancer treatment.

14.
J Clin Med ; 12(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37834968

ABSTRACT

We conducted a retrospective analysis of GRP94 immunohistochemical (IHC) staining, an ER stress protein, on large B-cell lymphoma (LBCL) cells, intracellular p53, and 15 factors involved in the metabolism of the CHOP regimen: AKR1C3 (HO metabolism), CYP3A4 (CHOP metabolism), and HO efflux pumps (MDR1 and MRP1). The study subjects were 42 patients with LBCL at our hospital. The IHC staining used antibodies against the 17 factors. The odds ratios by logistic regression analysis used a dichotomous variable of CR and non-CR/relapse were statistically significant for MDR1, MRP1, and AKR1C3. The overall survival (OS) after R-CHOP was compared by the log-rank test. The four groups showed that Very good (5-year OS, 100%) consisted of four patients who showed negative IHC staining for both GRP94 and CYP3A4. Very poor (1-year OS, 0%) consisted of three patients who showed positive results in IHC for both GRP94 and CYP3A4. The remaining 35 patients comprised two subgroups: Good (5-year OS 60-80%): 15 patients who showed negative staining for both MDR1 and AKR1C3 and Poor (5-year OS, 10-20%): 20 patients who showed positive staining for either MDR, AKR1C3, MRP1, or p53. The Histological Prognostic Index (HPI) (the four groups: Very poor, Poor, Good, and Very good) is a breakthrough method for stratifying patients based on the factors involved in the development of treatment resistance.

15.
J Biomol Struct Dyn ; : 1-17, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37667877

ABSTRACT

Human MRP1 protein plays a vital role in cancer multidrug resistance. Coumarins show promising pharmacological properties. Virtual screening, ADMET, molecular docking and molecular dynamics (MD) simulations were utilized as pharmacoinformatic tools to identify potential MRP1 inhibitors among coumarin derivatives. Using in silico ADMET, 50 hits were further investigated for their selectivity toward the nucleotide-binding domains (NBDs) of MRP1 using molecular docking. Accordingly, coumarin, its symmetrical ketone derivative Lig. No. 4, and Reversan were candidates for focused docking study with the NBDs domains compared with ATP. The result indicates that Lig. No. 4, with the best binding score, interacts with NBDs via hydrogen bonds with residues: GLN713, LYS684, GLY683, CYS682 in NBD1, and GLY1432, GLY771, SER769 and GLN1374 in NBD2, which mostly overlap with ATP binding residues. Moreover, doxorubicin (Doxo) was docked to the transmembrane domains (TMDs) active site of MRP1. Doxo interaction with TMDs was subjected to MD simulation in the NBDs free and occupied with Lig. No. 4 states. The results showed that Doxo interacts more strongly with TMD residues in inward facing feature of TMDs helices. However, when Lig. No. 4 exists in NBDs, Doxo interactions are different, and TMD helices show more outward-facing conformation. This result may suggest a partial competitive inhibition mechanism for the Lig. No. 4 on MRP1 compared with ATP. So, it may inhibit active complex formation by interfering with ATP entrance to NBDs and locking MRP1 conformation in outward-facing mode. This study suggests a valuable coumarin derivative that can be further investigated for potent MRP1 inhibitors.Communicated by Ramaswamy H. Sarma.


HIGHLIGHTSVirtual screening scored a symmetrical ketone derivative IUPAC ([2-[(1E, 4E)-5-(2-acetyloxyphenyl)-3-oxopenta-1, 4-dienyl] phenyl] acetate); PubChem CID 5468558 (Lig. No. 4 in this study) as the best candidate among coumarins to inhibit MRP1.This compound binds to NBD1 and NBD2 of ABC transporters via hydrogen bonds shared with residues that are also involved in the ATP binding.This result, if not at all, suggest a partial competitive inhibition mechanism for Lig. No. 4 on the MRP1 protein.Molecular dynamics simulation study reveals different doxorubicin binding modes in interaction with MRP1 transmembrane domain in free and occupied NBDs with Lig. No. 4.Lig. No. 4 is a valuable candidate for further drug development studies to suppress drug resistance.

16.
Cancers (Basel) ; 15(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37627134

ABSTRACT

BACKGROUND: Approximately 40% of patients with diffuse large B-cell lymphoma (DLBCL) experience treatment resistance to the first-line R-CHOP regimen. ATP binding cassette (ABC) transporters and survivin might play a role in multidrug resistance (MDR) in various tumors. The aim was to investigate if the coexpression of ABC transporters and survivin was associated with R-CHOP treatment response. METHODS: The expression of Bcl-2, survivin, P-glycoprotein/ABCB1, MRP1/ABCC1, and BCRP/ABCC2 was analyzed using immunohistochemistry in tumor specimens obtained from patients with DLBCL, and classified according to the treatment response as Remission, Relapsed, and (primary) Refractory groups. All patients received R-CHOP or equivalent treatment. RESULTS: Bcl-2 was in strong positive correlation with clinical parameters and all biomarkers except P-gp/ABCB1. The overexpression of MRP1/ABCC1, survivin, and BCRP/ABCC2 presented as high immunoreactive scores (IRSs) was detected in the Refractory and Relapsed groups (p < 0.05 vs. Remission), respectively, whereas the IRS of P-gp/ABCB1 was low. Significant correlations were found among either MRP1/ABCC1 and survivin or BCRP/ABCC2 in the Refractory and Relapsed groups, respectively. In multiple linear regression analysis, ECOG status along with MRP1/ABCC1 or survivin and BRCP/ABCG2 was significantly associated with the prediction of the R-CHOP treatment response. CONCLUSIONS: DLBCL might harbor certain molecular signatures such as MRP1/ABCC1, survivin, and BCRP/ABCC2 overexpression that can predict resistance to R-CHOP.

17.
Membranes (Basel) ; 13(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37367772

ABSTRACT

Multidrug resistance (MDR) proteins belonging to the ATP-Binding Cassette (ABC) transporter group play a crucial role in the export of cytotoxic drugs across cell membranes. These proteins are particularly fascinating due to their ability to confer drug resistance, which subsequently leads to the failure of therapeutic interventions and hinders successful treatments. One key mechanism by which multidrug resistance (MDR) proteins carry out their transport function is through alternating access. This mechanism involves intricate conformational changes that enable the binding and transport of substrates across cellular membranes. In this extensive review, we provide an overview of ABC transporters, including their classifications and structural similarities. We focus specifically on well-known mammalian multidrug resistance proteins such as MRP1 and Pgp (MDR1), as well as bacterial counterparts such as Sav1866 and lipid flippase MsbA. By exploring the structural and functional features of these MDR proteins, we shed light on the roles of their nucleotide-binding domains (NBDs) and transmembrane domains (TMDs) in the transport process. Notably, while the structures of NBDs in prokaryotic ABC proteins, such as Sav1866, MsbA, and mammalian Pgp, are identical, MRP1 exhibits distinct characteristics in its NBDs. Our review also emphasizes the importance of two ATP molecules for the formation of an interface between the two binding sites of NBD domains across all these transporters. ATP hydrolysis occurs following substrate transport and is vital for recycling the transporters in subsequent cycles of substrate transportation. Specifically, among the studied transporters, only NBD2 in MRP1 possesses the ability to hydrolyze ATP, while both NBDs of Pgp, Sav1866, and MsbA are capable of carrying out this reaction. Furthermore, we highlight recent advancements in the study of MDR proteins and the alternating access mechanism. We discuss the experimental and computational approaches utilized to investigate the structure and dynamics of MDR proteins, providing valuable insights into their conformational changes and substrate transport. This review not only contributes to an enhanced understanding of multidrug resistance proteins but also holds immense potential for guiding future research and facilitating the development of effective strategies to overcome multidrug resistance, thus improving therapeutic interventions.

18.
Oncol Rep ; 50(2)2023 Aug.
Article in English | MEDLINE | ID: mdl-37350411

ABSTRACT

Following the publication of this article, a concerned reader drew to our attention that in Fig. 5C on p. 1704, showing histological images of mouse livers stained with H&E, unexpected areas of similarity were identified in terms of the staining patterns revealed within the data panels themselves. After having conducted an internal investigation, the Editor of Oncology Reports has reached the conclusion that the overlapping portions of data shown in this figure were unlikely to have arisen by coincidence. Therefore, on the grounds of a lack of confidence in the integrity of these data, the Editor has decided that the article should be retracted from the publication. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive any reply. The Editor apologizes to the readership for any inconvenience caused, and thanks the interested reader for drawing this matter to our attention. [Oncology Reports 37: 1698­1706, 2017; DOI: 10.3892/or.2017.5382].

19.
Genes (Basel) ; 14(5)2023 05 15.
Article in English | MEDLINE | ID: mdl-37239445

ABSTRACT

Antipsychotic (AP)-induced adverse drug reactions (ADRs) are a current problem of biological and clinical psychiatry. Despite the development of new generations of APs, the problem of AP-induced ADRs has not been solved and continues to be actively studied. One of the important mechanisms for the development of AP-induced ADRs is a genetically-determined impairment of AP efflux across the blood-brain barrier (BBB). We present a narrative review of publications in databases (PubMed, Springer, Scopus, Web of Science E-Library) and online resources: The Human Protein Atlas; GeneCards: The Human Gene Database; US National Library of Medicine; SNPedia; OMIM Online Mendelian Inheritance in Man; The PharmGKB. The role of 15 transport proteins involved in the efflux of drugs and other xenobiotics across cell membranes (P-gp, TAP1, TAP2, MDR3, BSEP, MRP1, MRP2, MRP3, MRP4, MRP5, MRP6, MRP7, MRP8, MRP9, BCRP) was analyzed. The important role of three transporter proteins (P-gp, BCRP, MRP1) in the efflux of APs through the BBB was shown, as well as the association of the functional activity and expression of these transport proteins with low-functional and non-functional single nucleotide variants (SNVs)/polymorphisms of the ABCB1, ABCG2, ABCC1 genes, encoding these transport proteins, respectively, in patients with schizophrenia spectrum disorders (SSDs). The authors propose a new pharmacogenetic panel "Transporter protein (PT)-Antipsychotic (AP) Pharmacogenetic test (PGx)" (PTAP-PGx), which allows the evaluation of the cumulative contribution of the studied genetic biomarkers of the impairment of AP efflux through the BBB. The authors also propose a riskometer for PTAP-PGx and a decision-making algorithm for psychiatrists. Conclusions: Understanding the role of the transportation of impaired APs across the BBB and the use of genetic biomarkers for its disruption may make it possible to reduce the frequency and severity of AP-induced ADRs, since this risk can be partially modified by the personalized selection of APs and their dosing rates, taking into account the genetic predisposition of the patient with SSD.


Subject(s)
Antipsychotic Agents , Multidrug Resistance-Associated Proteins , United States , Humans , Multidrug Resistance-Associated Proteins/metabolism , Antipsychotic Agents/adverse effects , Blood-Brain Barrier/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Neoplasm Proteins/metabolism , ATP-Binding Cassette Transporters/genetics , Biomarkers/metabolism
20.
Curr Issues Mol Biol ; 45(4): 3462-3478, 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37185751

ABSTRACT

The blood-brain barrier (BBB) is part of a neurovascular structure located in the brain's micro vessels, that is essential to maintain brain homeostasis, but prevents the brain uptake of most drugs. Because of its importance in neuro-pharmacotherapy, the BBB has been the subject of extensive research since its discovery over 100 years ago. Major advances in understanding the structure and function of the barrier have been made. Drugs are re-designed to cross the BBB. However, despite these efforts, overcoming the BBB efficiently to treat brain diseases safely remains challenging. The majority of BBB research studies focus on the BBB as a homogenous structure throughout the different brain regions. However, this simplification may lead to an inadequate understanding of the BBB function with significant therapeutic consequences. From this perspective, we analyzed the gene and protein expression profiles of the BBB in the micro vessels from the brains of mice that were isolated from two different brain regions, namely the cortex and the hippocampus. The expression profile of the inter-endothelial junctional protein (claudin-5), three ABC transporters (P-glycoprotein, Bcrp and Mrp-1), and three BBB receptors (lrp-1, TRF and GLUT-1) were analyzed. Our gene and protein analysis showed that the brain endothelium in the hippocampus exhibits different expression profiles compared to the brain cortex. Specifically, brain endothelial cells (BECs) of the hippocampus express higher gene levels of abcb1, abcg2, lrp1, and slc2a1 compared to the BECs of the cortex regions with a trend of increase for claudin-5, while BECs of the cortex express higher gene levels of abcc1 and trf compared to the hippocampus. At the protein levels, the P-gp expression was found to be significantly higher in the hippocampus compared to the cortex, while TRF was found to be up-regulated in the cortex. These data suggest that the structure and function of the BBB are not homogeneous, and imply that drugs are not delivered similarly among the different brain regions. Appreciation of the BBB heterogeneity by future research programs is thus critical for efficient drug delivery and the treatment of brain diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...