Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 604
Filter
1.
Sci Total Environ ; : 174663, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992379

ABSTRACT

The microbiota associated with aquatic plants plays a crucial role in promoting plant growth and development. The structure of the plant microbiome is shaped by intricate interactions among hosts, microbes, and environmental factors. Consequently, anthropogenic pressures that disrupt these interactions can indirectly impact the ecosystem services provided by aquatic plants, such as CO2 fixation, provision of food resources, shelter to animals, nutrient cycling, and water purification. Presently, studies on plant-microbiota interactions primarily focus on terrestrial hosts and overlook aquatic environments with their unique microbiomes. Therefore, there is a pressing need for a comprehensive understanding of plant microbiomes in aquatic ecosystems. This review delves into the overall composition of the microbiota associated with aquatic plant, with a particular emphasis on bacterial communities, which have been more extensively studied. Subsequently, the functions provided by the microbiota to their aquatic plants hosts are explored, including the acquisition and mobilization of nutrients, production of auxin and related compounds, enhancement of photosynthesis, and protection against biotic and abiotic stresses. Additionally, the influence of anthropogenic stressors, such as climate change and aquatic contamination, on the interaction between microbiota and aquatic plants is discussed. Finally, knowledge gaps are highlighted and future directions in this field are suggested.

2.
Plants (Basel) ; 13(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891236

ABSTRACT

Submerged macrophytes in eutrophic aquatic environments adapt to changes in ammonia nitrogen (NH4-N) levels by modifying their levels of free amino acids (FAAs) and soluble carbohydrates (SCs). As symbionts of submerged macrophytes, epiphytic bacteria have obvious host specificity. In the present study, the interspecific differences in the FAA and SC contents of Hydrilla verticillata (Linn. f.) Roylep, Vallisneria natans Hara and Chara braunii Gmelin and their leaf epiphytic bacterial communities were assessed in response to increased NH4-N concentrations. The results revealed that the response of the three submerged macrophytes to NH4-N stress involved the consumption of SCs and the production of FAAs. The NH4-N concentration had a greater impact on the variation in the FAA content, whereas the variation in the SC content was primarily influenced by the species. At the phylum level, the relative abundance of Nitrospirota on the leaves exhibited specific differences, with the order H. verticillata > V. natans > C. braunii. The dominant genera of epiphytic bacteria with denitrification effects on V. natans, H. verticillata and C. braunii leaves were Halomonas, Acinetobacter and Bacillus, respectively. When faced with NH4-N stress, the variation in epiphytic bacterial populations associated with ammonia oxidation and denitrification among submerged macrophytes could contribute to their divergent responses to heightened nitrogen levels.

3.
J Hazard Mater ; 474: 134778, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38843637

ABSTRACT

Short-chained perfluoroalkyl acids (PFAAs, CnF2n+1-R, n ≤ 6) have merged as global concerns due to their extensive application and considerable toxicity. However, long-chained PFAAs (n ≥ 7) featured with high persistence are still ubiquitously observed in aquatic environment. To understand the uptake behavior of short-chained PFAAs in aquatic macrophytes, the uptake kinetics, bioconcentration, and translocation of short-chained PFAAs (3 ≤n ≤ 6) in two typical free-floating macrophytes (Eichhornia crassipes and Ceratophyllum demersum) were investigated in the treatments with and without long-chained PFAAs (7 ≤n ≤ 11). Results showed that short-chained PFAAs can be readily accumulated in both E. crassipes and C. demersum, and the uptake of short-chained PFAAs fit the two-compartment kinetic model well (p < 0.05). In the treatments with long-chained PFAAs, significant concentration decreases of all concerned short-chained PFAAs in E. crassipes and PFAAs with n ≤ 5 in C. demersum were observed. Long-chained PFAAs could hinder the uptake rates, bioconcentration factors, and translocation factors of most short-chained PFAAs in free-floating macrophytes (p < 0.01). Significant correlations between bioconcentration factors and perfluoroalkyl chain length were only observed when long-chained PFAAs were considered (p < 0.01). Our results underlined that the effects of long-chained PFAAs should be taken into consideration in understanding the uptake and bioaccumulation behaviors of short-chained PFAAs.


Subject(s)
Eichhornia , Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/metabolism , Eichhornia/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Bioaccumulation
4.
Environ Pollut ; 357: 124376, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897277

ABSTRACT

We compared the ability of one emergent (Sagittaria montevidensis), two floating (Salvinia minima and Lemna gibba), and one heterophyllous species (Myriophyllum aquaticum) to simultaneously remove sulfamethoxazole, sulfadiazine, ciprofloxacin, enrofloxacin, norfloxacin, levofloxacin, oxytetracycline, tetracycline, doxycycline, azithromycin, amoxicillin, and meropenem from wastewater in a mesocosm-scale constructed wetland over 28 days. Antibiotic concentrations in plants and effluent were analyzed using an LC-MS/MS to assess the removal rates and phytoremediation capacities. M. aquaticum did not effectively mitigate contamination due to poor tolerance and survival in effluent conditions. S. minima and L. gibba demonstrated superior efficiency, reducing the antibiotic concentrations to undetectable levels within 14 days, while S. montevidensis achieved this result by day 28. Floating macrophytes emerge as the preferable choice for remediation of antibiotics compared to emergent and heterophyllous species. Antibiotics were detected in plant tissues at concentrations ranging from 0.32 to 29.32 ng g-1 fresh weight, highlighting macrophytes' ability to uptake and accumulate these contaminants. Conversely, non-planted systems exhibited a maximum removal rate of 65%, underscoring the persistence of these molecules in natural environments, even after the entire experimental period. Additionally, macrophytes improved effluent quality regardless of species by reducing total soluble solids and phosphate concentrations and mitigating ecotoxicological effects. This study underscores the potential of using macrophytes in wastewater treatment plants to enhance overall efficiency and prevent environmental contamination by antibiotics, thereby mitigating the harmful impact on biota and antibiotic resistance. Selecting appropriate plant species is crucial for successful phytoremediation in constructed wetlands, and actual implementation is essential to validate their effectiveness and practical applicability.

5.
Front Plant Sci ; 15: 1375898, 2024.
Article in English | MEDLINE | ID: mdl-38828221

ABSTRACT

Introduction: Water depth (WD) and snail abundance (SA) are two key factors affecting the growth of submersed aquatic plants in freshwater lake ecosystems. Changes in WD and SA drive changes in nutrients and other primary producers that may have direct or indirect effects on submersed plant growth, but which factor dominates the impact of both on aquatic plants has not been fully studied. Methods: To investigate the dominant factors that influence aquatic plant growth in plateau lakes, a one-year field study was conducted to study the growth of three dominant submersed macrophyte (i.e., Vallisneria natans, Potamogeton maackianus, and Potamogeton lucens) in Erhai Lake. Results: The results show that, the biomass of the three dominant plants, P.maackianus, is the highest, followed by P.lucens, and V.natans is the lowest. Meanwhile, periphyton and snails attached to P.maackianus are also the highest. Furthermore, WD had a positive effect on the biomass of two submersed macrophyte species of canopy-type P.maackianus and P.lucens, while it had a negative effect on rosette-type V.natans. Snail directly inhibited periphyton attached on V.natans and thereby increasing the biomass of aquatic plants, but the effect of snails on the biomass of the other two aquatic plants is not through inhibition of periphyton attached to their plants. Discussion: The dominant factors affecting the biomass of submersed macrophyte in Erhai Lake were determined, as well as the direct and indirect mechanisms of WD and snails on the biomass of dominant submersed macrophyte. Understanding the mechanisms that dominate aquatic plant change will have implications for lake management and restoration.

6.
Environ Sci Pollut Res Int ; 31(28): 41059-41068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842777

ABSTRACT

Lead (Pb) can be deposited in aquatic environments that are especially subject to pollution due to wastewater and sewage disposal. This study aimed to evaluate the tolerance of Echinodorus grandiflorus (Cham. & Schltr.) Micheli to Pb and changes in growth, gas exchange, and leaf anatomy. Experiments were conducted with E. grandiflorus plants exposed to the following Pb concentrations in nutrient solution: [0; 0.75; 1.5; 3.0 and 9.0 µM Pb (NO 3)2] in a greenhouse for 60 days. At the end of the experiment, the lead concentration, growth, leaf gas exchange, and changes in leaf anatomy were evaluated. There was no mortality of E. grandiflorus plants, and they accumulated higher concentrations of Pb proportional to the concentration of the pollutant in the solution. Pb did not cause significant changes in growth, stomatal conductance, transpiration, and Ci/Ca rate but reduced the photosynthesis in E. grandiflorus. The leaf anatomy showed significant changes in the presence of Pb, reducing the epidermis and chlorophyll parenchyma. E. grandiflorus demonstrated tolerance to Pb, surviving and growing under contamination; however, it negatively modified its leaf anatomy and photosynthesis in the presence of the metal.


Subject(s)
Lead , Plant Leaves , Plant Leaves/anatomy & histology , Plant Leaves/drug effects , Photosynthesis/drug effects , Water Pollutants, Chemical/toxicity , Alismataceae/anatomy & histology
7.
Plants (Basel) ; 13(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931056

ABSTRACT

Elodea canadensis Michx. (common waterweed) and Elodea nuttallii (Planch.) H. St. John (Nuttall's waterweed), two invasive aquatic plants from North America, have coexisted in European water bodies since the early 20th century. New localities for both species in Croatia continued to be discovered during a study that ran from 2016 to 2023 as a part of the annual implementation of Water Framework Directive monitoring that covered the entire territory of Croatia (786 sampling points in total). Based on these data, the distribution and ecology of both species were analysed. Elodea canadensis was found at 30 sampling points, mostly in rivers, and E. nuttallii at 15 sampling points, mostly in artificial canals. Nearly three-quarters (72.5%) of all elodea sampling points were in the Pannonian Ecoregion. Elodea canadensis was discovered for the first time in the Continental-Dinaric and Mediterranean-Dinaric Subecoregions. To study the ecology of the species, for each sampling point, vegetation relevés were performed and monthly measurements of physico-chemical parameters were collected. The most common accompanying species for both elodeas are presented, and the difference in species assemblages between the sites with E. canadensis and E. nuttallii was confirmed with the ANOSIM test. Furthermore, Indicator Species Analysis revealed eight species characteristic of E. canadensis sites and eleven species characteristic of E. nuttallii sites. Fitting multivariate models (CCA and NPMR) to species abundance revealed the ecological reaction of E. canadensis and E. nuttallii to environmental descriptors. The most strongly contributing environmental descriptors that influence the distribution of both Elodea species are biochemical oxygen demand, electrical conductivity and total phosphorus. In Croatia, the replacement of E. canadensis with E. nuttallii was observed in several water bodies with high nutrient loads.

8.
Front Plant Sci ; 15: 1411767, 2024.
Article in English | MEDLINE | ID: mdl-38872881

ABSTRACT

Introduction: Freshwater ecosystems are susceptible to invasion by alien macrophytes due to their connectivity and various plant dispersal vectors. These ecosystems often experience anthropogenic nutrient enrichment, favouring invasive species that efficiently exploit these resources. Propagule pressure (reflecting the quantity of introduced individuals) and habitat invasibility are key determinants of invasion success. Moreover, the enemy release hypothesis predicts that escape from natural enemies, such as herbivores, allows alien species to invest more resources to growth and reproduction rather than defense, enhancing their invasive potential. Yet, the combined impact of propagule pressure, herbivory, and nutrient enrichment on the competitive dynamics between invasive alien macrophytes and native macrophyte communities is not well understood due to a paucity of studies. Methods: We conducted a full factorial mesocosm experiment to explore the individual and combined effects of herbivory, nutrient levels, propagule pressure, and competition on the invasion success of the alien macrophyte Myriophyllum aquaticum into a native macrophyte community comprising Vallisneria natans, Hydrilla verticillata, and Myriophyllum spicatum. This setup included varying M. aquaticum densities (low vs. high, simulating low and high propagule pressures), two levels of herbivory by the native snail Lymnaea stagnalis (herbivory vs no-herbivory), and two nutrient conditions (low vs. high). Myriophyllum aquaticum was also grown separately at both densities without competition from native macrophytes. Results: The invasive alien macrophyte M. aquaticum produced the highest shoot and total biomass when simultaneously subjected to conditions of high-density intraspecific competition, no herbivory, and low-nutrient availability treatments. Moreover, a high propagule pressure of M. aquaticum significantly reduced the growth of the native macrophyte community in nutrient-rich conditions, but this effect was not observed in nutrient-poor conditions. Discussion: These findings indicate that M. aquaticum has adaptive traits enabling it to flourish in the absence of herbivory (supporting the enemy release hypothesis) and in challenging environments such as intense intraspecific competition and low nutrient availability. Additionally, the findings demonstrate that when present in large numbers, M. aquaticum can significantly inhibit the growth of native macrophyte communities, particularly in nutrient-rich environments. Consequently, reducing the propagule pressure of M. aquaticum could help control its spread and mitigate its ecological impact. Overall, these findings emphasize that the growth and impacts of invasive alien plants can vary across different habitat conditions and is shaped by the interplay of biotic and abiotic factors.

9.
Plant Physiol Biochem ; 211: 108672, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718531

ABSTRACT

Luminescent materials can adjust the spectrum of light energy utilization by plants. However, current research on the effects of luminescent materials on aquatic plants and periphytic biofilms is limited. This study investigated the effects of the luminescent materials 4-(di-p-tolylamino) benzaldehyde-A (DTB-A) and 4-(di-p-tolylamino) benzaldehyde-M (DTB-M) on the submerged macrophyte Vallisneria natans (V. natans) and periphytic biofilm. Result demonstrated that low concentrations of DTB (0.1 µM) significantly promoted the growth and photosynthetic rate of V. natans. In terms of enzyme activity, exposure to a higher concentration of DTB (10 µM) increased the activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT). A combination of DTB-A and DTB-M treatment significantly changed the V. natans morphology and physiological characteristics, reducing the thickness of the cell wall and subsequently, promoting protein accumulation in leaves. There was no difference in the removal of ammonia or phosphate by V. natans at the 0.1 µM concentration, and the removal of ammonia and phosphate by V. natans decreased significantly as the concentration of luminescent material increased. A total of 3563 OTUs were identified in the biofilm community. The microbial community was dominated by Pseudomonas and Fusobacteria. Furthermore, results showed that an obvious decrease in diversity in the DTB-A and DTB-M mixed treatment group. In addition, the migratory aggregation of DTB molecules in plants was observed by fluorescence imaging. Overall, these findings extend our understanding of the mechanism of effect of luminescent materials on submerged macrophytes and their periphytic microorganisms.


Subject(s)
Biofilms , Hydrocharitaceae , Biofilms/drug effects , Biofilms/growth & development , Hydrocharitaceae/metabolism , Hydrocharitaceae/microbiology , Benzaldehydes/metabolism , Benzaldehydes/pharmacology , Photosynthesis/drug effects , Luminescence , Catalase/metabolism , Peroxidase/metabolism , Plant Leaves/metabolism , Superoxide Dismutase/metabolism , Luminescent Agents/metabolism
10.
J Hazard Mater ; 473: 134662, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38788574

ABSTRACT

Sediment cadmium contamination poses risks to aquatic ecosystems. Phytoremediation is an environmentally sustainable method to mitigate cadmium contamination. Submerged macrophytes are affected by cadmium stress, but plant growth-promoting rhizobacteria (PGPR) can restore the health status of submerged macrophytes. Herein, we aimed to reduce sediment cadmium concentration and reveal the mechanism by which the combined application of the PGPR Enterobacter ludwigii and the submerged macrophyte Vallisneria natans mitigates cadmium contamination. Sediment cadmium concentration decreased by 21.59% after submerged macrophytes were planted with PGPR, probably because the PGPR colonized the rhizosphere and roots of the macrophytes. The PGPR induced a 5.09-fold increase in submerged macrophyte biomass and enhanced plant antioxidant response to cadmium stress, as demonstrated by decreases in oxidative product levels (reactive oxygen species and malondialdehyde), which corresponded to shift in rhizosphere metabolism, notably in antioxidant defence systems (i.e., the peroxidation of linoleic acid into 9-hydroperoxy-10E,12Z-octadecadienoic acid) and in some amino acid metabolism pathways (i.e., arginine and proline). Additionally, PGPR mineralized carbon in the sediment to promote submerged macrophyte growth. Overall, PGPR mitigated sediment cadmium accumulation via a synergistic plantmicrobe mechanism. This work revealed the mechanism by which PGPR and submerged macrophytes control cadmium concentration in contaminated sediment.


Subject(s)
Biodegradation, Environmental , Cadmium , Enterobacter , Geologic Sediments , Water Pollutants, Chemical , Cadmium/toxicity , Cadmium/metabolism , Enterobacter/metabolism , Enterobacter/growth & development , Enterobacter/drug effects , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Rhizosphere , Hydrocharitaceae/metabolism , Hydrocharitaceae/microbiology , Hydrocharitaceae/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Plant Roots/drug effects , Plant Roots/growth & development , Biomass
11.
Ecotoxicol Environ Saf ; 279: 116416, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38749195

ABSTRACT

Wetland plants play a crucial role in regulating soil geochemistry, influencing heavy metal (HM) speciation, bioavailability, and uptake, thus impacting phytoremediation potential. We hypothesized that variations in HM biogeochemistry within estuarine soils are controlled by distinct estuarine plant species. We evaluated the soils (pH, redox potential, rhizosphere pH, HM total concentration, and geochemical fractionation), plant parts (shoot and root), and iron plaques of three plants growing in an estuary affected by Fe-rich mine tailings. Though the integration of multiple plant and soil analysis, this work emphasizes the importance of considering geochemical pools of HM for predicting their fate. Apart from the predominance of HM associated with Fe oxides, Typha domingensis accumulated the highest Cr and Ni contents in their shoots (> 100 mg kg-1). In contrast, Hibiscus tiliaceus accumulated more Cu and Pb in their roots (> 50 mg kg-1). The differences in rhizosphere soil conditions and root bioturbation explained the different potentials between the plants by altering the soil dynamics and HM's bioavailability, ultimately affecting their uptake. This study suggests that Eleocharis acutangula is not suitable for phytoextraction or phytostabilization, whereas Typha domingensis shows potential for Cr and Ni phytoextraction. In addition, we first showed Hibiscus tiliaceus as a promising wood species for Cu and Pb phytostabilization.


Subject(s)
Biodegradation, Environmental , Estuaries , Metals, Heavy , Soil Pollutants , Soil , Typhaceae , Wetlands , Metals, Heavy/metabolism , Metals, Heavy/analysis , Soil Pollutants/metabolism , Soil Pollutants/analysis , Typhaceae/metabolism , Soil/chemistry , Rhizosphere , Plant Roots/metabolism , Mining
12.
Sci Total Environ ; 932: 173078, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723968

ABSTRACT

Coastal wetland ecosystems make an important contribution to the global carbon pool, yet their extent is declining due to aquaculture-related land use changes. We conducted an extensive investigation into the carbon stock and area coverage of macrophytes in a tropical coastal Ramsar wetland, Kolleru in Andhra Pradesh, India. A total of 72 quadrats of size 1 × 1 m2 were laid in the wetland, 19 species of macrophytes were collected and analyzed for carbon content using a CNHS analyzer. To assess changes in the wetland macrophytes, Normalized Difference Vegetation Index (NDVI) was estimated using Landsat time series data from 1975 to 2023. The importance value index (IVI) of macrophytes scored highest for the Ipomoea aquatica (41.4) and the lowest for Ottelia alismoides (1.9). Non-metric multidimensional scaling (NMDS) significantly (r = 0.1905, p = 0.0361) revealed a clear separation of macrophytes in ordination space. ANOVA indicated highly significant (p < 0.0001) variations in the carbon content of aboveground and belowground components of macrophytes. Among the different macrophytes, the highest carbon content was found in Phragmites karka (0.6 g. g-1) and the lowest was recorded in Utricularia stellaris (0.2 g. g-1). On an average, emergents in the Kolleru wetland sequester 1525 ± 181 g C m-2 yr-1, rooted floating species sequester 858 ± 101 g C m-2 yr-1, submerged macrophytes sequester 480 ± 60 g C m-2 yr-1, and free-floating macrophytes sequester 221 ± 90 g C m-2 yr-1. Land cover mapping revealed a decrease in spread of aquatic vegetation from 225.2 km2 in 1975 to 100.6 km2 in 2023. Although macrophytes are vital carbon sinks, the wetland conversion into fishponds has resulted in a loss of 55.3 % of carbon storage. Therefore, immediate restoration of macrophyte cover is vital for the proper functioning of carbon sequestration and mitigation of climate change impacts.


Subject(s)
Carbon Sequestration , Carbon , Wetlands , India , Carbon/analysis , Environmental Monitoring
13.
Bioresour Technol ; 402: 130779, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701977

ABSTRACT

Submerged macrophytes are effective in ecological restoration of water bodies polluted by nitrogen and phosphorus, and its restoration capacity depends on underwater illumination condition. This study explored the influencing mechanism of illumination on Vallisneria spinulosa Yan (V. spinulosa Yan) for water restoration. Addition of underwater light source increased the total nitrogen, ammonia nitrogen, total phosphorus, and phosphate removal loads of the V. spinulosa Yan growth system by 61.5, 39.2, 8.5, and 5.0 mg m-2 d-1, respectively. Meanwhile, the growth of V. spinulosa Yan was obviously promoted, even with high water turbidity. Although the biological nitrogen removal processes were inhibited by adding underwater light source, the growth of V. spinulosa Yan can be significantly improved, thus enhancing the efficiency of water purification via the absorption of nitrogen and phosphorus by V. spinulosa Yan. This study provides a theoretical foundation and technical support for application of submerged macrophytes in ecological water restoration.


Subject(s)
Light , Nitrogen , Phosphorus , Rhizosphere , Water Purification , Water Purification/methods , Hydrocharitaceae/metabolism , Hydrocharitaceae/growth & development , Biodegradation, Environmental , Water , Ecosystem
14.
Bioresour Technol ; 402: 130785, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703956

ABSTRACT

Agricultural biomass used as solid carbon substrates in ecological floating beds (EFBs) has been proven to be applicable in nitrogen removal for carbon-limited wastewater treatment. However, the subtle interactions among plants, rhizosphere microorganisms, and supplementary carbon sources have not been thoroughly studied. This study combined rice straw mats with different aquatic macrophytes in EFBs to investigate denitrification efficiency in carbon-limited eutrophic waters. Results showed that rice straw significantly enhanced the nitrogen removal efficiency of EFBs, while enriching nitrogen-fixing and denitrifying bacteria (such as Rhizobium, Rubrivivax, and Rhodobacter, etc.). Additionally, during the denitrification process in EFBs, rice straw can release humic acid-like fraction as electron donors to support the metabolic activities of microorganisms, while aquatic macrophytes provide a more diverse range of dissolved organic matters, facilitating a sustainable denitrification process. These findings help to understand the synergistic effect of denitrification processes within wetland ecosystems using agricultural biomass.


Subject(s)
Carbon , Denitrification , Nitrogen , Oryza , Wastewater , Wastewater/chemistry , Water Purification/methods , Biomass , Bacteria/metabolism , Wetlands , Biodegradation, Environmental
15.
Sci Total Environ ; 934: 173357, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38772483

ABSTRACT

Submerged macrophytes are integral to the functioning of shallow lakes through their interaction with microorganisms. However, we have a limited understanding of how microbial communities in shallow lakes respond when macrophytes are restored after being historically extirpated. Here, we explored the interactions between prokaryotic communities and carbon utilization in two lakes where submerged macrophytes were restored. We found restoration reduced total carbon in sediment by 8.9 %-27.9 % and total organic carbon by 16.7 %-36.9 % relative to control treatment, but had no effects on carbon content in the overlying water. Sediment microbial communities were more sensitive to restoration than planktonic microbes and showed enhanced utilization of simple carbon substrates, such as Tween 40, after restoration. The increase in carbon utilization was attributed to declines in the relative abundance of some genera, such as Saccharicenans and Desertimonas, which were found weakly associated with the utilization of different carbon substrates. These genera likely competed with microbes with high carbon utilization in restored areas, such as Lubomirskia. Our findings highlight how restoring submerged macrophytes can enhance microbial carbon utilization and provide guidance to improve the carbon sequestration capacity of restored shallow lakes.


Subject(s)
Carbon , Lakes , Microbiota , Lakes/microbiology , Carbon/metabolism , Water Microbiology , Carbon Sequestration , Geologic Sediments/microbiology , Bacteria/metabolism , Environmental Restoration and Remediation/methods
16.
Front Microbiol ; 15: 1380805, 2024.
Article in English | MEDLINE | ID: mdl-38601927

ABSTRACT

Introduction: Bacteria and archaea are important components in shallow lake ecosystems and are crucial for biogeochemical cycling. While the submerged macrophyte loss is widespread in shallow lakes, the effect on the bacteria and archaea in the sediment and water is not yet widely understood. Methods: In this study, 16S rRNA gene sequencing was used to explore the bacteria and archaea in samples taken from the sediment and water in the submerged macrophyte abundant (MA) and submerged macrophyte loss (ML) areas of Caohai Lake, Guizhou, China. Results: The results showed that the dominant bacterial phyla were Proteobacteria and Chloroflexi in the sediment; the dominant phyla were Proteobacteria, Actinobacteriota, and Bacteroidota in the water. The dominant archaea in sediment and water were the same, in the order of Crenarchaeota, Thermoplasmatota, and Halobacterota. Non-metric multidimensional scaling (NMDS) analyses showed that bacterial and archaeal community structures in the water were significantly affected by the loss of submerged macrophytes, but not by significant changes in the sediment. This suggests that the loss of submerged macrophytes has a stronger effect on the bacterial and archaeal community structures in water than in sediment. Furthermore, plant biomass (PB) was the key factor significantly influencing the bacterial community structure in water, while total nitrogen (TN) was the main factor significantly influencing the archaeal community structure in water. The loss of submerged macrophytes did not significantly affect the alpha diversity of the bacterial and archaeal communities in either the sediment or water. Based on network analyses, we found that the loss of submerged macrophytes reduced the connectivity and complexity of bacterial patterns in sediment and water. For archaea, network associations were stronger for MA network than for ML network in sediment, but network complexity for archaea in water was not significantly different between the two areas. Discussion: This study assesses the impacts of submerged macrophyte loss on bacteria and archaea in lakes from microbial perspective, which can help to provide further theoretical basis for microbiological research and submerged macrophytes restoration in shallow lakes.

17.
Int J Phytoremediation ; : 1-15, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644582

ABSTRACT

Relative efficacy of five common weeds-of the kind that are either rooted in soil or which freely float over water-was assessed in rapid, effective and sustainable treatment of sewage at pilot plant scale in the recently developed and patented SHEFROL® bioreactors. The plants were utilized in a unit of capacity 12,000 liters/day (LPD) which, after two years of use, was enlarged to handle 40,000 LPD of sewage. It was then further expanded after an year to treat 57,000 LPD. All the five weeds, of which none has previously been tested in a pilot-scale SHEFROL, were able to foster highly efficient primary treatment (in terms of suspended and total solids) and secondary treatment (in terms of BOD and COD) to levels exceeding 85% in most cases. Additionally, the weeds also helped in achieving significant tertiary treatment. At different hydraulic retention times, and at steady state, the five weeds achieved treatment of BOD, COD, suspended solids, nitrogen, phosphorous, copper, nickel, zinc, and manganese in the ranges, 80-95, 79-91, 82-95, 61-71, 51-73, 37-43, 30-38, 39-47, and 27-35%, respectively. It all occurred in a single process step and without the use of any machine or chemical. This made the system not only simple and inexpensive to install but also to maintain. Over continuous long-term operation for four years, the system was seen to be very robust as it was able to handle wide variations in the volumes and characteristics of sewage, as well as absorb shock loads without compromising the reactor performance. The sustainability of the system can be further enhanced by upgrading it to a circular biorefinery. Energy sources in the form of volatile fatty acids (VFAs) can be extracted from the weeds removed from SHEFROL and then the weeds can be converted into organic fertilizer using high-rate vermireactors recently developed by the authors.


A novel and inexpensive, yet very efficient sewage treatment system is presented.The versatility and robustness of the system has been assessed at pilot plant scale for several years.The long-term continuous studies establish the efficacy of five common weeds­not hitherto explored at pilot plant level­which can serve as the main bioagent(s) in the sewage treatment system.The system has the potential of being transformed in to a closed-loop-no-waste biorefinery.

18.
Huan Jing Ke Xue ; 45(5): 2707-2714, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629534

ABSTRACT

Biofilms attached to submerged macrophytes play an important role in improving the water quality of the water environment supplemented with reclaimed water. In order to explore the effects of reclaimed water quality and submerged macrophyte species on the characteristics of an epiphytic bacterial community, different types of submerged macrophytes were selected as research objects in this study. 16S rRNA high-throughput sequencing technology was used on the epiphytic bacteria and the surrounding environmental samples to analyze the bacterial community structure and functional genes. The results showed that approximately 20%-35% of the nitrogen and phosphorus nutrients were absorbed and utilized in the water environment supplemented with reclaimed water. However, the COD, turbidity, and chroma of the downstream water were significantly increased. The bacterial community of the biofilms attached to submerged macrophytes was significantly different from that in the surrounding environment (soil, sediment, and water body) and in the activated sludge that was treated by reclaimed water. In terms of bacterial community diversity, the richness and diversity were significantly lower than those of soil and sediment but higher than those of plankton bacteria in water. In terms of bacterial community composition, dominant genera and corresponding abundances were also different from those of other samples. The main dominant bacterial genera were Sphingomonas, Aeromonas, Pseudomonas, and Acinetobacter, accounting for 7%-40%, respectively. Both macrophyte species and the quality of reclaimed water (BOD5, TN, NH4+-N, and TP) could affect the bacterial community. However, the effect of water quality of the bacterial community was greater than that of macrophytes species. Additionally, the quality of reclaimed water also affected the abundance of functional genes in the bacterial community, and the relative abundance of nitrogen and phosphorus cycling functional genes was higher in areas with higher nitrogen and phosphorus concentrations.


Subject(s)
Bacteria , Nitrogen , RNA, Ribosomal, 16S , Bacteria/genetics , Phosphorus , Soil
19.
Sci Total Environ ; 926: 172127, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38569965

ABSTRACT

River avulsions drive important changes in the Pantanal wetlands, owing to their role in the hydro-sedimentology of the region. Although relevant to numerous ecosystem services, few studies have analyzed the influence of river avulsions on soil fertility in the Pantanal. Here, we use the largest ongoing avulsion in the Taquari River (Caronal region) to evaluate the effects on soil fertility, considering two factors: avulsion stage (1) and aquatic-terrestrial succession (2). Since both factors are influenced by macrophyte abundance, an incident map was created through tasseled cap indices from Sentinel 2 images to guide sampling efforts in flooded soils. The mapped area was split into two zones of alluvial processes, the first from the apex of the Caronal lobe corresponding to the Taquari River megafan (TRM), and the second as the distal Paraguay River floodplain (PRF). Soil macro- and micronutrient levels were evaluated from 42 surface samples (0-0.2 m) distributed across the two alluvial process zones. The macrophyte map's overall accuracy (OA) was analyzed by a confusion matrix using the Sentinel 2 imagery. Finally, we used Random Forest regressions to determine the influence of response variables on soil attributes, including tassel indices, distance from the Caronal crevasse, macrophyte density, and an existing soil fertility map. The macrophyte map obtained an OA of 93 %. Some parameters such as pH (r = -0.62; R2 = 0.57), effective cation exchange capacity (r = -0.49; R2 = 0.79), Mn (r = -0.71; R2 = 0.6), Zn (r = -0.69; R2 = 0.54), and base saturation (r = -0.7; R2 = 0.93) were influenced by the distance or level of maturation of the avulsion stage in the TRM. Our scattering of soil collections was insufficient to test the terrestrialization hypothesis (2). The study results show that river channel avulsions influence the accumulation of mineral and organic nutrients in tropical floodplain soils, which has implications for fertility and biodiversity.

20.
Environ Toxicol Pharmacol ; 107: 104434, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38582069

ABSTRACT

The potential toxic effects of linear alkylbenzene sulfonate (LAS), widely used in commercial detergents and cleaners, on submerged macrophytes remain unclear. We conducted a two-week exposure experiment to investigate LAS toxicity on five submerged macrophytes (four native and one exotic), focusing on their growth and physiological responses. The results showed that lower concentrations of LAS (< 5 mg/L) slightly stimulated the growth of submerged macrophytes, while higher doses inhibited it. Increasing LAS concentration resulted in decreased chlorophyll content, increased MDA content and POD activity, and initially increased SOD and CAT activities before declining. Moreover, Elodea nuttallii required a higher effective concentration for growth compared to native macrophytes. These findings suggest that different species of submerged macrophytes exhibited specific responses to LAS, with high doses (exceeding 5 ∼ 10 mg/L) inhibited plant growth and physiology. However, LAS may promote the dominance of surfactant-tolerant exotic submerged macrophytes in polluted aquatic environments.


Subject(s)
Alkanesulfonic Acids , Antioxidants , Chlorophyll , Surface-Active Agents/toxicity , Alkanesulfonic Acids/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...