Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 427
Filter
1.
Nanomaterials (Basel) ; 14(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38998727

ABSTRACT

Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(-)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(-)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring.

2.
Small ; : e2401273, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958069

ABSTRACT

Acid-treated multi-walled carbon nanotube (MWCNT) covalently functionalized with cobalt triphenothiazine porphyrin (CoTriPTZ-OH) A3B type porphyrin, containing three phenothiazine moieties (represented as MWCNT-CoTriPTZ) is synthesized and characterized by various spectroscopic and microscopic techniques. The nanoconjugate, MWCNT-CoTriPTZ, exhibits a pair of distinct redox peaks due to the Co2+/Co3+ redox process in 0.1 M pH 7.0 phosphate buffer. Further, it electrocatalytically oxidizes hydrazine at a low overpotential with a high current. This property is advantageously utilized for the sensitive determination of hydrazine. The developed electrochemical sensor exhibits high sensitivity (0.99 µAµM-1cm-2), a low limit of detection (4.5 ppb), and a broad linear calibration range (0.1 µM to 3.0 mM) for the determination of hydrazine. Further, MWCNT-CoTriPTZ is exploited for hydrazine-assisted green hydrogen synthesis. The high efficiency of hydrazine oxidation is confirmed by the low onset potential (0.45 V (vs RHE)) and 0.60 V (vs RHE) at the current density of 10 mA.cm-2. MWCNT-CoTriPTZ displays a high current density (77.29 mA.cm-2) at 1.45 V (vs RHE).

3.
Biosensors (Basel) ; 14(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38920595

ABSTRACT

This work reports the development of novel curcuminoid-based electrochemical sensors for the detection of environmental pollutants from water. In this study, the first set of electrochemical experiments was carried out using curcumin-conjugated multi-walled carbon nanotubes (MWCNT-CM) for 1,4-dioxane detection. The MWCNT-CM/GCE showed good sensitivity (103.25 nA nM-1 cm-2 in the linear range 1 nM to 1 µM), with LOD of 35.71 pM and LOQ of 108.21 pM. The second set of electrochemical experiments was carried out with bisdemethoxy curcumin analog quantum dots (BDMCAQD) for hydrazine detection. The BDMCAQD/GCE exhibited good sensitivity (74.96 nA nM-1 cm-2 in the linear range 100 nM to 1 µM), with LOD of 10 nM and LOQ of 44.93 nM. Thus, this work will serve as a reference for the fabrication of metal-free electrochemical sensors using curcuminoids as the redox mediator for the enhanced detection of environmental pollutants.


Subject(s)
Curcumin , Electrochemical Techniques , Hydrazines , Nanotubes, Carbon , Hydrazines/analysis , Curcumin/analysis , Nanotubes, Carbon/chemistry , Dioxanes , Biosensing Techniques , Environmental Pollutants/analysis , Quantum Dots , Limit of Detection , Water Pollutants, Chemical/analysis
4.
Biodegradation ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909143

ABSTRACT

The microbial fuel cell (MFC) is considered a modern technology used for treating wastewater and recovering electrical energy. In this study, a new dual technology combining MFC and a specialized biofilter was used. The anodic materials in the system were crushed graphite, either without coating (UFB-MFC) or coated with nanomaterials (nano-UFB-MFC). This biofilter served as a barrier to retain and remove turbidity and suspended solids, while also facilitating the role of bacteria in the removal of organic pollutants, phosphates, nitrates, sulfates, oil and greases. The results demonstrated that both systems exhibited high efficiency in treating kitchen wastewater, specifically greywater and dishwashing wastewater with high detergent concentrations. The removal efficiencies of COD, oil and grease, suspended solids, turbidity, nitrates, sulfates, and phosphates in first UFB-MFC were found to be 88, 95, 89, 86, 87, 75, and 94%, respectively, and in Nano-UFB-MFC were 86, 99, 95, 91, 81, 88, and 95%, respectively, with a high efficiency in recovering bioenergy reaching a value of 1.8 and 1.5 A m-3, respectively. The results of this study demonstrate the potential for developing MFC and utilizing it as a domestic system to mitigate pollution risks before discharging wastewater into the sewer network.

5.
Environ Res ; : 119352, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876416

ABSTRACT

Renewable energy research is burgeoning with the anticipation of finding neat liquid fuel. Ultra sonification assisted biodiesel was derived from red algae Cyanidioschyzon merolae, with BD yield of 98.9%. The results of GC MS of the prepared biodiesel showed higher concentration of methyl palmitate, methyl oleate, and stearate. This composition is appreciable, as this plays significant in desirable pour & cloud point properties. NMR spectrum revealed the ester linkages, presence of olefins, and α methyl position in olefins. Mixture of 30wt% of biodiesel in diesel exhibited work efficiency at low pour point and, lower viscosity of biodiesel was observed. CeO2 and Fe2O3 nano particles were bio reduced, and were added as nano additive in biodiesel. 1:1 ratio of CeO2 and Fe2O3 added to biodiesel maximised the oxygen storage capacity of CeO2, and improved the combustion reactions of Fe2O3. Further, this combination produced a satisfactory Calorific value. Imbalanced ratios disrupted the catalytic and oxygen storage effects, reduced the overall energy release and calorific value of the biodiesel blend. Pour point and cetane number value of A/F/C-1 was around -7 oC and 53 respectively, and was better than other compositions. 1:1 mass ratio of NPS blended with 30wt% BD in diesel showed tremendous increase in BTE, torque, and power. HC, NOX, and SOX emissions were reduced by 42.8%, 19.3%, and 57% respectively. CeO2 favourably improved the oxygen storage capacity of the fuel, whereas Fe2O3 showed decrease in formation of gums and sediments in biodiesel.

6.
J Environ Health Sci Eng ; 22(1): 179-195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887760

ABSTRACT

The present study evaluated the performance of multiwalled carbon nanotube (MWCNT)@MgAl-layered double hydroxide (LDH) nanoparticles loaded on poly-2 aminothiazole (PAT)/chitosan (CS) matrix (CPML) to remove Cd2+ ions from aqueous solution. The removal efficiency of modified CS/PAT with MWCNT@MgAl-LDHs was increased significantly compared to pure CS/PAT. The influence of heavy metal ion concentration, pH, temperature, adsorbent dosage, and contact time on the adsorption was examined. The optimum conditions for the adsorption of Cd2+ ions were 25 0C with the adsorbent dosage of 0.06 g and initial concentration for adsorption of the Cd2+ 100 mg/L at pH = 8. The maximum adsorption capacity was measured to be 1106.19 mg/g. The values of thermodynamic parameters namely Gibbs free energy (ΔG°), entropy change (ΔS°), and enthalpy change (ΔH°) indicated the feasibility, spontaneity and the endothermic nature of the adsorption process, respectively. The pseudo-second-order kinetics and the Langmuir model were selected as the best models for the adsorption process. Also, CPML nanocomposite (NC) was successfully tested for p-nitrophenol (p-NP) reduction in the presence of NaBH4. The reaction was nearly completed in 6 min. The fabricated CPML-NC could be reused for three consecutive cycles.

7.
Sci Rep ; 14(1): 11475, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769448

ABSTRACT

In recent years, using nanomaterials based on multi-wall carbon nanotubes (MWCNT) through the activation of peroxymonosulfate (PMS) has attracted more attention to the degradation of organic pollutants. This research presented a new route for the synthesis of MWCNT/CoMn2O4 nanocomposite for the degradation of picric acid using advanced oxidation processes (AOPs). Firstly, CoMn2O4 nanoparticles were prepared and then loaded on MWCNT using ultrasonic waves. The results of various analyzes confirmed the successful loading of nanoparticles on carbon nanotubes. As the degradation process proceeds through oxidation processes, the high electronic conductivity of MWCNT and the active sites of Mn and Co in the nanocomposite play an essential role in activating PMS to generate reactive oxygen species (ROS). An investigation of the reaction mechanism in different conditions showed that the highest speed of picric acid decomposition in the presence of nanocomposite (98%) was in 47 min. However, the scavenger test showed that HO· and SO4·- radicals are more important in the degradation process. Meanwhile, the results showed that removing picric acid using MWCNT/CoMn2O4 was more effective than CoMn2O4 alone and confirmed the interaction effect of MWCNT nanotubes with AB2O4 nanocatalyst.

8.
Sci Rep ; 14(1): 12073, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802442

ABSTRACT

Carbon nanotubes (CNTs) have the potential to serve as delivery systems for medicinal substances and gene treatments, particularly in cancer treatment. Co-delivery of curcumin (CUR) and Methotrexate (MTX) has shown promise in cancer treatment, as it uses fewer drugs and has fewer side effects. This study used MTX-conjugated albumin (BSA)-based nanoparticles (BSA-MTX) to enhance and assess the efficiency of CUR. In-vitro cytotoxicity tests, DLS, TEM, FTIR, UV/Vis, SEM, and DSC studies assessed the formulations' physical and chemical properties. The Proteinase K enzyme was used to severe amidic linkages between MTX and BSA. The findings demonstrated the efficacy of using ƒ-MWCNT-CUR-BSA-MTX as a vehicle for efficient co-delivery of CUR and MTX in cancer treatment. The MTT colorimetric method was used to evaluate the effect of chemical and medicinal compounds. Cell division was studied using the MTT method to investigate the effect of pure MWCNT, pure CUR, MTX-BSA, and ƒ-MWCNT-CUR-MTX-BSA. Studies on cell lines have shown that the combination of curcumin and MTX with CNT can increase and improve the effectiveness of both drugs against cancer. A combination of drugs curcumin and methotrexate simultaneously had a synergistic effect on MCF-7 cells, which indicated that these drugs could potentially be used as a strategy for both prevention and treatment of breast cancer. Also, ƒ-MWCNT-CUR-MTX-BSA was found to have a significant effect on cancer treatment with minimal toxicity compared to pure curcumin, pure MTX-BSA, MTX, and ƒ-MWCNT alone. Unique properties such as a high ratio of specific surface area to volume, high chemical stability, chemical adsorption ability, high capacity of drug and biomolecules of carbon nanotubes, as well as multiple drug loading at the same time The combination of ƒ-MWCNT-CUR-BSA MTX significantly impacts cancer therapy), are desirable as an alternative option for targeted drug delivery and high therapeutic efficiency.


Subject(s)
Curcumin , Methotrexate , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Methotrexate/chemistry , Methotrexate/pharmacology , Methotrexate/administration & dosage , Humans , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/administration & dosage , Nanoparticles/chemistry , Drug Delivery Systems , Serum Albumin, Bovine/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , MCF-7 Cells , Drug Carriers/chemistry , Cell Survival/drug effects , Cell Line, Tumor
9.
Nanomicro Lett ; 16(1): 195, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743205

ABSTRACT

A lightweight flexible thermally stable composite is fabricated by combining silica nanofiber membranes (SNM) with MXene@c-MWCNT hybrid film. The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination; the MXene@c-MWCNTx:y films are prepared by vacuum filtration technology. In particular, the SNM and MXene@c-MWCNT6:4 as one unit layer (SMC1) are bonded together with 5 wt% polyvinyl alcohol (PVA) solution, which exhibits low thermal conductivity (0.066 W m-1 K-1) and good electromagnetic interference (EMI) shielding performance (average EMI SET, 37.8 dB). With the increase in functional unit layer, the overall thermal insulation performance of the whole composite film (SMCx) remains stable, and EMI shielding performance is greatly improved, especially for SMC3 with three unit layers, the average EMI SET is as high as 55.4 dB. In addition, the organic combination of rigid SNM and tough MXene@c-MWCNT6:4 makes SMCx exhibit good mechanical tensile strength. Importantly, SMCx exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment. Therefore, this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.

10.
Article in English | MEDLINE | ID: mdl-38797904

ABSTRACT

INTRODUCTION: Two-phase hybrid mode thermal interface materials were created and characterized for mechanical properties, thermal conductivity, and wear behaviour. Therefore, the ultimate goal of this current research was to use alkali-treated glass fibre and other allotropes to produce high-performance two-phase thermal interface materials. METHOD: Three different polymer composites were prepared to contain 20 vol.% alkalies [NaOH] treated e-glass fibre [E] and epoxy as a matrix with varying proportions of multi-walled carbon nanotube [MWCNT], graphene [G], copper oxide [C]. The one-phase material contained epoxy+20%e-glass+1%MWCNT [EMGC1], the two-phase hybrid composite contained epoxy+20%e-glass+1%MWCNT+1%graphene+1%CuO [EMGC2], and two-phase material contained epoxy+20%e-glass+1%graphene+1%CuO [EMGC3]. Vacuum bagging method was used for fabricating the composites. RESULT: The higher thermal conductivity observed was 0.3466 W/mK for EMGC2, the alkali-treated glass fibre/hybrid mode nanofillers epoxy matrix composite was mechanically tougher than the other two composites [EMGC1 & EMGC3]. Scanning electron microscopy analysis revealed the fine filler dispersion and homogenous interaction with the glass fibre/epoxy resin composite of the upper and lower zone, which also revealed the defective zone, fibre elongation, fibre/filler breakages, and filler leached surfaces. CONCLUSION: Finally, it was concluded that the hybrid mode two-phased structure EMGC2 epoxy matrix composite replicated the maximum thermal conductivity, mechanical properties, and wear properties of the other two specimens.

11.
Sci Rep ; 14(1): 11970, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796613

ABSTRACT

Numerous heat transfer applications, such as heat exchangers, solar trough collectors, and fields including food processing, material research, and aerospace engineering, utilize hybrid nanofluids. Compared to conventional fluids, hybrid nanofluids exhibit significantly enhanced thermal conductivity. The aim of this work is to explore flow and heat transmission features under of magneto-hydrodynamic bioconvective flow of carbon nanotubes over the stretched surface with Dufour and Soret effects. Additionally, comparative dynamics of the carbon nanotubes (SWCMT - MWCNT/C2H6O2 with SWCMT - MWCNT/C2H6O2 - H2O) flow using the Prandtl fluid model in the presence of thermal radiation and motile microorganisms has been investigated. Novel feature Additionally, the focus is also to examine the presence of microorganisms in mixture base hybrid nanofluid. To examine heat transfer features of Prandtl hybrid nanofluid over the stretched surface convective heating is taken into consideration while modeling the boundary conditions. Suitable similarity transform has been employed to convert dimensional flow governing equations into dimensionless equations and solution of the problem has been obtained using effective, accurate and time saving bvp-4c technique in MATLAB. Velocity, temperature, concentration and microorganisms profiles have been demonstrated graphically under varying impact of various dimensionless parameters such as inclined magnetization, mixed convection, Dufour effect, Soret effect, thermal radiation effect, and bioconvection lewis number. It has been observed that raising values of magnetization (0.5 ≤ M ≤ 4), mixed convection (0.01 ≤ λ ≤ 0.05) and inclination angle (0° ≤ α ≤ 180°) enhance fluid motion rapidly in Ethylene glycol based Prandtl hybrid nanofluid (SWCMT - MWCNT/C2H6O2) when compared with mixture base working fluid of carbon nanotubes SWCMT - MWCNT/C2H6O2 - H2O). Raising thermal radiation (0.1 ≤ Rd ≤ 1.7) and Dufour number (0.1 ≤ Du ≤ 0.19) values improves temperature profile. Moreover, a good agreement has been found between the current outcome and existing literature for skin friction outcomes.

12.
Biosens Bioelectron ; 258: 116358, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38718634

ABSTRACT

Wearable sensors for sweat glucose monitoring are gaining massive interest as a patient-friendly and non-invasive way to manage diabetes. The present work offers an alternative on-body method employing an all-printed flexible electrochemical sensor to quantify the amount of glucose in human sweat. The working electrode of the glucose sensor was printed using a custom-formulated ink containing multi-walled carbon nanotube (MWCNT), poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOPT: PSS), and iron (II, III) oxide (Fe3O4) nanoparticles. This novel ink composition has good conductivity, enhanced catalytic activity, and excellent selectivity. The working electrode was modified using Prussian blue (PB) nanoparticles and glucose oxidase enzyme (GOx). The sensor displayed a linear chronoamperometric response to glucose from 1 µM to 400 µM, with a precise detection limit of ∼0.38 µM and an impressive sensitivity of ∼4.495 µAµM-1cm-2. The sensor stored at 4 °C exhibited excellent stability over 60 days, high selectivity, and greater reproducibility. The glucose detection via the standard addition method in human sweat samples acquired a high recovery rate of 96.0-98.6%. Examining human sweat during physical activity also attested to the biosensor's real-time viability. The results also show an impressive correlation between glucose levels obtained from a commercial blood glucose meter and sweat glucose concentrations. Remarkably, the present results outperform previously published printed glucose sensors in terms of detection range, low cost, ease of manufacturing, stability, selectivity, and wearability.


Subject(s)
Biosensing Techniques , Glucose Oxidase , Glucose , Limit of Detection , Nanocomposites , Nanotubes, Carbon , Sweat , Wearable Electronic Devices , Humans , Biosensing Techniques/instrumentation , Nanotubes, Carbon/chemistry , Sweat/chemistry , Nanocomposites/chemistry , Glucose/analysis , Glucose Oxidase/chemistry , Ink , Electrochemical Techniques , Ferric Compounds/chemistry , Ferrocyanides/chemistry , Polymers/chemistry , Reproducibility of Results , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Polystyrenes
13.
Heliyon ; 10(8): e29768, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681597

ABSTRACT

An ultra-sensitive immunosensor was designed for the accurate determination of Carcinoembryonic Antigen (CEA). To enhance the performance of immunosensor, an MWCNT/Ni(OH)2 nanocomposite was utilized as the electrochemical interface and modifier of the electrode surface. The simple preparation procedures for MWCNT/Ni(OH)2 composite were provided. Its characteristics and properties were investigated by HRTEM, FESEM, XRD, and FTIR techniques. Leveraging the unique electrochemical characteristics shown by the MWCNT/Ni(OH)2 nanocomposite and its correlation with CEA, high accuracy in CEA detection was achieved. Experimental findings provide evidence that the proposed immunosensor has the ability to detect CEA in laboratory samples. This research contributes towards achieving precise and rapid CEA detection in cancer diagnosis and prognosis. Across a wide concentration range of CEA, the designed immunosensor demonstrated a linear response from 0.0001 ng/mL to 2 ng/mL, and its limit of detection (LOD) was just 0.076 pg/mL. To evaluate the practical applicability of the electrochemical immunosensor, blood serum samples were examined, revealing the immunosensor's remarkable specificity and longevity. Its high accuracy and stability make it a valuable tool in clinical settings and biomedical research, paving the way for improved cancer management and patient outcomes.

14.
Sensors (Basel) ; 24(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38676005

ABSTRACT

Two new surfactant sensors were developed by synthesizing Pt-doped acid-activated multi-walled carbon nanotubes (Pt@MWCNTs). Two different ionophores using Pt@MWCNTs, a new plasticizer, and (a) cationic surfactant 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-DHBI (Pt@MWCNT-DHBI ionophore) and (b) anionic surfactant dodecylbenzenesulfonate-DBS (Pt@MWCNT-DBS ionophore) composites were successfully synthesized and characterized. Both surfactant sensors showed a response to anionic surfactants (dodecylsulfate (SDS) and DBS) and cationic surfactants (cetylpyridinium chloride (CPC) and hexadecyltrimethylammonium bromide (CTAB)). The Pt@MWCNT-DBS sensor showed lower sensitivity than expected with the sub-Nernstian response of ≈23 mV/decade of activity for CPC and CTAB and ≈33 mV/decade of activity for SDS and DBS. The Pt@MWCNT-DHBI surfactant sensor had superior response properties, including a Nernstian response to SDS (59.1 mV/decade) and a near-Nernstian response to DBS (57.5 mV/decade), with linear response regions for both anionic surfactants down to ≈2 × 10-6 M. The Pt@MWCNT-DHBI was also useful in critical micellar concentration (CMC) detection. Common anions showed very low interferences with the sensor. The sensor was successfully employed for the potentiometric titration of a technical grade cationic surfactant with good recoveries. The content of cationic surfactants was measured in six samples of complex commercial detergents. The Pt@MWCNT-DHBI surfactant sensor showed good agreement with the ISE surfactant sensor and classical two-phase titration and could be used as an analytical tool in quality control.

15.
Materials (Basel) ; 17(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38591454

ABSTRACT

Premature failure and degradation of layers are the main problems for transportation infrastructure. Addressing these issues necessitates implementing structural health monitoring (SHM) for pavement construction layers. To this end, this research investigated the stress/strain and damage detection capabilities of a self-sensing cementitious composite developed for potential utilization in the construction of an intelligent subgrade layer. The prepared self-sensing cementitious composite consisted of 10% cement and hybrid conductive fillers, including multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) in sand. Initial findings reveal that the electrical resistivity of the composite is significantly affected by the concentration of MWCNTs/GNPs, with a minimum concentration of more than 0.5% needed to achieve a responsive cementitious composite. Moreover, the piezoresistive analysis indicates that an increase in the concentration of MWCNTs/GNPs and stress levels leads to an improvement in the stress/strain-sensing performance. When the self-sensing cementitious composite is subjected to equivalent stress levels, variations in the fractional changes in resistivity (FCR) exhibit an increasing trend with decreasing resilient modulus, stemming from a decrease in stiffness due to the increased concentration of MWCNTs/GNPs. Additionally, the electrochemical impedance spectroscopy (EIS) analysis demonstrates a contraction for the Nyquist plots under compressive ramp loading prior to failure, followed by the expansion of these curves post-failure. Scanning electron microscopy (SEM) images visually showcase the bridging effects of MWCNTs and the filling effects of GNPs within the composite structure.

16.
Food Chem ; 447: 138848, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38458129

ABSTRACT

This study presents a dispersive micro-solid phase extraction (D-µ-SPE) approach for extracting and determining of two organophosphorus pesticides (OPPs), including diazinon and chlorpyrifos as model analytes in various samples. For this purpose, we synthesized, characterized, and utilized magnetic multi-walled carbon nanotubes coated with poly 8-hydroxyquinoline (MWCNTs/Fe3O4@PHQ) as a novel sorbent. The impact of various parameters, including sorbent type, sample pH, sample volume, sorbent amount, desorption solvent (type and volume), extraction time, and ionic strength on the extraction efficiency was investigated and optimized. Following the extraction, the desorbed pesticides in acetone were analyzed using gas chromatography with an FID detector. Under the optimized experimental conditions, the proposed method showed excellent linearity in the range of 3-1000 µg/L, low detection limit (0.9-1.5 µg/L), good relative recoveries (86-101.5 %), and high precision (RSD < 6.5 %). Finally, the applicability of this method was evaluated by analyzing the target OPPs in a variety of real samples, and obtained satisfactory results.


Subject(s)
Nanocomposites , Nanotubes, Carbon , Pesticides , Pesticides/analysis , Water/chemistry , Organophosphorus Compounds/analysis , Vegetables , Oxyquinoline , Fruit/chemistry , Solid Phase Extraction/methods , Magnetic Phenomena , Nanocomposites/chemistry , Limit of Detection
17.
Polymers (Basel) ; 16(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38475267

ABSTRACT

High-performance engineering thermoplastics offer lightweight and excellent mechanical performance in a wide temperature range. Their composites with carbon nanotubes are expected to enhance mechanical performance, while providing thermal and electrical conductivity. These are interesting attributes that may endow additional functionalities to the nanocomposites. The present work investigates the optimal conditions to prepare polyether ether ketone (PEEK)/multi-walled carbon nanotube (MWCNT) nanocomposites, minimizing the MWCNT agglomerate size while maximizing the nanocomposite electrical conductivity. The aim is to achieve PEEK/MWCNT nanocomposites that are suitable for melt-spinning of electrically conductive multifilament's. Nanocomposites were prepared with compositions ranging from 0.5 to 7 wt.% MWCNT, showing an electrical percolation threshold between 1 and 2 wt.% MWCNT (107-102 S/cm) and a rheological percolation in the same range (1 to 2 wt.% MWCNT), confirming the formation of an MWCNT network in the nanocomposite. Considering the large drop in electrical conductivity typically observed during melt-spinning and the drawing of filaments, the composition PEEK/5 wt.% MWCNT was selected for further investigation. The effect of the melt extrusion parameters, namely screw speed, temperature, and throughput, was studied by evaluating the morphology of MWCNT agglomerates, the nanocomposite rheology, and electrical properties. It was observed that the combination of the higher values of screw speed and temperature profile leads to the smaller number of MWCNT agglomerates with smaller size, albeit at a slightly lower electrical conductivity. Generally, all processing conditions tested yielded nanocomposites with electrical conductivity in the range of 0.50-0.85 S/cm. The nanocomposite processed at higher temperature and screw speed presented the lowest value of elastic modulus, perhaps owing to higher matrix degradation and lower connectivity between the agglomerates. From all the process parameters studied, the screw speed was identified to have the higher impact on nanocomposite properties.

18.
Water Res ; 255: 121444, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38492312

ABSTRACT

Nanoplastic water contamination has become a critical environmental issue, highlighting the need for rapid and sensitive detection of nanoplastics. In this study, we aimed to prepare a graphene oxide (GO)/multiwalled carbon nanotube (MWCNT)-silver nanostar (AgNS) multifunctional membrane using a simple vacuum filtration method for the enrichment and surface-enhanced Raman spectroscopy (SERS) detection of polystyrene (PS) nanoplastics in water. AgNSs, selected for the size and shape of nanoplastics, have numerous exposed Raman hotspots on their surface, which exert a strong electromagnetic enhancement effect. AgNSs were filter-arrayed on GO/MWCNT composite membranes with excellent enrichment ability and chemical enhancement effects, resulting in the high sensitivity of GO/MWCNT-AgNS membranes. When the water samples flowed through the portable filtration device with GO/MWCNT-AgNS membranes, PS nanoplastics could be effectively enriched, and the retention rate for 50 nm PS nanoplastics was 97.1 %. Utilizing the strong SERS effect of the GO/MWCNT-AgNS membrane, we successfully detected PS nanoparticles with particle size in the range of 50-1000 nm and a minimum detection concentration of 5 × 10-5 mg/mL. In addition, we detected 50, 100, and 200 nm PS nanoplastics at concentrations as low as 5 × 10-5 mg/mL in real water samples using spiking experiments. These results indicate that the GO/MWCNT-AgNS membranes paired with a portable filtration device and Raman spectrometer can effectively enrich and rapidly detect PS nanoplastics in water, which has great potential for on-site sensitive water quality safety evaluation.

19.
Polymers (Basel) ; 16(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38543353

ABSTRACT

Calcium-containing organic-inorganic nanocomposites play an essential role in developing bioactive bone biomaterials. Ideally, bone substitute materials should mimic the organic-inorganic composition of bone. In this study, the roles of calcium chloride (CaCl2) and calcium ethoxide (Ca(OEt)2) were evaluated for the development of sol-gel-derived organic-inorganic biomaterials composed of gelatin, bioactive glass (BG) and multiwall carbon nanotubes (MWCNTs) to create nanocomposites that mimic the elemental composition of bone. Nanocomposites composed of either CaCl2 or Ca(OEt)2 were chemically different but presented uniform elemental distribution. The role of calcium sources in the matrix of the nanocomposites played a major role in the swelling and degradation properties of biomaterials as a function of time, as well as the resulting porous properties of the nanocomposites. Regardless of the calcium source type, biomineralization in simulated body fluid and favorable cell attachment were promoted on the nanocomposites. 10T1/2 cell viability studies using standard media (DMEM with 5% FBS) and conditioned media showed that Ca(OEt)2-based nanocomposites seemed more favorable biomaterials. Collectively, our study demonstrated that CaCl2 and Ca(OEt)2 could be used to prepare sol-gel-derived gelatin-BG-MWCNT nanocomposites, which have the potential to function as bone biomaterials.

20.
Mikrochim Acta ; 191(4): 212, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509344

ABSTRACT

The facile fabrication is reported of highly electrochemically active Ti3C2Tx MXene/MWCNT (3D/1D)-modified screen-printed carbon electrode (SPE) for the efficient simultaneous electrochemical detection of paracetamol, theophylline, and caffeine in human blood samples. 3D/1D Ti3C2Tx MXene/MWCNT nanocomposite was synthesized using microwave irradiation and ultrasonication processes. Then, the Ti3C2Tx/MWCNT-modified SPE electrode was fabricated and thoroughly characterized towards its physicochemical and electrochemical properties using XPS, TEM, FESEM, XRD, electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry techniques. As-constructed Ti3C2Tx-MWCNT/SPE offers excellent electrochemical sensing performance with good detection limits (0.23, 0.57, and 0.43 µM) and wide linear ranges (1.0 ~ 90.1, 2.0 ~ 62.0, and 2.0-90.9 µM) for paracetamol, caffeine, and theophylline, respectively,  in the human samples. Notably, the non-enzymatic electroactive nanocomposite-modified electrode has depicted a semicircle Nyquist plot with low charge transfer resistance (Rct∼95 Ω), leading to high ionic diffusion and facilitating an excellent electron transfer path. All the above results in efficient stability, reproducibility, repeatability, and sensitivity compared with other reported works, and thus, it claims its practical utilization in realistic clinical applications.


Subject(s)
Nanocomposites , Nanotubes, Carbon , Nitrites , Transition Elements , Humans , Acetaminophen , Caffeine , Theophylline , Reproducibility of Results , Titanium/chemistry , Electrochemical Techniques/methods , Nanotubes, Carbon/chemistry , Nanocomposites/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...