Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Front Physiol ; 15: 1411420, 2024.
Article in English | MEDLINE | ID: mdl-38808359

ABSTRACT

Introduction: Vasodilatation in response to NO is a fundamental response of the vasculature, and during aging, the vasculature is characterized by an increase in stiffness and decrease in sensitivity to NO mediated vasodilatation. Vascular tone is regulated by the activation of smooth muscle and nonmuscle (NM) myosin, which are regulated by the activities of myosin light chain kinase (MLCK) and MLC phosphatase. MLC phosphatase is a trimeric enzyme with a catalytic subunit, myosin targeting subunit (MYPT1) and 20 kDa subunit of unknown function. Alternative mRNA splicing produces LZ+/LZ- MYPT1 isoforms and the relative expression of LZ+/LZ- MYPT1 determines the sensitivity to NO mediated vasodilatation. This study tested the hypothesis that aging is associated with changes in LZ+ MYPT1 and NM myosin expression, which alter vascular reactivity. Methods: We determined MYPT1 and NM myosin expression, force and the sensitivity of both endothelial dependent and endothelial independent relaxation in tertiary mesenteric arteries of young (6mo) and elderly (24mo) Fischer344 rats. Results: The data demonstrate that aging is associated with a decrease in both the expression of NM myosin and force, but LZ+ MYPT expression and the sensitivity to both endothelial dependent and independent vasodilatation did not change. Further, smooth muscle cell hypertrophy increases the thickness of the medial layer of smooth muscle with aging. Discussion: The reduction of NM myosin may represent an aging associated compensatory mechanism to normalize the stiffness of resistance vessels in response to the increase in media thickness observed during aging.

2.
Biomol Ther (Seoul) ; 32(3): 361-367, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38589300

ABSTRACT

In this study, we investigated the efficacy of kaempferol (a flavonoid found in plants and plant-derived foods such as kale, beans, tea, spinach and broccoli) on vascular contractibility and aimed to clarify the detailed mechanism underlying the relaxation. Isometric contractions of divested muscles were stored and linked with western blot analysis which was carried out to estimate the phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and phosphorylation-dependent inhibitory protein for myosin phosphatase (CPI-17) and to estimate the effect of kaempferol on the RhoA/ROCK/CPI-17 pathway. Kaempferol conspicuously impeded phorbol ester-, fluoride- and a thromboxane mimetic-derived contractions regardless of endothelial nitric oxide synthesis, indicating its direct effect on smooth muscles. It also conspicuously impeded the fluoride-derived elevation in phospho-MYPT1 rather than phospho-CPI-17 levels and phorbol 12,13-dibutyrate-derived increase in phospho-CPI-17 and phospho-ERK1/2 levels, suggesting the depression of PKC and MEK activities and subsequent phosphorylation of CPI-17 and ERK1/2. Taken together, these outcomes suggest that kaempferol-derived relaxation incorporates myosin phosphatase retrieval and calcium desensitization, which appear to be modulated by CPI-17 dephosphorylation mainly through PKC inactivation.

3.
Microvasc Res ; 152: 104627, 2024 03.
Article in English | MEDLINE | ID: mdl-37963515

ABSTRACT

AIMS: Protein kinase D (PKD), once considered an effector of protein kinase C (PKC), now plays many pathophysiological roles in various tissues. However, little is known about role of PKD in vascular function. We investigated the role of PKD in contraction of rat aorta and human aortic smooth muscle cells (HASMCs) and in haemodynamics in rats. METHODS AND RESULTS: Isometric tension of rat aortic was measured to examine norepinephrine-induced contraction in the presence of PKD, PKC and Rho-kinase inhibitors. Phosphorylation of PKD1, myosin targeting subunit-1 (MYPT1), myosin light chain (MLC), CPI-17 and heat-shock protein 27 (HSP27), and actin polymerization were measured in the aorta. Phosphorylation of MYPT1 and MLC was also measured in HASMCs knocked down with specific siRNAs of PKD 1, 2 and 3. Intracellular calcium concentrations and cell shortening were measured in HASMCs. Norepinephrine-induced aortic contraction was accompanied by increased phosphorylation of PKD1, MYPT1 and MLC and actin polymerization, all of which were attenuated with PKD inhibitor CRT0066101. PKD1 phosphorylation was not inhibited by PKC inhibitor, chelerythrine or Rho kinase inhibitor, fasudil. In HASMCs, the phosphorylation of MYPT1 and MLC was attenuated by PKD1, but not PKD2, 3 knockdown. In HASMCs, CRT0066101 inhibited norepinephrine-induced cell shortening without affecting calcium concentration. Administration of CRT0066101 decreased systemic vascular resistance and blood pressure without affecting cardiac output in rats. CONCLUSIONS: PKD1 may play roles in aorta contraction and haemodynamics via phosphorylation of MYPT1 and actin polymerization in a calcium-independent manner.


Subject(s)
Actins , Vasoconstriction , Animals , Humans , Rats , Actins/metabolism , Calcium/metabolism , Muscle Contraction , Muscle, Smooth, Vascular/metabolism , Myosin Light Chains/metabolism , Norepinephrine/pharmacology , Norepinephrine/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/metabolism
4.
Biochemistry (Mosc) ; 88(8): 1126-1138, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37758312

ABSTRACT

Hyperglycemia is a hallmark of type 2 diabetes implicated in vascular endothelial dysfunction and cardiovascular complications. Many in vitro studies identified endothelial apoptosis as an early outcome of experimentally modeled hyperglycemia emphasizing cell demise as a significant factor of vascular injury. However, endothelial apoptosis has not been observed in vivo until the late stages of type 2 diabetes. Here, we studied the long-term (up to 4 weeks) effects of high glucose (HG, 30 mM) on human umbilical vein endothelial cells (HUVEC) in vitro. HG did not alter HUVEC monolayer morphology, ROS levels, NO production, and exerted minor effects on the HUVEC apoptosis markers. The barrier responses to various clues were indistinguishable from those by cells cultured in physiological glucose (5 mM). Tackling the key regulators of cytoskeletal contractility and endothelial barrier revealed no differences in the histamine-induced intracellular Ca2+ responses, nor in phosphorylation of myosin regulatory light chain or myosin light chain phosphatase. Altogether, these findings suggest that vascular endothelial cells may well tolerate HG for relatively long exposures and warrant further studies to explore mechanisms involved in vascular damage in advanced type 2 diabetes.

5.
Pharmacol Res ; 194: 106838, 2023 08.
Article in English | MEDLINE | ID: mdl-37390993

ABSTRACT

Schizophrenia (SCZ) is a severe psychiatric disorder characterized by positive symptoms, negative symptoms, and cognitive deficits. Current antipsychotic treatment in SCZ improves positive symptoms but has major side effects and little impact on negative symptoms and cognitive impairment. The pathoetiology of SCZ remains unclear, but is known to involve small GTPase signaling. Rho kinase, an effector of small GTPase Rho, is highly expressed in the brain and plays a major role in neurite elongation and neuronal architecture. This study used a touchscreen-based visual discrimination (VD) task to investigate the effects of Rho kinase inhibitors on cognitive impairment in a methamphetamine (METH)-treated male mouse model of SCZ. Systemic injection of the Rho kinase inhibitor fasudil dose-dependently ameliorated METH-induced VD impairment. Fasudil also significantly suppressed the increase in the number of c-Fos-positive cells in the infralimbic medial prefrontal cortex (infralimbic mPFC) and dorsomedial striatum (DMS) following METH treatment. Bilateral microinjections of Y-27632, another Rho kinase inhibitor, into the infralimbic mPFC or DMS significantly ameliorated METH-induced VD impairment. Two proteins downstream of Rho kinase, myosin phosphatase-targeting subunit 1 (MYPT1; Thr696) and myosin light chain kinase 2 (MLC2; Thr18/Ser19), exhibited increased phosphorylation in the infralimbic mPFC and DMS, respectively, after METH treatment, and fasudil inhibited these increases. Oral administration of haloperidol and fasudil ameliorated METH-induced VD impairment, while clozapine had little effect. Oral administration of haloperidol and clozapine suppressed METH-induced hyperactivity, but fasudil had no effect. These results suggest that METH activates Rho kinase in the infralimbic mPFC and DMS, which leads to cognitive impairment in male mice. Rho kinase inhibitors ameliorate METH-induced cognitive impairment, perhaps via the cortico-striatal circuit.


Subject(s)
Cognitive Dysfunction , Methamphetamine , Monomeric GTP-Binding Proteins , Protein Kinase Inhibitors , Schizophrenia , Animals , Male , Mice , Clozapine , Cognitive Dysfunction/drug therapy , Haloperidol/pharmacology , Haloperidol/therapeutic use , Monomeric GTP-Binding Proteins/metabolism , rho-Associated Kinases/antagonists & inhibitors , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
6.
Mol Genet Genomic Med ; 11(10): e2223, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37272772

ABSTRACT

BACKGROUND: Genitourinary and/or brain malformation syndrome (GUBS) is a recently discovered syndrome involving abnormalities of the neurological or urogenital system. PPP1R12A may be the pathological gene causing this syndrome. Currently, to our knowledge, there is only one study related to GUBS in the world. Here, we report a clinical case of a Chinese newborn with congenital micropenis caused by a non-coding sequence pathogenic variant of PPP1R12A, providing additional evidence on genetic causes of genital malformation. METHODS: The genetic cause of the patient's malformation was detected using trio-whole exome sequencing and Sanger sequencing, and reverse transcription-PCR analysis was performed by constructing the minigene mutant plasmid in vitro. RESULTS: Genetic testing revealed a novel heterozygous variant, c.2666+3A>G, of the PPP1R12A gene of the patient. The parents at this site were wild-type, indicating that this might be a de novo variant. The minigene experiment showed that the c.2666+3A>G plasmid led to the deletion of 17 bp in exon 20, and a new mRNA product c.2650_2666del (p.Thr884IleTer2) with skipping of exon 20 was produced. This may lead to PPP1R12A haploinsufficiency and cause biological harm. CONCLUSIONS: To our knowledge, this is the first clinical study on a rare variant of PPP1R12A in the Chinese population. The c.2666+3A>G may lead to external genitalia malformation, such as congenital micropenis in male neonates. The results of this study further verified the correlation between GUBS and PPP1R12A haploinsufficiency and revealed the important role of a non-coding sequence variant in the pathogenesis of the disease.

7.
Theranostics ; 13(6): 1921-1948, 2023.
Article in English | MEDLINE | ID: mdl-37064875

ABSTRACT

Lysophosphatidic acid (LPA) species accumulate in the ascites of ovarian high-grade serous cancer (HGSC) and are associated with short relapse-free survival. LPA is known to support metastatic spread of cancer cells by activating a multitude of signaling pathways via G-protein-coupled receptors of the LPAR family. Systematic unbiased analyses of the LPA-regulated signal transduction network in ovarian cancer cells have, however, not been reported to date. Methods: LPA-induced signaling pathways were identified by phosphoproteomics of both patient-derived and OVCAR8 cells, RNA sequencing, measurements of intracellular Ca2+ and cAMP as well as cell imaging. The function of LPARs and downstream signaling components in migration and entosis were analyzed by selective pharmacological inhibitors and RNA interference. Results: Phosphoproteomic analyses identified > 1100 LPA-regulated sites in > 800 proteins and revealed interconnected LPAR1, ROCK/RAC, PKC/D and ERK pathways to play a prominent role within a comprehensive signaling network. These pathways regulate essential processes, including transcriptional responses, actomyosin dynamics, cell migration and entosis. A critical component of this signaling network is MYPT1, a stimulatory subunit of protein phosphatase 1 (PP1), which in turn is a negative regulator of myosin light chain 2 (MLC2). LPA induces phosphorylation of MYPT1 through ROCK (T853) and PKC/ERK (S507), which is majorly driven by LPAR1. Inhibition of MYPT1, PKC or ERK impedes both LPA-induced cell migration and entosis, while interference with ROCK activity and MLC2 phosphorylation selectively blocks entosis, suggesting that MYPT1 figures in both ROCK/MLC2-dependent and -independent pathways. We finally show a novel pathway governed by LPAR2 and the RAC-GEF DOCK7 to be indispensable for the induction of entosis. Conclusion: We have identified a comprehensive LPA-induced signal transduction network controlling LPA-triggered cytoskeletal changes, cell migration and entosis in HGSC cells. Due to its pivotal role in this network, MYPT1 may represent a promising target for interfering with specific functions of PP1 essential for HGSC progression.


Subject(s)
Actomyosin , Ovarian Neoplasms , Humans , Female , Actomyosin/metabolism , Entosis , Neoplasm Recurrence, Local , Signal Transduction , Ovarian Neoplasms/metabolism , Cell Movement/physiology
8.
Mol Oncol ; 17(7): 1212-1227, 2023 07.
Article in English | MEDLINE | ID: mdl-36975767

ABSTRACT

The AMP-activated protein kinase (AMPK)-related kinase NUAK1 (NUAK family SNF1-like kinase 1) has emerged as a potential vulnerability in MYC-dependent cancer but the biological roles of NUAK1 in different settings are poorly characterised, and the spectrum of cancer types that exhibit a requirement for NUAK1 is unknown. Unlike canonical oncogenes, NUAK1 is rarely mutated in cancer and appears to function as an obligate facilitator rather than a cancer driver per se. Although numerous groups have developed small-molecule NUAK inhibitors, the circumstances that would trigger their use and the unwanted toxicities that may arise as a consequence of on-target activity are thus undetermined. Reasoning that MYC is a key effector of RAS pathway signalling and the GTPase KRAS is almost uniformly mutated in pancreatic ductal adenocarcinoma (PDAC), we investigated whether this cancer type exhibits a functional requirement for NUAK1. Here, we show that high NUAK1 expression is associated with reduced overall survival in PDAC and that inhibition or depletion of NUAK1 suppresses growth of PDAC cells in culture. We identify a previously unknown role for NUAK1 in regulating accurate centrosome duplication and show that loss of NUAK1 triggers genomic instability. The latter activity is conserved in primary fibroblasts, raising the possibility of undesirable genotoxic effects of NUAK1 inhibition.


Subject(s)
Pancreatic Neoplasms , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Kinases/metabolism , Glycogen Synthase Kinase 3 beta , AMP-Activated Protein Kinase Kinases , Pancreatic Neoplasms/genetics , Centrosome/metabolism , Repressor Proteins/metabolism
9.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902219

ABSTRACT

Identification of specific protein phosphatase-1 (PP1) inhibitors is of special importance regarding the study of its cellular functions and may have therapeutic values in diseases coupled to signaling processes. In this study, we prove that a phosphorylated peptide of the inhibitory region of myosin phosphatase (MP) target subunit (MYPT1), R690QSRRS(pT696)QGVTL701 (P-Thr696-MYPT1690-701), interacts with and inhibits the PP1 catalytic subunit (PP1c, IC50 = 3.84 µM) and the MP holoenzyme (Flag-MYPT1-PP1c, IC50 = 3.84 µM). Saturation transfer difference NMR measurements established binding of hydrophobic and basic regions of P-Thr696-MYPT1690-701 to PP1c, suggesting interactions with the hydrophobic and acidic substrate binding grooves. P-Thr696-MYPT1690-701 was dephosphorylated by PP1c slowly (t1/2 = 81.6-87.9 min), which was further impeded (t1/2 = 103 min) in the presence of the phosphorylated 20 kDa myosin light chain (P-MLC20). In contrast, P-Thr696-MYPT1690-701 (10-500 µM) slowed down the dephosphorylation of P-MLC20 (t1/2 = 1.69 min) significantly (t1/2 = 2.49-10.06 min). These data are compatible with an unfair competition mechanism between the inhibitory phosphopeptide and the phosphosubstrate. Docking simulations of the PP1c-P-MYPT1690-701 complexes with phosphothreonine (PP1c-P-Thr696-MYPT1690-701) or phosphoserine (PP1c-P-Ser696-MYPT1690-701) suggested their distinct poses on the surface of PP1c. In addition, the arrangements and distances of the surrounding coordinating residues of PP1c around the phosphothreonine or phosphoserine at the active site were distinct, which may account for their different hydrolysis rate. It is presumed that P-Thr696-MYPT1690-701 binds tightly at the active center but the phosphoester hydrolysis is less preferable compared to P-Ser696-MYPT1690-701 or phosphoserine substrates. Moreover, the inhibitory phosphopeptide may serve as a template to synthesize cell permeable PP1-specific peptide inhibitors.


Subject(s)
Enzyme Inhibitors , Phosphopeptides , Protein Phosphatase 1 , Myosin-Light-Chain Phosphatase/metabolism , Phosphopeptides/chemistry , Phosphopeptides/pharmacology , Phosphorylation , Phosphoserine/metabolism , Phosphothreonine/metabolism , Protein Phosphatase 1/antagonists & inhibitors , Protein Phosphatase 1/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology
10.
Transl Stroke Res ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36843141

ABSTRACT

Cerebral small vessel disease (CSVD) is the most common progressive vascular disease that causes vascular dementia. Aging and hypertension are major contributors to CSVD, but the pathophysiological mechanism remains unclear, mainly due to the lack of an ideal animal model. Our previous study revealed that vascular smooth muscle cell (VSMC)-specific myosin phosphatase target subunit 1 (MYPT1) knockout (MYPT1SMKO) leads to constant hypertension, prompting us to explore whether hypertensive MYPT1SMKO mice can be considered a novel CSVD animal model. Here, we found that MYPT1SMKO mice displayed age-dependent CSVD-like neurobehaviors, including decreased motion speed, anxiety, and cognitive decline. MYPT1SMKO mice exhibited remarkable white matter injury compared with control mice, as shown by the more prominent loss of myelin at 12 months of age. Additionally, MYPT1SMKO mice were found to exhibit CSVD-like small vessel impairment, including intravascular hyalinization, perivascular space enlargement, and microbleed and blood-brain barrier (BBB) disruption. Last, our results revealed that the brain of MYPT1SMKO mice was characterized by an exacerbated inflammatory microenvironment, which is similar to patients with CSVD. In light of the above structural and functional phenotypes that closely mimic the conditions of human CSVD, we suggest that MYPT1SMKO mice are a novel age- and hypertension-dependent animal model of CSVD.

11.
Biomol Ther (Seoul) ; 31(2): 193-199, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36065763

ABSTRACT

In this investigation, we made a study of the efficacy of luteolin (a flavonoid found in plants such as vegetables, herbs and fruits) on vascular contractibility and to elucidate the mechanism underlying the relaxation. Isometric contractions of denuded muscles were stored and combined with western blot analysis which was conducted to assess the phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and phosphorylation-dependent inhibitory protein for myosin phosphatase (CPI-17) and to examine the effect of luteolin on the RhoA/ROCK/CPI-17 pathway. Luteolin significantly alleviated phorbol ester-, fluoride- and thromboxane mimetic-elicited contractions regardless of endothelial nitric oxide synthesis, implying its direct effect on smooth muscle. It also significantly alleviated the fluoride-elicited elevation in pCPI-17 and pMYPT1 levels and phorbol 12,13-dibutyrate-elicited increase in pERK1/2 level, suggesting depression of ROCK and PKC/MEK activity and ensuing phosphorylation of MYPT1, CPI-17 and ERK1/2. Taken together, these results suggest that luteolin-elicited relaxation includes myosin phosphatase reactivation and calcium desensitization, which seems to be arbitrated by CPI-17 dephosphorylation via ROCK/PKC inhibition.

12.
Pharmacol Res ; 187: 106589, 2023 01.
Article in English | MEDLINE | ID: mdl-36462727

ABSTRACT

Copy-number variations in the ARHGAP10 gene encoding Rho GTPase-activating protein 10 are associated with schizophrenia. Model mice (Arhgap10 S490P/NHEJ mice) that carry "double-hit" mutations in the Arhgap10 gene mimic the schizophrenia in a Japanese patient, exhibiting altered spine density, methamphetamine-induced cognitive dysfunction, and activation of RhoA/Rho-kinase signaling. However, it remains unclear whether the activation of RhoA/Rho-kinase signaling due to schizophrenia-associated Arhgap10 mutations causes the phenotypes of these model mice. Here, we investigated the effects of fasudil, a brain permeable Rho-kinase inhibitor, on altered spine density in the medial prefrontal cortex (mPFC) and on methamphetamine-induced cognitive impairment in a touchscreen­based visual discrimination task in Arhgap10 S490P/NHEJ mice. Fasudil (20 mg/kg, intraperitoneal) suppressed the increased phosphorylation of myosin phosphatase-targeting subunit 1, a substrate of Rho-kinase, in the striatum and mPFC of Arhgap10 S490P/NHEJ mice. In addition, daily oral administration of fasudil (20 mg/kg/day) for 7 days ameliorated the reduced spine density of layer 2/3 pyramidal neurons in the mPFC. Moreover, fasudil (3-20 mg/kg, intraperitoneal) rescued the methamphetamine (0.3 mg/kg)-induced cognitive impairment of visual discrimination in Arhgap10 S490P/NHEJ mice. Our results suggest that Rho-kinase plays significant roles in the neuropathological changes in spine morphology and in the vulnerability of cognition to methamphetamine in mice with schizophrenia-associated Arhgap10 mutations.


Subject(s)
Cognitive Dysfunction , Schizophrenia , Animals , Mice , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/genetics , Mutation , Prefrontal Cortex/metabolism , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/metabolism , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Schizophrenia/genetics
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-953917

ABSTRACT

ObjectiveTo explore the intervention mechanism of Xiangsha Liujunzi Tang in rats with functional dyspepsia (FD) based on the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil containing protein kinase 2 (ROCK2)/Myosin phosphatase target Subunit 1 (MYPT1) pathway. MethodSixty male SD suckling rats in SPF grades were randomly divided into blank group (n=10) and model group (n=50). The comprehensive modeling method (gavage administration of iodoacetamide+exhaustion of swimming+disturbance of hunger and satiety) was used to replicate the rat model of FD. After successful replication of the model, the rats in the model group were randomly divided into model group, mosapride group, and high, middle, and low-dose Xiangsha Liujunzi Tang groups, with 10 rats in each group. Rats in the blank group and model group were given 10 mL kg-1·d-1 normal saline, those in the mosapride group were given 1.35 mg·kg-1·d-1 mosapride, and those in the high, middle, and low-dose Xiangsha Liujunzi Tang groups were given 12, 6, and 3 g·kg-1·d-1 Xiangsha Liujunzi Tang, respectively. The intervention lasted 14 days. The general living conditions of rats were observed before and after modeling and administration, and the 3-hour food intake and body mass of rats were measured. After intervention, the intestinal propulsion rate of rats was measured, and the pathological changes in the gastric tissue were observed by hematoxylin-eosin (HE) staining. The content of choline acetyl transferase (ChAT) and vasoactive intestinal peptide (VIP) in the medulla oblongata and gastric tissue homogenate was determined by enzyme-linked immunosorbent assay (ELISA), the distribution of adenosine triphosphate (ATP) enzyme in gastric antrum smooth muscle was observed by frozen section staining, and the protein expression levels of RhoA, ROCK2, and phosphorylated-myosin phosphatase target subunit 1 (p-MYPT1) in the gastric tissue were detected by Western blot. ResultCompared with the blank group, the model group had withered hair, lazy movement, slow action, poor general living condition, lower 3-hour food intake, body mass, and lower intestinal propulsion rate (P<0.05), whereas no obvious abnormality in gastric histopathology. In the model group, the content of ChAT in the medulla oblongata and gastric tissue decreased, the content of VIP in gastric tissue increased, the distribution of ATP enzyme in gastric antrum smooth muscle decreased significantly, and the protein expression levels of RhoA, ROCK2, and p-MYPT1 in the gastric tissue decreased significantly (P<0.05). As compared with the model group, the general living condition of rats in each intervention group was significantly improved, and the 3-hour food intake, body mass, and intestinal propulsion rate were significantly increased (P<0.05). There was no significant difference in gastric pathology in the intervention groups. The content of ChAT in the medulla oblongata and gastric tissue increased significantly, the content of VIP in the gastric tissue decreased, the distribution of ATP enzyme in gastric antrum smooth muscle increased significantly, and the protein expression levels of RhoA, ROCK2, and p-MYPT1 in the gastric tissue increased significantly (P<0.05). The intervention effect of Xiangsha Liujunzi Tang group on the above indexes was dose-dependent. ConclusionXiangsha Liujunzi Tang can effectively improve the general living condition and gastric motility of rats with FD, and its specific mechanism may be related to the activation of the RhoA/ROCK2/MYPT1 pathway in the gastric tissue to regulate smooth muscle relaxation and contraction and promote gastric motility.

14.
FEBS Open Bio ; 12(11): 2083-2095, 2022 11.
Article in English | MEDLINE | ID: mdl-36106411

ABSTRACT

Myosin phosphatase target subunit 1 (MYPT1) is a subunit of myosin phosphatase that is capable of regulating smooth muscle contraction. MYPT1 has been reported to be involved in a wide variety of tumours, but its expression and biological functions in renal clear cell carcinoma (ccRCC) remain obscure. Herein, we analysed the relationship between patient clinicopathological characteristics and MYPT1 expression levels in ccRCC patients using a tissue microarray (TMA) and data retrieved from the TCGA-KIRC dataset. MYPT1 was overexpressed or depleted using siRNA in ccRCC cells to assess the effects on migration and invasion in vitro and in vivo. Additionally, RNA-sequencing and bioinformatics analysis were performed to investigate the precise mechanism. MYPT1 expression in ccRCC tissues was observed to be lower than that in nonmalignant tissues (P < 0.05). In addition, MYPT1 downregulation was closely linked to advanced pathological stage (P < 0.05), and poor OS (overall survival; P < 0.05). Functionally, increased expression of MYPT1 suppressed ccRCC migration and invasion in vitro, and inhibited tumour metastasis in vivo. In addition, MYPT1 overexpression exerted its suppressive effects via the MAPK8/N-cadherin pathway in ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Cadherins/genetics , Carcinoma, Renal Cell/metabolism , Cell Movement/genetics , Kidney Neoplasms/metabolism , Myosin-Light-Chain Phosphatase/genetics , Myosin-Light-Chain Phosphatase/metabolism , Mitogen-Activated Protein Kinase 8/metabolism
15.
Cells ; 11(15)2022 07 27.
Article in English | MEDLINE | ID: mdl-35954160

ABSTRACT

The myosin light chain phosphatase target subunit 1 (MYPT1), encoded by the PPP1R12A gene, is a key component of the myosin light chain phosphatase (MLCP) protein complex. MYPT1 isoforms have been described as products of the cassette-type alternative splicing of exons E13, E14, E22, and E24. Through in silico analysis of the publicly available EST and mRNA databases, we established that PPP1R12A contains 32 exons (6 more than the 26 previously reported), of which 29 are used in 11 protein-coding transcripts. An in silico analysis of publicly available RNAseq data combined with validation by reverse transcription (RT)-PCR allowed us to determine the relative abundance of each transcript in three cell types of the circulatory system where MYPT1 plays important roles: human umbilical vein endothelial cells (HUVEC), human saphenous vein smooth muscle cells (HSVSMC), and platelets. All three cell types express up to 10 transcripts at variable frequencies. HUVECs and HSVSMCs predominantly express the full-length variant (58.3% and 64.3%, respectively) followed by the variant skipping E13 (33.7% and 23.1%, respectively), whereas in platelets the predominant variants are those skipping E14 (51.4%) and E13 (19.9%), followed by the full-length variant (14.4%). Variants including E24 account for 5.4% of transcripts in platelets but are rare (<1%) in HUVECs and HSVSMCs. Complex transcriptional profiles were also found across organs using in silico analysis of RNAseq data from the GTEx project. Our findings provide a platform for future studies investigating the specific (patho)physiological roles of understudied MYPT1 isoforms.


Subject(s)
Cardiovascular System , Myosin-Light-Chain Phosphatase/genetics , Reverse Transcription , Cardiovascular System/metabolism , Endothelial Cells/metabolism , Humans , Myosin-Light-Chain Phosphatase/metabolism , Polymerase Chain Reaction , Protein Isoforms/genetics , Protein Isoforms/metabolism
16.
J Biol Chem ; 298(9): 102296, 2022 09.
Article in English | MEDLINE | ID: mdl-35872014

ABSTRACT

Cardiac muscle myosin regulatory light chain (RLC) is constitutively phosphorylated at ∼0.4 mol phosphate/mol RLC in normal hearts, and phosphorylation is maintained by balanced activities of dedicated cardiac muscle-specific myosin light chain kinase and myosin light chain phosphatase (MLCP). Previously, the identity of the cardiac-MLCP was biochemically shown to be similar to the smooth muscle MLCP, which is a well-characterized trimeric protein comprising the regulatory subunit (MYPT1), catalytic subunit PP1cß, and accessory subunit M20. In smooth muscles in vivo, MYPT1 and PP1cß co-stabilize each other and are both necessary for normal smooth muscle contractions. In the cardiac muscle, MYPT1 and MYPT2 are both expressed, but contributions to physiological regulation of cardiac myosin dephosphorylation are unclear. We hypothesized that the main catalytic subunit for cardiac-MLCP is PP1cß, and maintenance of RLC phosphorylation in vivo is dependent on regulation by striated muscle-specific MYPT2. Here, we used PP1cß conditional knockout mice to biochemically define cardiac-MLCP proteins and developed a cardiac myofibrillar phosphatase assay to measure the direct contribution of MYPT-regulated and MYPT-independent phosphatase activities toward phosphorylated cardiac myosin. We report that (1) PP1cß is the main isoform expressed in the cardiac myocyte, (2) cardiac muscle pathogenesis in PP1cß knockout animals involve upregulation of total PP1cα in myocytes and non-muscle cells, (3) the stability of cardiac MYPT1 and MYPT2 proteins in vivo is not dependent on the PP1cß expression, and (4) phosphorylated myofibrillar cardiac myosin is dephosphorylated by both myosin-targeted and soluble MYPT-independent PP1cß activities. These results contribute to our understanding of the cardiac-MLCP in vivo.


Subject(s)
Cardiac Myosins , Myosin-Light-Chain Phosphatase , Protein Phosphatase 1 , Animals , Cardiac Myosins/metabolism , Mice , Mice, Knockout , Myosin-Light-Chain Phosphatase/metabolism , Phosphates/metabolism , Phosphorylation , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism
17.
Curr Biol ; 32(12): 2704-2718.e6, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35594862

ABSTRACT

Cancer cell migration during metastasis is mediated by a highly polarized cytoskeleton. MARK2 and its invertebrate homolog Par1B are kinases that regulate the microtubule cytoskeleton to mediate polarization of neurons in mammals and embryos in invertebrates. However, the role of MARK2 in cancer cell migration is unclear. Using osteosarcoma cells, we found that in addition to its known localizations on microtubules and the plasma membrane, MARK2 also associates with the actomyosin cytoskeleton and focal adhesions. Cells depleted of MARK proteins demonstrated that MARK2 promotes phosphorylation of both myosin II and the myosin phosphatase targeting subunit MYPT1 to synergistically drive myosin II contractility and stress fiber formation in cells. Studies with isolated proteins showed that MARK2 directly phosphorylates myosin II regulatory light chain, while its effects on MYPT1 phosphorylation are indirect. Using a mutant lacking the membrane-binding domain, we found that membrane association is required for focal adhesion targeting of MARK2, where it specifically enhances cell protrusion by promoting FAK phosphorylation and formation of focal adhesions oriented in the direction of migration to mediate directionally persistent cell motility. Together, our results define MARK2 as a master regulator of the actomyosin and microtubule cytoskeletal systems and focal adhesions to mediate directional cancer cell migration.


Subject(s)
Actomyosin , Focal Adhesions , Actomyosin/metabolism , Animals , Cell Adhesion/physiology , Cell Movement/physiology , Focal Adhesions/metabolism , Mammals , Myosin Light Chains/metabolism , Myosin Type II/genetics , Myosin Type II/metabolism , Phosphorylation
18.
Int J Mol Sci ; 23(6)2022 Mar 13.
Article in English | MEDLINE | ID: mdl-35328517

ABSTRACT

Somatostatin is an inhibitory peptide, which regulates the release of several hormones, and affects neurotransmission and cell proliferation via its five Gi protein-coupled receptors (SST1-5). Although its endocrine regulatory and anti-tumour effects have been thoroughly studied, little is known about its effect on the vascular system. The aim of the present study was to analyse the effects and potential mechanisms of somatostatin on endothelial barrier function. Cultured human umbilical vein endothelial cells (HUVECs) express mainly SST1 and SST5 receptors. Somatostatin did not affect the basal HUVEC permeability, but primed HUVEC monolayers for thrombin-induced hyperpermeability. Western blot data demonstrated that somatostatin activated the phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt) and p42/44 mitogen-activated protein kinase (MAPK) pathways by phosphorylation. The HUVEC barrier destabilizing effects were abrogated by pre-treating HUVECs with mitogen-activated protein kinase kinase/extracellular signal regulated kinase (MEK/ERK), but not the Akt inhibitor. Moreover, somatostatin pre-treatment amplified vascular endothelial growth factor (VEGF)-induced angiogenesis (3D spheroid formation) in HUVECs. In conclusion, the data demonstrate that HUVECs under quiescence conditions express SST1 and SST5 receptors. Moreover, somatostatin primes HUVECs for thrombin-induced hyperpermeability mainly via the activation of MEK/ERK signalling and promotes HUVEC proliferation and angiogenesis in vitro.


Subject(s)
Proto-Oncogene Proteins c-akt , Vascular Endothelial Growth Factor A , Cells, Cultured , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Neovascularization, Pathologic/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Somatostatin/metabolism , Somatostatin/pharmacology , Thrombin/metabolism , Thrombin/pharmacology , Vascular Endothelial Growth Factor A/metabolism
19.
Adv Sci (Weinh) ; 9(14): e2105539, 2022 05.
Article in English | MEDLINE | ID: mdl-35293697

ABSTRACT

The methyltransferase EZH2 plays an important role in regulating chromatin conformation and gene transcription. Phosphorylation of EZH2 at S21 by AKT kinase suppresses its function. However, protein phosphatases responsible for the dephosphorylation of EZH2-S21 remain elusive. Here, it is demonstrated that EZH2 is highly expressed in the ocular lens, and AKT-EZH2 axis is important in TGFß-induced epithelial-mesenchymal transition (EMT). More importantly, it is identified that MYPT1/PP1 dephosphorylates EZH2-S21 and thus modulates its functions. MYPT1 knockout accelerates EMT, but expression of the EZH2-S21A mutant suppresses EMT through control of multiple families of genes. Furthermore, the phosphorylation status and gene expression modulation of EZH2 are implicated in control of anterior subcapsular cataracts (ASC) in human and mouse eyes. Together, the results identify the specific phosphatase for EZH2-S21 and reveal EZH2 dephosphorylation control of several families of genes implicated in lens EMT and ASC pathogenesis. These results provide important novel information in EZH2 function and regulation.


Subject(s)
Cataract , Enhancer of Zeste Homolog 2 Protein , Epithelial-Mesenchymal Transition , Lens, Crystalline , Animals , Cataract/genetics , Cataract/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Epithelial-Mesenchymal Transition/genetics , Fibrosis , Humans , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Mice , Myosin-Light-Chain Phosphatase/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism
20.
Biomolecules ; 12(2)2022 01 18.
Article in English | MEDLINE | ID: mdl-35204659

ABSTRACT

Protein kinases exert physiological functions through phosphorylating their specific substrates; however, the mode of kinase-substrate recognition is not fully understood. Rho-kinase is a Ser/Thr protein kinase that regulates cytoskeletal reorganization through phosphorylating myosin light chain (MLC) and the myosin phosphatase targeting subunit 1 (MYPT1) of MLC phosphatase (MLCP) and is involved in various diseases, due to its aberrant cellular contraction, morphology, and movement. Despite the importance of the prediction and identification of substrates and phosphorylation sites, understanding of the precise regularity in phosphorylation preference of Rho-kinase remains far from satisfactory. Here we analyzed the Rho-kinase-MYPT1 interaction, to understand the mode of Rho-kinase substrate recognition and found that the three short regions of MYPT1 close to phosphorylation sites (referred to as docking motifs (DMs); DM1 (DLQEAEKTIGRS), DM2 (KSQPKSIRERRRPR), and DM3 (RKARSRQAR)) are important for interactions with Rho-kinase. The phosphorylation levels of MYPT1 without DMs were reduced, and the effects were limited to the neighboring phosphorylation sites. We further demonstrated that the combination of pseudosubstrate (PS) and DM of MYPT1 (PS1 + DM3 and PS2 + DM2) serves as a potent inhibitor of Rho-kinase. The present information will be useful in identifying new substrates and developing selective Rho-kinase inhibitors.


Subject(s)
Myosin Light Chains , rho-Associated Kinases , Myosin Light Chains/metabolism , Myosin-Light-Chain Phosphatase/metabolism , Phosphorylation , rho-Associated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL