Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.635
Filter
1.
Biomed Pharmacother ; 179: 117386, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39241570

ABSTRACT

Mesenchymal stem cell-derived exosomes(MSCs-Exos) offer promising therapeutic potential for a wide range of tissues and organs such as bone/cartilage, nerves, skin, fat, and endocrine organs. In comparison to the application of mesenchymal stem cells (MSCs), MSCs-Exos address critical challenges related to rejection reactions and ethical concerns, positioning themselves as a promising cell-free therapy. As exosomes are extracellular vesicles, their effective delivery necessitates the use of carriers. Consequently, the selection of hydrogel materials as scaffolds for exosome delivery has become a focal point of contemporary research. The diversity of hydrogel scaffolds, which can take various forms such as injectable types, dressings, microneedles, and capsules, leads to differing choices among researchers for treating diseases within the same domain. This variability in hydrogel materials poses challenges for the translation of findings into clinical practice. The review highlights the potential of hydrogel-loaded exosomes in different fields and introduces the advantages and disadvantages of different forms of hydrogel applications. It aims to provide a multifunctional and highly recognized hydrogel scaffold option for tissue regeneration at specific sites, improve clinical translation efficiency, and benefit the majority of patients.

2.
BMC Vet Res ; 20(1): 403, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251976

ABSTRACT

BACKGROUND: The integration of stem cells, signaling molecules, and biomaterial scaffolds is fundamental for the successful engineering of functional bone tissue. Currently, the development of composite scaffolds has emerged as an attractive approach to meet the criteria of ideal scaffolds utilized in bone tissue engineering (BTE) for facilitating bone regeneration in bone defects. Recently, the incorporation of polycaprolactone (PCL) with hydroxyapatite (HA) has been developed as one of the suitable substitutes for BTE applications owing to their promising osteogenic properties. In this study, a three-dimensional (3D) scaffold composed of PCL integrated with HA (PCL/HA) was prepared and assessed for its ability to support osteogenesis in vitro. Furthermore, this scaffold was evaluated explicitly for its efficacy in promoting the proliferation and osteogenic differentiation of canine bone marrow-derived mesenchymal stem cells (cBM-MSCs) to fill the knowledge gap regarding the use of composite scaffolds for BTE in the veterinary orthopedics field. RESULTS: Our findings indicate that the PCL/HA scaffolds substantially supported the proliferation of cBM-MSCs. Notably, the group subjected to osteogenic induction exhibited a markedly upregulated expression of the osteogenic gene osterix (OSX) compared to the control group. Additionally, the construction of 3D scaffold constructs with differentiated cells and an extracellular matrix (ECM) was successfully imaged using scanning electron microscopy. Elemental analysis using a scanning electron microscope coupled with energy-dispersive X-ray spectroscopy confirmed that these constructs possessed the mineral content of bone-like compositions, particularly the presence of calcium and phosphorus. CONCLUSIONS: This research highlights the synergistic potential of PCL/HA scaffolds in concert with cBM-MSCs, presenting a multidisciplinary approach to scaffold fabrication that effectively regulates cell proliferation and osteogenic differentiation. Future in vivo studies focusing on the repair and regeneration of bone defects are warranted to further explore the regenerative capacity of these constructs, with the ultimate goal of assessing their potential in veterinary clinical applications.


Subject(s)
Bone Regeneration , Durapatite , Mesenchymal Stem Cells , Osteogenesis , Polyesters , Tissue Scaffolds , Animals , Dogs , Polyesters/chemistry , Polyesters/pharmacology , Tissue Scaffolds/chemistry , Osteogenesis/drug effects , Durapatite/chemistry , Durapatite/pharmacology , Mesenchymal Stem Cells/physiology , Bone Regeneration/drug effects , Cell Proliferation , Cell Differentiation/drug effects , Tissue Engineering/methods
3.
Front Cell Dev Biol ; 12: 1456416, 2024.
Article in English | MEDLINE | ID: mdl-39234562

ABSTRACT

Renal fibrosis, characterized by excessive extracellular matrix accumulation, leads to a progressive decline of renal function and is a common endpoint of chronic kidney disease (CKD). Current treatments primarily focus on managing underlying diseases, offering limited direct intervention for the fibrotic process. This study explores the anti-fibrotic potential of human adipose-derived mesenchymal stromal cells (MSCs) and their derived extracellular vesicles (EVs) in the context of CKD, emphasizing the effects of systemic versus local delivery methods. Preconditioned MSCs (Pr-MSCs) were treated with TNF-α and IFN-γ to enhance their immunomodulatory capabilities, and demonstrated significant anti-fibrotic effects in vitro, reducing mRNA expression of fibrosis markers in TGF-ß stimulated HKC-8 cells. Our in vivo findings from a murine unilateral ureteral obstruction (UUO) model of CKD showed that local deliveries of Pr-MSCs reduced collagen deposition and increased expression of the anti-inflammatory cytokine IL-10. Systemic administration of Pr-MSCs did not show any significant effect on UUO-induced injury. In addition, EVs did not replicate the anti-fibrotic effects observed with their parent cells, suggesting that soluble proteins or metabolites secreted by Pr-MSCs might be the primary mediators of the anti-fibrotic and immunomodulatory effects. This study provides critical insights into the therapeutic efficacy of MSCs, highlighting the importance of delivery methods and the potential of preconditioning strategies in enhancing MSC-based therapies for renal fibrosis.

4.
Article in English | MEDLINE | ID: mdl-39254726

ABSTRACT

INTRODUCTION: Hip osteoarthritis (OA) is a prevalent and debilitating condition, necessitating effective and safe treatment options. This systematic review aims to explore the potential of intra-articular mesenchymal stem cell (MSC) infiltrations as a therapeutic approach for hip OA. METHODS: Following PRISMA guidelines, a systematic review was conducted, encompassing PubMed, Embase, and Cochrane Library databases. Inclusion criteria involved studies focusing on intra-articular MSC injections in patients with hip OA and reporting pain relief as an outcome measure. Quality assessment utilized the Newcastle-Ottawa scale and methodological index for non-randomized studies. RESULTS: Ten studies were included in the review, exhibiting varied designs and sample sizes (316 patients). Outcome measures consisted of cartilage repair assessed through MRI and radiographies, pain scores (WOMAC, VAS, NRS), and functional improvements (HOS-ADL, OHS, FRI, PDQQ, LEFS). The studies reported favorable improvements in functional scores, pain relief, and cartilage repair/radiographic findings, with minimal reported adverse events. CONCLUSIONS: Intra-articular MSC infiltrations demonstrate promise as an effective and safe therapeutic intervention for managing hip OA, offering pain relief and functional enhancements. Nevertheless, limited high-quality studies and outcome measure variations underscore the need for further research to establish definitive treatment guidelines. Future investigations should address optimal MSC utilization, long-term outcomes, and potential complications to ensure the success of MSC-based therapies for hip OA management, ultimately improving patient outcomes. The findings provide valuable insights into the potential of MSC-based treatments for hip OA, advocating further rigorous research in this field. TRIAL REGISTRATION: The protocol was registered on PROSPERO database (CRD42023436973).

5.
Contemp Clin Trials Commun ; 41: 101350, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39246626

ABSTRACT

Background and objective: The use of mesenchymal stem cells for heart failure treatment has gained increasing interest. However, most studies have relied on a single injection approach, with no research yet confirming the effects of multiple administrations. The present trial aims to investigate the safety and efficacy of multi-intravenous infusion of umbilical cord-mesenchymal stem cells (UC-MSCs) in patients with heart failure and reduced ejection fraction (HFrEF). Methods: The PRIME-HFrEF trial is a single-center, prospective, randomized, triple-blinded, placebo-controlled trial of multi-intravenous infusion of UC-MSCs in HFrEF patients. A total of 40 patients meeting the inclusion criteria for HFrEF were enrolled and randomized 1:1 to the MSC group or the placebo group. Patients enrolled will receive intravenous injections of either UC-MSCs or placebo every 6 weeks for three times. Both groups will be followed up for 12 months. The primary safety endpoint is the incidence of serious adverse events. The primary efficacy endpoint is a change in left ventricular ejection fraction (LVEF) measured by left ventricular opacification (LVO) with contrast echocardiography and magnetic resonance imaging (MRI) at 12 months. The secondary endpoints include a composite of the incidence of death and re-hospitalization caused by heart failure at the 12th month, serum NT-proBNP, growth stimulation expressed gene 2 (ST2), and a change of right ventricular structure and function. Conclusions: The PRIME-HFrEF study is designed to shed new light on multiple UC-MSC administration regimens for heart failure treatment.

6.
Stem Cells ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230167

ABSTRACT

Advanced bioinformatics analysis, such as systems biology (SysBio) and artificial intelligence (AI) approaches, including machine learning (ML) and deep learning (DL), is increasingly present in stem cell (SC) research. An approximate timeline on these developments and their global impact is still lacking. We conducted a scoping review on the contribution of SysBio and AI analysis to SC research and therapy development based on literature published in PubMed between 2000 and 2024. We identified an 8-10-fold increase in research output related to all three search terms between 2000 and 2021, with a 10-fold increase in AI-related production since 2010. Use of SysBio and AI still predominates in preclinical basic research with increasing use in clinically oriented translational medicine since 2010. SysBio- and AI-related research was found all over the globe, with SysBio output led by the United States (US, n=1487), United Kingdom (UK, n=1094), Germany (n=355), The Netherlands (n=339), Russia (n=215), and France (n=149), while for AI-related research the US (n=853) and UK (n=258) take a strong lead, followed by Switzerland (n=69), The Netherlands (n=37), and Germany (n=19). The US and UK are most active in SCs publications related to AI/ML and AI/DL. The prominent use of SysBio in ESC research was recently overtaken by prominent use of AI in iPSC and MSC research. This study reveals the global evolution and growing intersection between AI, SysBio, and SC research over the past two decades, with substantial growth in all three fields and exponential increases in AI-related research in the past decade.

7.
Mar Life Sci Technol ; 6(3): 515-534, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39219680

ABSTRACT

This study aimed to investigate the osteo-inductive capacity of a fucoidan polysaccharide network derived from brown algae on human adipose-derived stem cells (HA-MSCs) for bone regeneration. The physiochemical properties of the scaffold including surface morphology, surface chemistry, hydrophilicity, mechanical stiffness, and porosity were thoroughly characterized. Both in vitro and in vivo measurements implied a superior cell viability, proliferation, adhesion, and osteo-inductive performance of obtained scaffolds compared to using specific osteogenic induction medium with increased irregular growth of calcium crystallites, which mimic the structure of natural bones. That scaffold was highly biocompatible and suitable for cell cultures. Various examinations, such as quantification of mineralization, alkaline phosphatase, gene expression, and immunocytochemical staining of pre-osteocyte and bone markers confirmed that HAD-MSCs differentiate into osteoblasts, even without an osteogenic induction medium. This study provides evidence for the positive relationship and synergistic effects between the physical properties of the decellularized seaweed scaffold and the chemical composition of fucoidan in promoting the osteogenic differentiation of HA-MSCs. Altogether, the natural matrices derived from brown seaweed offers a sustainable, cost-effective, non-toxic bioinspired scaffold and holds promise for future clinical applications in orthopedics.

8.
Stem Cell Res Ther ; 15(1): 243, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113141

ABSTRACT

Mesenchymal stem cells (MSCs) therapy is a highly researched treatment that has the potential to promote immunomodulation and anti-inflammatory, anti-apoptotic, and antimicrobial activities. It is thought that it can enhance internal organ function, reverse tissue remodeling, and achieve significant organ repair and regeneration. However, the limited infusion, survival, and engraftment of transplanted MSCs diminish the effectiveness of MSCs-based therapy. Consequently, various preconditioning methods have emerged as strategies for enhancing the therapeutic effects of MSCs and achieving better clinical outcomes. In particular, the use of natural small molecule compounds (NSMs) as a pretreatment strategy is discussed in this narrative review, with a focus on their roles in regulating MSCs for injury repair in vital internal organs. Additionally, the discussion focuses on the future directions and challenges of transforming mesenchymal stem cell research into clinical applications.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cell Transplantation/methods , Animals , Biological Products/pharmacology , Biological Products/therapeutic use , Wound Healing/drug effects
9.
Am J Transl Res ; 16(7): 2793-2813, 2024.
Article in English | MEDLINE | ID: mdl-39114694

ABSTRACT

OBJECTIVES: Osteoarthritis (OA) is a degenerative joint condition that is persistent. OA affects millions of people throughout the world. Both people and society are heavily economically burdened by osteoarthritis. There is currently no medication that can structurally alter the OA processes or stop the disease from progressing. Stem cells have the potential to revolutionize medicine due to their capacity to differentiate into chondrocytes, capacity to heal tissues and organs including osteoarthritic joints, and immunomodulatory capabilities. Therefore, the goal of the current investigation was to determine how bone marrow-derived mesenchymal stem cells (BM-MSCs) and chondrogenic differentiated mesenchymal stem cells (CD-MSCs) affected the treatment of OA in rats with monosodium iodoacetate (MIA)-induced osteoarthritis. METHODS: Male Wistar rats were injected three times with MIA (1 mg)/100 µL isotonic saline to induce osteoarthritis in the ankle joint of the right hind leg. Following the MIA injection, the osteoarthritic rats were given weekly treatments of 1 × 106 BM-MSCs and CD-MSCs into the tail vein for three weeks. RESULTS: The obtained results showed that in osteoarthritic rats, BM-MSCs and CD-MSCs dramatically decreased ankle diameter measurements, decreased oxidized glutathione (GSSG) level, and boosted glutathione peroxidase (GPx) and glutathione reductase (GR) activities. Additionally, in rats with MIA-induced OA, BM-MSCs and CD-MSCs dramatically boosted interleukin-10 (IL-10) serum levels while considerably decreasing serum anticitrullinated protein antibodies (ACPA), tumour necrosis factor-α (TNF-α), and interleukin-17 (IL-17) levels as well as ankle transforming growth factor-ß1 (TGF-ß1) expression. Analysis of histology, immunohistochemistry, and western blots in osteoarthritic joints showed that cartilage breakdown and joint inflammation gradually decreased over time. CONCLUSIONS: It is possible to conclude from these results that BM-MSCs and CD-MSCs have anti-arthritic potential in MIA-induced OA, which may be mediated via inhibitory effects on oxidative stress, MMPs and inflammation through suppressing the NF-κB pathway. In osteoarthritis, using CD-MSCs as a treatment is more beneficial therapeutically than using BM-MSCs.

10.
Article in English | MEDLINE | ID: mdl-39110907

ABSTRACT

Mesenchymal stromal cell (MSC) apoptosis is required for in vivo immunosuppression. However, the induction of apoptosis is heavily dependent on the recipient's immune system. In graft-versus-host disease (GvHD), patients who fail to respond to MSCs are in fact those whose immune cells are unable to induce MSC apoptosis ex vivo. The information is critical to explain why responses in clinical trials vary even though the same sources of MSC products are infused. More importantly, it highlights the need for an alternative MSC treatment for the nonresponders. By using a mouse model of ovalbumin (OVA)-induced allergic inflammation, we demonstrated that we could generate apoptotic MSCs (ApoMSCs) in vitro and use them to successfully reduce allergic airway inflammation. In order to address the logistics of their potential future clinical application, we have shown that ApoMSCs could be cryopreserved without impairing efficacy compared to freshly generated ApoMSCs. We have also highlighted that MSCs need to undergo complete apoptosis before cryopreservation to retain their immunosuppressive activity. The cryopreserved ApoMSCs could serve as a potential future off-the-shelf cellular product, in particular for patients who suffer from inflammatory conditions yet do not harbor the immune capacity to induce MSC apoptosis in vivo. Our data provide proof-of-concept that under laboratory conditions, ApoMSCs can be successfully frozen and thawed without affecting their anti-inflammatory activity, as tested in a murine model of allergic inflammation.

11.
Ann Transl Med ; 12(4): 73, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39118948

ABSTRACT

Cardiovascular diseases (CVDs), particularly stroke and myocardial infarction (MI) contributed to the leading cause of death annually among the chronic diseases globally. Despite the advancement of technology, the current available treatments mainly served as palliative care but not treating the diseases. However, the discovery of mesenchymal stem cells (MSCs) had gained a consideration to serve as promising strategy in treating CVDs. Recent evidence also showed that MSCs are the strong candidate to be used as stem cell therapy involving cardiovascular regeneration due to its cardiomyogenesis, anti-inflammatory and immunomodulatory properties, antifibrotic effects and neovascularization capacity. Besides, MSCs could be used for cellular cardiomyoplasty with its transdifferentiation of MSCs into cardiomyocytes, paracrine effects, microvesicles and exosomes as well as mitochondrial transfer. The safety and efficacy of utilizing MSCs have been described in well-established preclinical and clinical studies in which the accomplishment of MSCs transplantation resulted in further improvement of the cardiac function. Tissue engineering could enhance the desired properties and therapeutic effects of MSCs in cardiovascular regeneration by genome-editing, facilitating the cell delivery and retention, biomaterials-based scaffold, and three-dimensional (3D)-bioprinting. However, there are still obstacles in the use of MSCs due to the complexity and versatility of MSCs, low retention rate, route of administration and the ethical and safety issues of the use of MSCs. The aim of this review is to highlight the details of therapeutic properties of MSCs in treating CVDs, strategies to facilitate the therapeutic effects of MSCs through tissue engineering and the challenges faced using MSCs. A comprehensive review has been done through PubMed and National Center for Biotechnology Information (NCBI) from the year of 2010 to 2021 based on some specific key terms such as 'mesenchymal stem cells in cardiovascular disease', 'mesenchymal stem cells in cardiac regeneration', 'mesenchymal stem cells facilitate cardiac repairs', 'tissue engineering of MSCs' to include relevant literature in this review.

12.
Ann Transl Med ; 12(4): 72, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39118961

ABSTRACT

Arthritis, defined as a chronic inflammation often accompanied by swelling of one or more joints, encompasses more than 100 conditions that affect the joints, tissues around them as well as other connective tissues. This condition causes severe discomfort compromising the quality of life drastically, and thereby inflicts severe financial and social impact on the people affected. The incidence rate of arthritis is increasing all around the globe including the United States every year. In general, osteoarthritis (OA) affects more people in comparison to rheumatoid arthritis (RA). In the USA itself, more than 14 million people are affected by OA in comparison to 1.4 million people suffering from RA. In both conditions, elevated levels of proinflammatory cytokines have been recorded, this incidence generally precedes the cartilage degradation observed in the patients. The use of mesenchymal stem cells (MSCs) has proven to be a safe and efficient therapeutic option for treating many inflammation-rooted pathological conditions. Evidence suggests that MSCs down-regulate the effects of proinflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-1B, IL-2, and IL-17, and help restore the functions of immune cells. In addition, these cells promote the polarization of M2 phenotype macrophages, thus contributing to the suppression of the inflammatory process and consequentially to cartilage regeneration. Preclinical and clinical trials have proven the safety and effectiveness of this therapy, supported by the fact that these do not provoke any host immune response, and their influence on the cytokine profiles. An attempt to survey the results of stem cell therapy for treating arthritis has been carried out in this review.

13.
Cells ; 13(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39120301

ABSTRACT

Head and neck cancer (HNC) entails a heterogenous neoplastic disease that arises from the mucosal epithelium of the upper respiratory system and the gastrointestinal tract. It is characterized by high morbidity and mortality, being the eighth most common cancer worldwide. It is believed that the mesenchymal/stem stromal cells (MSCs) present in the tumour milieu play a key role in the modulation of tumour initiation, development and patient outcomes; they also influence the resistance to cisplatin-based chemotherapy, the gold standard for advanced HNC. MSCs are multipotent, heterogeneous and mobile cells. Although no MSC-specific markers exist, they can be recognized based on several others, such as CD73, CD90 and CD105, while lacking the presence of CD45, CD34, CD14 or CD11b, CD79α, or CD19 and HLA-DR antigens; they share phenotypic similarity with stromal cells and their capacity to differentiate into other cell types. In the tumour niche, MSC populations are characterized by cell quiescence, self-renewal capacity, low reactive oxygen species production and the acquisition of epithelial-to-mesenchymal transition properties. They may play a key role in the process of acquiring drug resistance and thus in treatment failure. The present narrative review examines the links between MSCs and HNC, as well as the different mechanisms involved in the development of resistance to current chemo-radiotherapies in HNC. It also examines the possibilities of pharmacological targeting of stemness-related chemoresistance in HNSCC. It describes promising new strategies to optimize chemoradiotherapy, with the potential to personalize patient treatment approaches, and highlights future therapeutic perspectives in HNC.


Subject(s)
Drug Resistance, Neoplasm , Head and Neck Neoplasms , Mesenchymal Stem Cells , Humans , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/immunology , Mesenchymal Stem Cells/metabolism , Drug Resistance, Neoplasm/drug effects , Carcinogenesis/pathology , Carcinogenesis/drug effects , Animals , Mesenchymal Stem Cell Transplantation
14.
Sci Rep ; 14(1): 17844, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090166

ABSTRACT

This study was to determine whether extracellular vesicles (EVs) derived from insulin-producing cells (IPCs) can modulate naïve mesenchymal stromal cells (MSCs) to become insulin-secreting. MSCs were isolated from human adipose tissue. The cells were then differentiated to generate IPCs by achemical-based induction protocol. EVs were retrieved from the conditioned media of undifferentiated (naïve) MSCs (uneducated EVs) and from that of MSC-derived IPCs (educated EVs) by sequential ultracentrifugation. The obtained EVs were co-cultured with naïve MSCs.The cocultured cells were evaluated by immunofluorescence, flow cytometry, C-peptide nanogold silver-enhanced immunostaining, relative gene expression and their response to a glucose challenge.Immunostaining for naïve MSCs cocultured with educated EVs was positive for insulin, C-peptide, and GAD65. By flow cytometry, the median percentages of insulin-andC-peptide-positive cells were 16.1% and 14.2% respectively. C-peptide nanogoldimmunostaining providedevidence for the intrinsic synthesis of C-peptide. These cells released increasing amounts of insulin and C-peptide in response to increasing glucose concentrations. Gene expression of relevant pancreatic endocrine genes, except for insulin, was modest. In contrast, the results of naïve MSCs co-cultured with uneducated exosomes were negative for insulin, C-peptide, and GAD65. These findings suggest that this approach may overcome the limitations of cell therapy.


Subject(s)
Cell Differentiation , Coculture Techniques , Extracellular Vesicles , Insulin-Secreting Cells , Insulin , Mesenchymal Stem Cells , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Extracellular Vesicles/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/cytology , C-Peptide/metabolism , Cells, Cultured , Glucose/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism
15.
Stem Cell Res Ther ; 15(1): 253, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135088

ABSTRACT

Stem cell therapy (SCT) is a promising solution for addressing health challenges in Africa, particularly non-communicable diseases (NCDs). With their regenerative potential, stem cells have the inherent capacity to differentiate into numerous cell types for tissue repair. Despite infrastructural, ethical, and legal challenges, SCT holds immense promise for managing chronic illnesses and deep-seated tissue injuries. The rising prevalence of NCDs in Africa highlights the need for innovative strategies and treatment options. SCT offers hope in combating conditions like burns, osteoarthritis, diabetes, Alzheimer's disease, stroke, heart failure and cancer, potentially reducing the burden of NCDs on the continent. Despite SCT's opportunities in Africa, there are significant obstacles. However, published research on SCT in Africa is scarce, but recent initiatives such as the Basic School on Neural Stem Cells (NSC) express interest in developing NSC research in Africa. SCT research in African regions, notably on neurogenesis, demonstrates a concentration on studying neurological processes in indigenous settings. While progress has been made in South Africa and Nigeria, issues such as brain drain and impediments to innovation remain. Clinical trials have investigated the efficacy of stem cell treatments, emphasising both potential benefits and limitations in implementing these therapies efficiently. Financing research, developing regulatory frameworks, and resolving affordability concerns are critical steps toward realizing the potential of stem cell treatment in Africa.


Subject(s)
Noncommunicable Diseases , Stem Cell Transplantation , Humans , Noncommunicable Diseases/therapy , Africa/epidemiology , Stem Cell Transplantation/methods , Cell- and Tissue-Based Therapy/methods
16.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125577

ABSTRACT

Mesenchymal stromal cells (MSCs) display heterogeneity in origin and functional role in tissue homeostasis. Subsets of MSCs derived from the neural crest express nestin and serve as niches in bone marrow, but the possibility of coaxing MSCs into nestin-expresing cells for enhanced supportive activity is unclear. In this study, as an approach to the chemical coaxing of MSC functions, we screened libraries of clinically approved chemicals to identify compounds capable of inducing nestin expression in MSCs. Out of 2000 clinical compounds, we chose vorinostat as a candidate to coax the MSCs into neural crest-like fates. When treated with vorinostat, MSCs exhibited a significant increase in the expression of genes involved in the pluripotency and epithelial-mesenchymal transition (EMT), as well as nestin and CD146, the markers for pericytes. In addition, these nestin-induced MSCs exhibited enhanced differentiation towards neuronal cells with the upregulation of neurogenic markers, including SRY-box transcription factor 2 (Sox2), SRY-box transcription factor 10 (Sox10) and microtubule associated protein 2 (Map2) in addition to nestin. Moreover, the coaxed MSCs exhibited enhanced supporting activity for hematopoietic progenitors without supporting leukemia cells. These results demonstrate the feasibility of the drug repositioning of MSCs to induce neural crest-like properties through the chemical coaxing of cell fates.


Subject(s)
Cell Differentiation , Drug Repositioning , Mesenchymal Stem Cells , Nestin , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Nestin/metabolism , Nestin/genetics , Humans , Cell Differentiation/drug effects , Drug Repositioning/methods , Epithelial-Mesenchymal Transition/drug effects , Cells, Cultured , Neural Crest/cytology , Neural Crest/metabolism , Neural Crest/drug effects
17.
Bioengineering (Basel) ; 11(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39199706

ABSTRACT

Bone marrow has raised a great deal of scientific interest, since it is responsible for the vital process of hematopoiesis and is affiliated with many normal and pathological conditions of the human body. In recent years, organs-on-chips (OoCs) have emerged as the epitome of biomimetic systems, combining the advantages of microfluidic technology with cellular biology to surpass conventional 2D/3D cell culture techniques and animal testing. Bone-marrow-on-a-chip (BMoC) devices are usually focused only on the maintenance of the hematopoietic niche; otherwise, they incorporate at least three types of cells for on-chip generation. We, thereby, introduce a BMoC device that aspires to the purely in vitro generation and maintenance of the hematopoietic niche, using solely mesenchymal stem cells (MSCs) and hematopoietic stem and progenitor cells (HSPCs), and relying on the spontaneous formation of the niche without the inclusion of gels or scaffolds. The fabrication process of this poly(dimethylsiloxane) (PDMS)-based device, based on replica molding, is presented, and two membranes, a perforated, in-house-fabricated PDMS membrane and a commercial poly(ethylene terephthalate) (PET) one, were tested and their performances were compared. The device was submerged in a culture dish filled with medium for passive perfusion via diffusion in order to prevent on-chip bubble accumulation. The passively perfused BMoC device, having incorporated a commercial poly(ethylene terephthalate) (PET) membrane, allows for a sustainable MSC and HSPC co-culture and proliferation for three days, a promising indication for the future creation of a hematopoietic bone marrow organoid.

18.
Bioengineering (Basel) ; 11(8)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39199730

ABSTRACT

The impact of traumatic spinal cord injury (SCI) can be extremely devastating, as it often results in the disruption of neural tissues, impeding the regenerative capacity of the central nervous system. However, recent research has demonstrated that mesenchymal stem cells (MSCs) possess the capacity for multi-differentiation and have a proven track record of safety in clinical applications, thus rendering them effective in facilitating the repair of spinal cord injuries. It is urgent to develop an aligned scaffold that can effectively load MSCs for promoting cell aligned proliferation and differentiation. In this study, we prepared an aligned nanofiber scaffold using the porcine decellularized spinal cord matrix (DSC) to induce MSCs differentiation for spinal cord injury. The decellularization method removed 87% of the immune components while retaining crucial proteins in DSC. The electrospinning technique was employed to fabricate an aligned nanofiber scaffold possessing biocompatibility and a diameter of 720 nm. In in vitro and in vivo experiments, the aligned nanofiber scaffold induces the aligned growth of MSCs and promotes their differentiation into neurons, leading to tissue regeneration and nerve repair after spinal cord injury. The approach exhibits promising potential for the future development of nerve regeneration scaffolds for spinal cord injury treatment.

19.
Curr Issues Mol Biol ; 46(8): 7877-7894, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39194684

ABSTRACT

Fatty muscle degeneration and muscle atrophy have not been successfully treated due to their irreversible pathology. This study evaluated the efficacy of rat adipose-derived mesenchymal stem/stromal cells (ADP MSCs) in treating fatty muscle degeneration (FD). A total of 36 rats were divided into three groups: the control (C) group (n = 12); FD model group, generated by sciatic nerve crushing (n = 12); and the group receiving ADP MSC treatment for FD (FD+MSCs) (n = 12). In Group FD+MSCs, ADP MSCs were injected locally into the gastrocnemius muscle one week after the FD model was created (Day 8). On Day 22 (n = 18) and Day 43 (n = 18), muscle morphology, histopathology, and molecular analyses (inflammation, muscle atrophy, adipocytes, and muscle differentiation markers) were performed. In Group FD+MSCs, the formation of immature myofibers was observed on Day 22, and mitigation of fatty degeneration and muscle atrophy progression was evident on Day 43. Gene expression of muscle atrophy markers (FBXO32, TRIM63, and FOXO1) and adipogenic markers (ADIPOQ, PPARG, FABP4, and PDGFRA) was lower in Group FD+MSCs than Group FD on Day 43. ADP MSCs induce anti-inflammatory effects, inhibit fat accumulation, and promote muscle regeneration, highlighting their potential as promising therapy for FD and atrophy.

20.
Cells ; 13(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39195236

ABSTRACT

Currently, there is a growing focus on aging and age-related diseases. The processes of aging are based on cell senescence, which results in changes in intercellular communications and pathological alterations in tissues. In the present study, we investigate the influence of senescent mesenchymal stem cells (MSCs) on endothelial cells (ECs). In order to induce senescence in MSCs, we employed a method of stress-induced senescence utilizing mitomycin C (MmC). Subsequent experiments involved the interaction of ECs with MSCs in a coculture or the treatment of ECs with the secretome of senescent MSCs. After 48 h, we assessed the EC state. Our findings revealed that direct interaction led to a decrease in EC proliferation and migratory activity of the coculture. Furthermore, there was an increase in the activity of the lysosomal compartment, as well as an upregulation of the genes P21, IL6, IL8, ITGA1, and ITGB1. Treatment of ECs with the "senescent" secretome resulted in less pronounced effects, although a decrease in proliferation and an increase in ICAM-1 expression were observed. The maintenance of high levels of typical "senescent" cytokines and growth factors after 48 h suggests that the addition of the "senescent" secretome may have a prolonged effect on the cells. It is noteworthy that in samples treated with the "senescent" secretome, the level of PDGF-AA was higher, which may explain some of the pro-regenerative effects of senescent cells. Therefore, the detected changes may underlie both the negative and positive effects of senescence. The findings provide insight into the effects of cell senescence in vitro, where many of the organism's regulatory mechanisms are absent.


Subject(s)
Cell Proliferation , Cellular Senescence , Endothelial Cells , Mesenchymal Stem Cells , Cellular Senescence/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Cell Proliferation/drug effects , Endothelial Cells/metabolism , Endothelial Cells/cytology , Coculture Techniques , Cell Movement/drug effects , Cytokines/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Secretome/metabolism , Lysosomes/metabolism , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL