Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 624
Filter
1.
J Environ Manage ; 367: 121849, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059312

ABSTRACT

Due to their small size and high anthropogenic pressure, small watercourses are particularly prone to severe siltation and are densely overgrown with macrophytes. Many of these watercourses are subject to regular maintenance works (RMW), consisting of seasonal desilting and vegetation clearance, in order to ensure unobstructed water flow. The aim of the study was to assess the impact of three types of maintenance works: dredging and mud removal (DMR), river channel vegetation removal (RCVR) and river bank vegetation removal (RBVR) on taxa species richness, macroinvertebrate density and the Shannon-Wiener diversity index, as well as their changes and long-term benthic recolonization one and two years after completion of the works. The study was carried out in 21 habitats on eight rivers in the European Central Plains Ecoregion. A total of 107 zoobenthic taxa were found at all sites, and their species composition was characteristic of highly hydrophytic waters with low hydrological and hydrochemical quality parameters. A significant decrease in macroinvertebrate taxa richness was observed one year after the works, as the average number of taxa had dropped from thirteen to eight, with a further fall to seven taxa two years after the RMW. The same was true for density, which had decreased from an average of 2496 to 786 individuals per square meter one year after the RMW, while, a gradual recolonization was recorded two years after the RMW, with an average density of 1295 individuals per square meter. The Shannon-Wiener index, which had averaged 2.528 before the RMW, also decreased, falling to 1.982 and 1.832 one and two years after. BACI statistical analyses showed that of the three types of maintenance work, desilting and bottom sediment removal had the largest negative impact, significantly reducing taxonomic composition (by an average of 53%), density (by an average of 43%), and ecological index values (by an average of 40%). Over-frequent maintenance can prevent macroinvertebrate populations from recovering, thus depleting the environment of valuable taxa, including those that provide food for fish and other vertebrates.

2.
Glob Chang Biol ; 30(7): e17435, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39039839

ABSTRACT

In a global context of invasive alien species (IAS), native predators are often eradicated by functionally different IAS, which may induce complex cascading consequences on ecosystem functioning because of the key role predators play in structuring communities and stabilizing food webs. In permanent ponds, the most abundant freshwater systems on Earth, global human-mediated introductions of alien omnivores such as the pet trade goldfish are driving broad-scale patterns of native predators' exclusion, but cascading consequences on food web structure and functioning are critically understudied. We compared food webs of naturally fishless ponds versus ponds where dominant native predators (newts) had been extirpated by invasive goldfish within the last decade. Integrating community-wide isotopic, taxonomic and functional traits approaches, our study reveals that pond food webs collapsed in both vertical and horizontal dimensions following goldfish introduction and the associated exclusion of native predators. Consumer taxonomic diversity was drastically reduced, essentially deprived of amphibians as well as predatory and mobile macroinvertebrates to the profit of burrowing, lower trophic level consumers (detritivores). Changes in community structure and function underlined a regime shift from a macrophyte-dominated system mainly characterized by benthic primary production (periphyton), to a macrophyte-depleted state of ponds hosting communities mainly associated with phytoplankton primary production and detritus accumulation, with higher tolerance to eutrophication and low dissolved oxygen concentration. Results underline major impacts of widely introduced omnivores such as the goldfish on the functioning of pond ecosystems with potentially dramatic consequences on the key ecosystem services they deliver, such as global biodiversity support or water quality improvement. They also shed light on the key role of submerged aquatic vegetation in supporting diverse communities and complex food webs in shallow lentic systems and call for urgent consideration of threats posed by IAS on ponds' ecosystems by managers and policymakers.


Subject(s)
Food Chain , Goldfish , Introduced Species , Ponds , Animals , Goldfish/physiology , Biodiversity
3.
Environ Monit Assess ; 196(8): 688, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958799

ABSTRACT

Rivers are vital and complex natural systems that provide a wide range of ecosystem services. This study presents a methodology for assessing the riverine provisioning and supporting ecosystem services, whose applicability has been demonstrated over the Budhabalanga River Basin of India. The Soil and Water Assessment Tool (SWAT) is used to generate streamflow time series at various ungauged sites, and then the streamflow is characterized for the evaluation of provisioning services. Further, the diversity and abundance of macroinvertebrates, along with the Lotic-invertebrate Index for Flow Evaluation (LIFE), is used to study the riverine supporting ecosystem services. The streams show intermittent behavior and strong seasonality for low flows, which limits the water availability, particularly during pre-monsoon season. The Baseflow Index (BFI) is greater than 0.6, indicating that groundwater contributes more than 60% of the total streamflow. Interestingly, despite the high BFI, the streams did not conform to the prevailing opinion that a greater baseflow contribution results in a later commencement of the low-flow period in the hydrological year. Furthermore, the study depicts significant variations in the diversity and abundance of the macroinvertebrates across the various sampling sites. However, the LIFE score across the sites remained consistent within a narrow range, i.e., 8 to 9, suggesting a steady supply of supporting ecosystem services. The results of the study can help the policymakers towards an informed decision making and the simplistic methodology proposed in this study can be replicated in other river basins for identifying vulnerable watersheds and prioritizing management actions.


Subject(s)
Ecosystem , Environmental Monitoring , Hydrology , Rivers , India , Environmental Monitoring/methods , Animals , Invertebrates , Conservation of Natural Resources/methods , Biodiversity , Groundwater
4.
Glob Chang Biol ; 30(7): e17355, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38993169

ABSTRACT

Ongoing climate change threatens the biodiversity of glacier-fed river ecosystems worldwide through shifts in water availability and timing, temperature, chemistry, and channel stability. However, tropical glacier-fed rivers have received little attention compared to those in temperate and Arctic biomes, despite their unique biodiversity potentially responding differently due to additional stress from higher altitude locations thus lower oxygen availability, diurnal freeze-thaw cycles, and annual monsoon rainfall disturbances. However, tropical glacier-fed rivers have received little attention compared to those in temperate and Arctic biomes, despite their unique biodiversity potentially responding differently due to additional stress from higher altitude locations thus lower oxygen availability, diurnal freeze-thaw cycles, and annual monsoon rainfall disturbances. This study quantified aquatic biodiversity responses to decreasing glacier cover in the Cordillera Blanca range of the Peruvian Andes. Ten rivers were studied along a gradient of decreasing glacier cover in the Parón, Huaytapallana, and Llanganuco basins, with a specific focus on macroinvertebrates and physicochemical parameters in both the dry and wet seasons. We found higher temperatures, more stable and lower turbidity rivers as glacier cover decreased, which were related significantly to higher local diversity and lower ß-diversity. Analysis of similarity revealed significant differences in the macroinvertebrate community among rivers with high, medium, or low glacier cover, illustrating turnover from specialists to generalists as glacial influence decreased. Redundancy analysis demonstrated that there were more species found to prefer stable beds and water temperatures in medium and low glacier cover in a catchment rivers. However, certain taxa in groups such as Paraheptagyia, Orthocladiinae, Anomalocosmoecus, and Limonia may be adapted to high glacial influence habitats and at risk of glacier retreat. Although species composition was different to other biomes, the Cordillera Blanca rivers showed similar benthic macroinvertebrate biodiversity responses to glacier retreat, supporting the hypothesis that climate change will have predictable effects on aquatic biodiversity in mountain ranges worldwide.


Subject(s)
Biodiversity , Ice Cover , Invertebrates , Rivers , Animals , Invertebrates/physiology , Climate Change , Seasons , Temperature
5.
Parasit Vectors ; 17(1): 257, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867296

ABSTRACT

Macroinvertebrate predators such as backswimmers (Heteroptera: Notonectidae), dragonflies (Odonata: Aeshnidae), and predatory diving beetles (Coleoptera: Dytiscidae) naturally inhabit aquatic ecosystems. Some aquatic ecosystems inhabited by these macroinvertebrate predator taxa equally form malaria vector larval habitats. The presence of these predators in malaria vector larval habitats can negatively impact on development, adult body size, fecundity, and longevity of the malaria vectors, which form important determinants of their fitness and future vectorial capacity. These potential negative impacts caused by aquatic macroinvertebrate predators on malaria vectors warrant their consideration as biocontrol agents in an integrated program to combat malaria. However, the use of these macroinvertebrate predators in malaria biocontrol is currently constrained by technical bottlenecks linked to their generalist predatory tendencies and often long life cycles, demanding complex rearing systems. We reviewed the literature on the use of aquatic macroinvertebrate predators for biocontrol of malaria vectors from the An. gambiae s.l. complex. The available information from laboratory and semi-field studies has shown that aquatic macroinvertebrates have the potential to consume large numbers of mosquito larvae and could thus offer an additional approaches in integrated malaria vector management strategies. The growing number of semi-field structures available in East and West Africa provides an opportunity to conduct ecological experimental studies to reconsider the potential of using aquatic macroinvertebrate predators as a biocontrol tool. To achieve a more sustainable approach to controlling malaria vector populations, additional, non-chemical interventions could provide a more sustainable approach, in comparison with the failing chemical control tools, and should be urgently considered for integration with the current mosquito vector control campaigns.


Subject(s)
Anopheles , Malaria , Mosquito Control , Mosquito Vectors , Pest Control, Biological , Predatory Behavior , Animals , Anopheles/physiology , Mosquito Control/methods , Malaria/prevention & control , Malaria/transmission , Pest Control, Biological/methods , Mosquito Vectors/physiology , Ecosystem , Larva/physiology , Heteroptera/physiology , Odonata/physiology , Coleoptera/physiology , Biological Control Agents , Invertebrates/physiology
6.
Sci Total Environ ; 941: 173726, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38839006

ABSTRACT

Road salt (commonly NaCl, CaCl2, and MgCl2) is widely used in the northern United States as a deicing agent for roadways and other byways. Millions of tons of road salt are used annually in the United States, resulting in drastic increases in freshwater salinity. This study aims to determine the chloride optima and tolerance ranges of macroinvertebrates using publicly accessible stream monitoring data from the US EPA. We assigned taxa region-specific tolerance values, which we then used to calculate the Salt Belt Index (SBI). In addition to the SBI, we determined new, region-specific, chronic Cl- thresholds, determined using threshold indicator taxa analysis (TITAN). Using generalized linear models, we found the SBI was highly accurate at estimating chloride concentration (mg/L Cl-) across the salt belt states. Macroinvertebrate community richness exhibited a significant negative relationship with increasing chloride concentrations. Newly proposed chloride thresholds, based on the richness-chloride relationship, were far lower than current thresholds. The SBI was able to differentiate between Low-, Medium-, and High-Impact sites, grouped based on proposed chloride thresholds. Based on our findings, it is clear current salinity thresholds are too high, and management practices should factor in regional variability, taxon-specific physiology, and historical instream chemistry when implementing salinity thresholds.

7.
J Anim Ecol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847240

ABSTRACT

Food webs depict the tangled web of trophic interactions associated with the functioning of an ecosystem. Understanding the mechanisms providing stability to these food webs is therefore vital for conservation efforts and the management of natural systems. Here, we first characterised a tropical stream meta-food web and five individual food webs using a Bayesian Hierarchical approach unifying three sources of information (gut content analysis, literature compilation and stable isotope data). With data on population-level biomass and individually measured body mass, we applied a bioenergetic model and assessed food web stability using a Lotka-Volterra system of equations. We then assessed the resilience of the system to individual species extinctions using simulations and investigated the network patterns associated with systems with higher stability. The model resulted in a stable meta-food web with 307 links among the 61 components. At the regional scale, 70% of the total energy flow occurred through a set of 10 taxa with large variation in body masses. The remaining 30% of total energy flow relied on 48 different taxa, supporting a significant dependency on a diverse community. The meta-food web was stable against individual species extinctions, with a higher resilience in food webs harbouring omnivorous fish species able to connect multiple food web compartments via weak, non-specialised interactions. Moreover, these fish species contributed largely to the spatial variation among individual food webs, suggesting that these species could operate as mobile predators connecting different streams and stabilising variability at the regional scale. Our results outline two key mechanisms of food web stability operating in tropical streams: (i) the diversity of species and body masses buffering against random and size-dependent disturbances and (ii) high regional diversity and weak omnivorous interactions of predators buffering against local stochastic variation in species composition. These mechanisms rely on high local and regional biodiversity in tropical streams, which is known to be strongly affected by human impacts. Therefore, an urgent challenge is to understand how the ongoing systematic loss of diversity jeopardises the stability of stream food webs in human-impacted landscapes.


As teias alimentares representam um emaranhado de interações tróficas associadas ao funcionamento de um ecossistema. Compreender os mecanismos que proporcionam estabilidade a estas teias alimentares é, portanto, vital para os esforços de conservação e gestão dos sistemas naturais. Aqui, primeiro caracterizamos uma meta teia alimentar de riachos tropicais e cinco teias alimentares individuais usando uma abordagem hierárquica Bayesiana unificando três fontes de informação (análise de conteúdo estomacal, compilação de literatura, dados de isótopos estáveis). Com dados sobre biomassa em nível populacional e massa corporal medida individualmente, aplicamos um modelo bioenergético e avaliamos a estabilidade da cadeia alimentar usando um sistema de equações Lotka­Volterra. Em seguida, avaliamos a resiliência do sistema às extinções de espécies individuais usando simulações e investigamos os padrões de rede associados a sistemas com maior estabilidade. O modelo resultou em uma meta teia alimentar estável com 307 ligações entre os 61 componentes. Na escala regional, 70% do fluxo total de energia ocorreu através de um conjunto de dez taxa com grande variação nas massas corporais. Os restantes 30% do fluxo total de energia dependiam de 47 taxa diferentes, apoiando uma dependência significativa de uma comunidade diversificada. A meta teia alimentar foi estável contra extinções de espécies individuais, com uma maior resiliência em teias alimentares que abrigam espécies de peixes onívoros capazes de conectar múltiplos compartimentos da teia alimentar através de interações fracas e não especializadas. Além disso, estas espécies de peixes contribuíram amplamente para a variação espacial entre as cadeias alimentares individuais, sugerindo que estas espécies poderiam operar como predadores móveis conectando diferentes riachos e estabilizando a variabilidade à escala regional. Nossos resultados descrevem dois mecanismos principais de estabilidade da cadeia alimentar operando em riachos tropicais: (i) a diversidade de espécies e massas corporais que protegem contra distúrbios aleatórios e dependentes do tamanho (ii) alta diversidade regional e fracas interações onívoras de predadores que protegem contra a variação estocástica local na composição de espécies. Estes mecanismos dependem de uma elevada biodiversidade local e regional em riachos tropicais, que são conhecidos por serem fortemente afetados pelos impactos humanos. Portanto, um desafio urgente é compreender como a contínua perda sistemática de diversidade põe em risco a estabilidade das teias alimentares em paisagens impactadas pelo homem.

8.
Environ Monit Assess ; 196(7): 592, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829468

ABSTRACT

Freshwater aquatic ecosystems are threatened globally. Biological monitoring is required to deliver rapid and replicable assessment of changes in habitat quality. The Ephemeroptera, Plectoptera, Trichoptera (EPT) index is a globally recognised rapid bioassessment that measures taxa richness of three insect orders whose larvae are considered sensitive to freshwater habitat degradation. South-western Australia contains threatened freshwater ecosystems but has depauperate EPT fauna and high endemism, potentially reducing the capacity of the EPT index to track degradation. This study investigated if EPT species richness, composition or individual species tracked physical or chemical river degradation in three catchments in south-western Australia. We sampled EPT fauna and measured water chemistry, erosion, sedimentation, riparian vegetation cover and instream habitat at 98 sites in the winters of 2007 and 2023. We found 35 EPT taxa across the study area with a median number of species per site of two. EPT species richness had weak positive associations with a composite water quality index and dissolved oxygen and weak negative associations with electrical conductivity and total nitrogen. No association was found between physical and fringing zone degradation measures and EPT species richness. EPT community structure generally did not distinguish between sites with high or low degradation levels. The presence of the mayfly Nyungara bunni tracked salinity, dissolved oxygen and nitrogen levels, but its usefulness as a bioindicator could be limited by its restricted range. This study suggests that the EPT index would need modification or combination with other indices to be a useful rapid bioassessment in south-western Australia.


Subject(s)
Biodiversity , Ecosystem , Environmental Monitoring , Rivers , Animals , Rivers/chemistry , Environmental Monitoring/methods , Western Australia , Insecta , Ephemeroptera
9.
Environ Monit Assess ; 196(7): 635, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900337

ABSTRACT

Detecting human impact on freshwater ecosystems is problematic without rigorous assessment of temporal changes. Assessments of mining impacts are further complicated by the strong influence of local catchment geology on surface waters even in unmined environments. Such influence cannot be effectively considered by using broad-scale reference frameworks based on regionalization and stream types. Using the BACI (Before-After Control-Impact) design, we examined the impact of mining discharges on freshwater algae and macroinvertebrate communities resulting from the rerouting of treated wastewaters through a pipeline to larger water bodies in Northern and North-Eastern Finland. Impacted sites and control sites were sampled 1 to 2 years before and 1 to 3 years after the pipelines became operational. Stream diatom communities recovered from past loadings upstream of the pipeline (which was no longer impacted by wastewaters) after rerouting of the wastewaters, while no changes downstream from the pipeline were detected. Upstream from the pipeline, diatom species richness increased and changes in relative abundances of the most common diatom taxa as well as in the overall community composition were observed. The effects of the pipeline were less evident for stream macroinvertebrate communities. There was an indication that regional reference conditions used in national biomonitoring may not represent diatom communities in areas with a strong geochemical background influence. Lake profundal macroinvertebrate communities were impacted by past loadings before the construction of the pipeline, and the influence of the pipeline was observed only as changes in the abundances of a few individual species such as phantom midges (which increased in abundance in response to discharges directed through the pipeline). Our results highlight the variable influence of mining discharges on aquatic communities. Statistically strong monitoring programmes, such as BACI designs, are clearly needed to detect these influences.


Subject(s)
Diatoms , Ecosystem , Environmental Monitoring , Fresh Water , Invertebrates , Mining , Environmental Monitoring/methods , Animals , Fresh Water/chemistry , Finland , Rivers/chemistry , Water Pollutants, Chemical/analysis
10.
Ecol Evol ; 14(6): e11568, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932948

ABSTRACT

Food availability varies considerably over space and time in wetland systems, and consumers must be able to track those changes during energetically-demanding points in the life cycle like breeding. Resource tracking has been studied frequently among herbivores, but receives less attention among consumers of macroinvertebrates. We evaluated the change in resource availability across habitat types and time and the simultaneous density of waterfowl consumers throughout their breeding season in a high-elevation, flood-irrigated system. We also assessed whether the macroinvertebrate resource density better predicted waterfowl density across habitats, compared to consistency (i.e., temporal evenness) of the invertebrate resource or taxonomic richness. Resource density varied marginally across wetland types but was highest in basin wetlands (i.e., ponds) and peaked early in the breeding season, whereas it remained relatively low and stable in other wetland habitats. Breeding duck density was positively related to resource density, more so than temporal resource stability, for all species. Resource density was negatively related to duckling density, however. These results have the potential to not only elucidate mechanisms of habitat selection among breeding ducks in flood-irrigated landscapes but also suggest there is not a consequential trade-off to selecting wetland sites based on energy density versus temporal resource stability and that good-quality wetland sites provide both.

11.
Glob Chang Biol ; 30(5): e17312, 2024 May.
Article in English | MEDLINE | ID: mdl-38736133

ABSTRACT

Biological invasions pose a rapidly expanding threat to the persistence, functioning and service provisioning of ecosystems globally, and to socio-economic interests. The stages of successful invasions are driven by the same mechanism that underlies adaptive changes across species in general-via natural selection on intraspecific variation in traits that influence survival and reproductive performance (i.e., fitness). Surprisingly, however, the rapid progress in the field of invasion science has resulted in a predominance of species-level approaches (such as deny lists), often irrespective of natural selection theory, local adaptation and other population-level processes that govern successful invasions. To address these issues, we analyse non-native species dynamics at the population level by employing a database of European freshwater macroinvertebrate time series, to investigate spreading speed, abundance dynamics and impact assessments among populations. Our findings reveal substantial variability in spreading speed and abundance trends within and between macroinvertebrate species across biogeographic regions, indicating that levels of invasiveness and impact differ markedly. Discrepancies and inconsistencies among species-level risk screenings and real population-level data were also identified, highlighting the inherent challenges in accurately assessing population-level effects through species-level assessments. In recognition of the importance of population-level assessments, we urge a shift in invasive species management frameworks, which should account for the dynamics of different populations and their environmental context. Adopting an adaptive, region-specific and population-focused approach is imperative, considering the diverse ecological contexts and varying degrees of susceptibility. Such an approach could improve and refine risk assessments while promoting mechanistic understandings of risks and impacts, thereby enabling the development of more effective conservation and management strategies.


Subject(s)
Introduced Species , Invertebrates , Population Dynamics , Animals , Invertebrates/physiology , Europe , Ecosystem , Fresh Water
12.
Sci Total Environ ; 935: 173102, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38729363

ABSTRACT

Although the exclusion effects of invertebrate decomposers on litter decomposition have been extensively studied in different experimental contexts, a thorough comparison of the exclusion effects of invertebrate decomposers with different body sizes on litter decomposition and its possible regulatory factors in terrestrial and aquatic ecosystems is still lacking. Here, through a meta-analysis of 1207 pairs of observations from 110 studies in terrestrial ecosystems and 473 pairs of observations from 60 studies in aquatic ecosystems, we found that invertebrate exclusion reduced litter decomposition rates by 36 % globally, 30 % in terrestrial ecosystems, and 44 % in aquatic ecosystems. At the global scale, the exclusion effects of macroinvertebrates and mesoinvertebrates on litter decomposition rates (reduced by 38 % and 36 %, respectively) were greater than those of the combination of macroinvertebrates and mesoinvertebrates (reduced by 30 %). In terrestrial and aquatic ecosystems, the effects of invertebrate exclusion on litter decomposition rates were mainly regulated by climate and initial litter quality, but the effects of invertebrate exclusion with different body sizes were regulated differently by climate, initial litter quality, and abiotic environmental variables. These findings will help us better understand the role of invertebrate decomposers in litter decomposition, especially for invertebrate decomposers with different body sizes, and underscore the need to incorporate invertebrate decomposers with different body sizes into dynamic models of litter decomposition to examine the potential effects and regulatory mechanisms of land-water-atmosphere carbon fluxes.


Subject(s)
Ecosystem , Invertebrates , Invertebrates/physiology , Animals , Climate , Biodegradation, Environmental , Aquatic Organisms
13.
Oecologia ; 205(2): 271-279, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822197

ABSTRACT

Concordance occurs when two or more biological groups are correlated to each other. Examining the degree of concordance between communities has been a central goal in ecology. However, few studies have assessed the levels of community concordance at large spatial scales. We used a dataset obtained by the National Lakes Assessment (United States Environmental Protection Agency) to evaluate whether (i) the levels of concordance between aquatic communities were higher at the continental scale than within individual ecoregions of the United States and (ii) whether the levels of concordance between phytoplankton and zooplankton were higher than those between the plankton and macroinvertebrates communities. At the continental scale, the levels of concordance between different pairs of aquatic communities were low and did not exceed those within the ecoregions. Furthermore, levels of concordance varied considerably among ecoregions. Our results suggest that interactions between aquatic communities likely determined concordance patterns; however, the expectation of higher levels of concordance between the phytoplankton and zooplankton communities than between them and the macroinvertebrates community was not supported. The consistently low and variable levels of concordance suggest that using surrogate groups is not recommendable for monitoring lakes in the United States, both at the continental and regional scales. According to our results, the prospect of using the surrogacy approach was low even for aquatic communities that are highly interactive or driven by similar environmental factors.


Subject(s)
Lakes , Phytoplankton , Zooplankton , United States , Animals , Invertebrates , Ecosystem
14.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230121, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705183

ABSTRACT

Aquatic macroinvertebrates, including many aquatic insect orders, are a diverse and ecologically relevant organismal group yet they are strongly affected by anthropogenic activities. As many of these taxa are highly sensitive to environmental change, they offer a particularly good early warning system for human-induced change, thus leading to their intense monitoring. In aquatic ecosystems there is a plethora of biotic monitoring or biomonitoring approaches, with more than 300 assessment methods reported for freshwater taxa alone. Ultimately, monitoring of aquatic macroinvertebrates is used to calculate ecological indices describing the state of aquatic systems. Many of the methods and indices used are not only hard to compare, but especially difficult to scale in time and space. Novel DNA-based approaches to measure the state and change of aquatic environments now offer unprecedented opportunities, also for possible integration towards commonly applicable indices. Here, we first give a perspective on DNA-based approaches in the monitoring of aquatic organisms, with a focus on aquatic insects, and how to move beyond traditional point-based biotic indices. Second, we demonstrate a proof-of-concept for spatially upscaling ecological indices based on environmental DNA, demonstrating how integration of these novel molecular approaches with hydrological models allows an accurate evaluation at the catchment scale. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Aquatic Organisms , DNA, Environmental , Insecta , Animals , Aquatic Organisms/genetics , Biodiversity , Biological Monitoring/methods , DNA, Environmental/analysis , Ecosystem , Environmental Monitoring/methods , Insecta/genetics
15.
Data Brief ; 54: 110449, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38711741

ABSTRACT

In the last few decades, perennial mountain streams are becoming increasingly intermittent, due to global climate change and anthropogenic pressures. This phenomenon leads to negative effects on benthic communities' biodiversity and river ecosystems functionality. However, the impact of flow intermittency in previously perennial Alpine streams is still poorly investigated. This dataset consists of all the data collected during a spring sampling campaign performed in April-May 2017 along 13 mountain streams located in the SW Italian Alps. These watercourses have been selected because it was possible to identify two different sampling sites: one perennial, where water has always been flowing throughout the years, and one intermittent, which showed flowing water during the sampling campaign but, in the last decade, has experienced summer dry phases. All the sites have been characterized defining the microhabitats in which samples were retrieved, and physico-chemical data were collected at each site. Biological sampling included benthic macroinvertebrates and diatoms. Therefore, the present dataset offers various biological, ecological and physico-chemical information regarding Alpine streams which have recently become intermittent. Potentially, it could be used for comparisons with different benthic communities present in mountain rivers worldwide which are facing drying events too. The broad range of information present in this dataset offers the possibility to examine only the perennial sites themselves, as an example of good river functionality due to continuous flowing water, or only the intermittent ones, to better understand the effects of drying events on these peculiar ecosystems.

16.
Environ Sci Pollut Res Int ; 31(23): 34492-34506, 2024 May.
Article in English | MEDLINE | ID: mdl-38709406

ABSTRACT

Wastewater treatment plant (WWTP) effluents can be sources of environmental contamination. In this study, we aimed to understand whether effluents of three different WWTPs may have ecological effects in riverine recipient ecosystems. To achieve this, we assessed benthic phytobenthos and macroinvertebrate communities at three different locations relative to the effluent discharge: immediately upstream, immediately downstream and 500-m downstream the effluent discharge. Two approaches were employed: the ecological status classification as defined in the Water Framework Directive (WFD) based on biological indicators; constrained multivariate analysis to disentangle the environmental drivers (physicochemical variables and contaminants, namely metals, polycyclic aromatic hydrocarbons, pharmaceuticals, and personal care products) of ecological changes across the study sites. The results showed inconsistencies between the WFD approach and the multivariate approach, as well as between the responses of macroinvertebrates and diatoms. The WWTP effluents impacted benthic communities in a single case: macroinvertebrates were negatively affected by one of the WWTP effluents, likely by the transported pharmaceuticals (other stressors are essentially homogeneous among sites). Given the findings and the scarcity of consistent evidence on ecological impacts that WWTP effluents may have in recipient ecosystems, further research is needed towards more sustainable regulation and linked environmental protection measures.


Subject(s)
Environmental Monitoring , Invertebrates , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Animals , Ecosystem , Polycyclic Aromatic Hydrocarbons/analysis
17.
Sci Total Environ ; 934: 173105, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750737

ABSTRACT

The decline of river and stream biodiversity results from multiple simultaneous occuring stressors, yet few studies explore responses explore responses across various taxonomic groups at the same locations. In this study, we address this shortcoming by using a coherent data set to study the association of nine commonly occurring stressors (five chemical, one morphological and three hydraulic) with five taxonomic groups (bacteria, fungi, diatoms, macro-invertebrates and fish). According to studies on single taxonomic groups, we hypothesise that gradients of chemical stressors structure community composition of all taxonomic groups, while gradients of hydraulic and morphological stressors are mainly related to larger organisms such as benthic macro-invertebrates and fish. Organisms were sampled over two years at 20 sites in two catchments: a recently restored urban lowland catchment (Boye) and a moderately disturbed rural mountainous catchment (Kinzig). Dissimilarity matrices were computed for each taxonomic group within a catchment. Taxonomic dissimilarities between sites were linked to stressor dissimilarities using multivariable Generalized Linear Mixed Models. Stressor gradients were longer in the Boye, but did in contrast to the Kinzig not cover low stress intensities. Accordingly, responses of the taxonomic groups were stronger in the Kinzig catchment than in the recently restored Boye catchment. The discrepancy between catchments underlines that associations to stressors strongly depend on which part of the stressor gradient is covered in a catchment. All taxonomic groups were related to conductivity. Bacteria, fungi and macro-invertebrates change with dissolved oxygen, and bacteria and fungi with total nitrogen. Morphological and hydraulic stressors had minor correlations with bacteria, fungi and diatoms, while macro-invertebrates were strongly related to fine sediment and discharge, and fish to high flow peaks. The results partly support our hypotheses about the differential associations of the different taxonomic groups with the stressors.


Subject(s)
Biodiversity , Environmental Monitoring , Rivers , Rivers/microbiology , Animals , Fungi , Diatoms/physiology , Invertebrates/physiology , Fishes , Bacteria/classification , Water Pollutants, Chemical/analysis
18.
Environ Res ; 252(Pt 1): 118882, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582426

ABSTRACT

The concentration of trace elements (chromium, lead, zinc, copper, manganese, and iron) was determined in water, sediment and tissues of two Cyprinidae fish species - Labeo rohita and Tor putitora - collected from the eight sampling stations of Indus River in 2022 for four successive seasons (autumn, winter, spring, summer), and also study the present condition of macroinvertebrates after the construction of hydraulic structure. The obtained results of trace element concentrations in the Indus River were higher than the acceptable drinking water standards by WHO. The nitrate concentration ranges from 5.2 to 59.6 mg l-1, turbidity ranges from 3.00 to 63.9 NTU, total suspended solids and ammonium ions are below the detection limit (<0.05). In the liver, highest dry wt trace elements (µg/g) such as Cr (4.32), Pb (7.07), Zn (58.26), Cu (8.38), Mn (50.27), and Fe (83.9) for the Labeo rohita; and Tor Putitora has significantly greater accumulated concentration (Cr, Pb, Zn, Cu, Mn, Fe) in muscle and liver than did Labeo rohita species. Additionally, lower number of macroinvertebrates were recorded during the monsoonal season than pre-monsoon and post-monsoon. Local communities surrounded by polluted environments are more probably to consume more fish and expose them to higher concentrations of toxic trace elements (lead and copper). The findings also provide a basis for broader ecological management of the Indus River, which significantly influenced human beings and socioeconomic disasters, particularly in the local community.


Subject(s)
Cyprinidae , Environmental Monitoring , Trace Elements , Water Pollutants, Chemical , Trace Elements/analysis , Trace Elements/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Rivers/chemistry , Pakistan , Invertebrates , Biodiversity , Chromium/analysis , Chromium/metabolism , Lead/agonists , Lead/metabolism , Zinc/analysis , Zinc/metabolism , Copper/analysis , Copper/metabolism , Manganese/analysis , Manganese/metabolism , Iron/analysis , Iron/metabolism , Seasons , Cyprinidae/metabolism , Humans , Animals , Liver/metabolism , Water Pollution, Chemical/statistics & numerical data
19.
Heliyon ; 10(7): e28018, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596140

ABSTRACT

Increasing human activities in coastal areas of Ghana have led to the degradation of many surface waterbodies, with significant consequences for the ecosystems in the affected areas. Thus, this degradation extremely affects the health of ecosystems and disrupts the essential services they provide. The present study explored the use of benthic macroinvertebrates as an indicator of estuarine degradation along the coast of Ghana. Water and sediment samples were collected bimonthly from Ankobra, Kakum and Volta estuaries for physicochemical parameters, nutrients and benthic macroinvertebrates. The findings revealed the dominance of pollution-tolerant taxa such as Capitella sp., Nereis sp., Heteromastus sp., Tubifex sp., Cossura sp. and Chironomous sp. in Kakum Estuary while pollution-sensitive taxa such as Scoloplos sp., Euridice sp., Lumbriconereis sp. and Pachymelania sp. in the Volta Estuary. The species-environment interactions showed dissolved oxygen, temperature, salinity, orthophosphate, nitrates, ammonium, electrical conductivity, turbidity, and chemical oxygen demand as the most significant parameters that complement the use of benthic macroinvertebrates as indicators of environmental quality in the studied estuaries. There were correlations of some benthic macroinvertebrate taxa with environmental factors in the estuaries suggesting low, moderate and high levels of pollution in the Volta, Kakum and Ankobra estuaries, respectively. Nevertheless, the study finds Kakum Estuary to be the ecologically healthiest estuary than the Volta and Ankobra Estuaries. Therefore, the study has shown benthic macroinvertebrates as a key indicator of ecosystem health alterations, and it is recommended that they should be incorporated with other environmental data for pollution monitoring in Ghanaian coastal waters.

20.
Glob Chang Biol ; 30(4): e17254, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38556898

ABSTRACT

Freshwaters are highly threatened ecosystems that are vulnerable to chemical pollution and climate change. Freshwater taxa vary in their sensitivity to chemicals and changes in species composition can potentially affect the sensitivity of assemblages to chemical exposure. Here we explore the potential consequences of future climate change on the composition and sensitivity of freshwater macroinvertebrate assemblages to chemical stressors using the UK as a case study. Macroinvertebrate assemblages under end of century (2080-2100) and baseline (1980-2000) climate conditions were predicted for 608 UK sites for four climate scenarios corresponding to mean temperature changes of 1.28 to 3.78°C. Freshwater macroinvertebrate toxicity data were collated for 19 chemicals and the hierarchical species sensitivity distribution model was used to predict the sensitivity of untested taxa using relatedness within a Bayesian approach. All four future climate scenarios shifted assemblage compositions, increasing the prevalence of Mollusca, Crustacea and Oligochaeta species, and the insect taxa of Odonata, Chironomidae, and Baetidae species. Contrastingly, decreases were projected for Plecoptera, Ephemeroptera (except for Baetidae) and Coleoptera species. Shifts in taxonomic composition were associated with changes in the percentage of species at risk from chemical exposure. For the 3.78°C climate scenario, 76% of all assemblages became more sensitive to chemicals and for 18 of the 19 chemicals, the percentage of species at risk increased. Climate warming-induced increases in sensitivity were greatest for assemblages exposed to metals and were dependent on baseline assemblage composition, which varied spatially. Climate warming is predicted to result in changes in the use, environmental exposure and toxicity of chemicals. Here we show that, even in the absence of these climate-chemical interactions, shifts in species composition due to climate warming will increase chemical risk and that the impact of chemical pollution on freshwater macroinvertebrate biodiversity may double or quadruple by the end of the 21st century.


Subject(s)
Ecosystem , Environmental Pollutants , Animals , Bayes Theorem , Biodiversity , Environmental Pollution , Invertebrates , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...