Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Heliyon ; 10(13): e33705, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040398

ABSTRACT

Aurantii fructus immaturus (AFI) and Magnoliae Officinalis Cortex (MOC) have been used to treat constipation in China for thousands of years. In this study, a mouse model of slow transit constipation (STC) was established by gavage of loperamide at a dose of 10 mg/kg bw/day for seven days. Seventy-two mice were randomly allocated to six groups (control, STC model, 3 g/kg AFI + MOC, 6 g/kg AFI + MOC, 12 g/kg AFI + MOC, and mosapride). A mixed aqueous extract of AFI and MOC was administered to the STC mice at the corresponding doses from the first day of modelling. Body weight, faecal water content, gastrointestinal transit time, and intestinal propulsion rate were evaluated. Serum levels of neurotransmitters and gastrointestinal hormones, colonic expression of aquaporins (AQP), and interstitial cells of Cajal (ICC) were assessed using ELISA, immunohistochemistry, and Western blot analysis. The abundance and diversity of the gut microbiota were analysed by 16S rRNA gene sequencing. The mixed aqueous extract significantly increased faecal water content and intestinal propulsion rate and shortened gastrointestinal transit time in STC mice. Furthermore, the administration of AFI and MOC significantly decreased serum vasoactive intestinal peptide (VIP), nitric oxide (NO), and somatostatin (SS) levels and increased serum motilin (MTL) levels in STC mice. The protein expression levels of AQP3 and AQP4 in the colon tissue of STC mice significantly decreased following AFI + MOC treatment, whereas those of AQP9 significantly increased. Moreover, the AFI + MOC treatment led to an increase in the number and functionality of ICCs. In addition, the relative abundances of Ruminococcus and Oscillospira increased in response to the administration of AFI + MOC in STC mice. In conclusion, the mixed aqueous extract of AFI and MOC promoted defaecation and increased intestinal mobility in STC mice. Its mechanisms of action involve modulatory effects on neurotransmitters, gastrointestinal hormones, AQPs, and ICCs. AFI + MOC treatment also improved the diversity and abundance of the gut microbiota in STC mice, particularly short-chain fatty acid-producing bacteria, which may play an important role in its beneficial effect on constipation.

2.
Article in English | MEDLINE | ID: mdl-38959707

ABSTRACT

Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex have been used together to treat constipation in the clinical practices for more than 2000 years. Nonetheless, their compatibility mechanism is still unclear. In this study, the amelioration of Rhei Radix et Rhizoma combined with Magnoliae Officinalis Cortex on constipation was systematically and comprehensively evaluated. The results showed that their compatibility could markedly shorten gastrointestinal transport time, increase fecal water content and frequency of defecation, improve gastrointestinal hormone disorders and protect colon tissue of constipation rats compared with the single drug. Furthermore, according to 16S rRNA sequencing in conjunction with UPLC-Q-TOF/MS, the combination of two herbal medications could greatly raise the number of salutary bacteria (Lachnospiraceae, Romboutsia and Subdoligranulum) while decreasing the abundance of pathogenic bacteria (Erysipelatoclostridiaceae). And two herb drugs could markedly improve the disorder of fecal metabolic profiles. A total of 7 different metabolites associated with constipation were remarkably shifted by the compatibility of two herbs, which were mainly related to arachidonic acid metabolism, alpha-linolenic acid metabolism, unsaturated fatty acid biosynthesis and other metabolic ways. Thus, the regulation of intestinal microbiome and its metabolism could be a potential target for Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex herb pair to treat constipation. Furthermore, the multi-omics approach utilized in this study, which integrated the microbiome and metabolome, had potential for investigating the mechanism of traditional Chinese medicines.


Subject(s)
Constipation , Drugs, Chinese Herbal , Feces , Gastrointestinal Microbiome , Magnolia , Rats, Sprague-Dawley , Rheum , Rats , Animals , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Magnolia/chemistry , Gastrointestinal Microbiome/drug effects , Constipation/drug therapy , Constipation/metabolism , Male , Rheum/chemistry , Feces/microbiology , Feces/chemistry , Chromatography, High Pressure Liquid , Metabolomics , Rhizome/chemistry , Metabolome/drug effects , Multiomics
3.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928161

ABSTRACT

Magnoliae Flos (MF) is a medicinal herb widely employed in traditional medicine for relieving sinusitis, allergic rhinitis, headaches, and toothaches. Here, we investigated the potential preventive effects of MF extract (MFE) against 4-vinylcyclohexene diepoxide (VCD)-induced ovotoxicity in ovarian cells and a mouse model of premature ovarian insufficiency (POI). The cytoprotective effects of MFE were assessed using CHO-K1 or COV434 cells. In vivo, B6C3F1 female mice were intraperitoneally injected with VCD for two weeks to induce POI, while MFE was orally administered for four weeks, beginning one week before VCD administration. VCD led to a significant decline in the viabilities of CHO-K1 and COV434 cells and triggered excessive reactive oxygen species (ROS) production and apoptosis specifically in CHO-K1 cells. However, pretreatment with MFE effectively prevented VCD-induced cell death and ROS generation, while also activating the Akt signaling pathway. In vivo, MFE increased relative ovary weights, follicle numbers, and serum estradiol and anti-Müllerian hormone levels versus controls under conditions of ovary failure. Collectively, our results demonstrate that MFE has a preventive effect on VCD-induced ovotoxicity through Akt activation. These results suggest that MFE may have the potential to prevent and manage conditions such as POI and diminished ovarian reserve.


Subject(s)
Cricetulus , Ovary , Plant Extracts , Primary Ovarian Insufficiency , Reactive Oxygen Species , Animals , Female , Mice , CHO Cells , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/prevention & control , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Vinyl Compounds/pharmacology , Cyclohexenes/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Disease Models, Animal , Signal Transduction/drug effects
4.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3806-3814, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37475072

ABSTRACT

The weight coefficients of appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol were determined by analytic hierarchy process(AHP), criteria importance though intercrieria correlation(CRITIC), and AHP-CRITIC weighting method, and the comprehensive scores were calculated. The effects of ginger juice dosage, moistening time, proces-sing temperature, and processing time on the quality of Magnoliae Officinalis Cortex(MOC) were investigated, and Box-Behnken design was employed to optimize the process parameters. To reveal the processing mechanism, MOC, ginger juice-processed Magnoliae Officinalis Cortex(GMOC), and water-processed Magnoliae Officinalis Cortex(WMOC) were compared. The results showed that the weight coefficients of the appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol determined by AHP-CRITIC weighting method were 0.134, 0.287, and 0.579, respectively. The optimal processing parameters of GMOC were ginger juice dosage of 8%, moistening time of 120 min, and processing at 100 ℃ for 7 min. The content of syringoside and magnolflorine in MOC decreased after processing, and the content of honokiol and magnolol followed the trend of GMOC>MOC>WMOC, which suggested that the change in clinical efficacy of MOC after processing was associated with the changes of chemical composition. The optimized processing technology is stable and feasible and provides references for the modern production and processing of MOC.


Subject(s)
Drugs, Chinese Herbal , Lignans , Magnolia , Zingiber officinale , Magnolia/chemistry , Drugs, Chinese Herbal/chemistry , Biphenyl Compounds/chemistry , Lignans/chemistry
5.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2435-2454, 2023 May.
Article in Chinese | MEDLINE | ID: mdl-37282873

ABSTRACT

This study aimed to investigate the impact of ginger juice on chemical profile of Magnoliae Officinalis Cortex(MOC) when they were processed together. Ultra-high-performance liquid chromatography coupled to quadrupole-orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was used for qualitative analysis of the chemical component of MOC samples before and after being processed with ginger juice. UPLC was performed to observe the content variation of eight main components in processed MOC. A total of 174 compounds were identified or tentatively deduced from processed and unprocessed MOC samples according to MS data obtained in positive and negative ion mode. After MOC was processed with ginger juice, the peak areas of most phenolics increased, while the peak areas of most phenylethanoid glycosides decreased; as for neolignans, oxyneolignans, other lignans and alkaloids, changes in the peak area were variable, and the peak areas of terpenoid-lignans varied little. Additionally, gingerols and diarylheptanoids were only detected in the processed MOC sample. The contents of syringin, magnoloside A, and magnoloside B decreased significantly in the processed MOC sample while no significant difference was observed in the contents of magnoflorine, magnocurarine, honokiol, obovatol, and magnolol. This study comprehensively explored the content variation of chemical components in processed and unprocessed MOC samples derived from different regions and with different tree ages using UPLC and UHPLC-Q-Orbitrap HRMS, and summarized the variation characteristics of various compounds. The results provide a data foundation for further research on pharmacodynamic substances of MOC processed with ginger juice.


Subject(s)
Alkaloids , Lignans , Zingiber officinale , Trees , Chromatography, High Pressure Liquid/methods , Lignans/analysis
6.
J Ethnopharmacol ; 307: 116181, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36738944

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Huanglian-Houpo Decoction (HLHP), a classical prescription, has been used to treat gastrointestinal diseases for hundreds of years in TCM. However, the effective constituents and underlying mechanisms of HLHP in the treatment of ulcerative colitis (UC) have not been fully investigated. AIM OF THE STUDY: This study aimed to reveal the potential anti-UC mechanisms of 50% ethanol extraction of HL and HP (EHLHP), combining transcriptomes and network pharmacology, as well as the animal experiment verification. METHODS: Primarily, we identified the chemical composition of EHLHP via UPLC-QE-MS analysis. A visualization network with components-targets-pathways on UC treatment were constructed using network pharmacology. And then, the transcriptomics sequencing method was applied to screen out the differentially expressed genes (DEGs) of EHLHP in the treatment of UC. The key targets and pathways of EHLHP were selected by the combination of the network pharmacology and transcriptomics results. Ultimately, the potential mechanisms of EHLHP on DSS-induced UC mice were verified. RESULTS: A total of 34 components of EHLHP were identified by UPLC-QE-MS analysis. Combined with the analysis of network pharmacology and transcriptomics, there were 262 DEGs between the normal group and the model group, and 151 DEGs between the model group and the EHLHP group. At the same time, there are 79 interaction paths, such as PI3K-Akt signaling pathway, MAPK signaling pathway, etc. These results indicated that the anti-UC mechanisms would be involved in calcium signaling pathway, inflammatory signaling pathway (JAK-STAT, TNF-α, cGMP-PKG) and immune regulation (IL-17, B cell receptor). After 160 mg/kg and 320 mg/kg EHLHP were given to DSS induced UC mice, these typical symptoms could be significantly alleviated, such as the decrease of DAI value and inflammation level. The IHC staining results of ZO-1, Occludin and Claudin-1 suggested that the intestinal barrier of UC mice was enhanced by EHLHP. The expression of macrophages and immune cells in F4/80+, CD11c+, Gr-1+, NK1.1+ by FCM determination indicated that EHLHP could suppress UC by immunosuppression and macrophage polarization M1 to M2. CONCLUSION: The potential mechanisms of HLHP extract on DSS-induced UC mice were revealed, by the prediction of integrated analysis of transcriptomes and network pharmacology, and subsequently animal test verification. It would provide a viable strategy to elucidate the mechanisms of TCM classical formula.


Subject(s)
Biological Products , Colitis, Ulcerative , Animals , Mice , Calcium Signaling , Colon , Dextran Sulfate , Disease Models, Animal , Intestinal Mucosa , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases , Plant Extracts/pharmacology
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-978466

ABSTRACT

ObjectiveTo investigate the key compounds affecting the irritation and to clarify the effect of heating and the addition of ginger juice as the auxiliary material during the processing on the irritation of Magnoliae Officinalis Cortex(MOC) by comparing the irritation and composition of volatile oil in MOC and its different processed products. MethodVolatile oil in raw products, water-processed products, ginger-dried products, ginger-fried products(the amounts of ginger were 10%, 50%, respectively) of MOC were extracted by steam distillation and subjected to rabbit eye irritation experiment, and the volatile components of each sample were detected by gas chromatography-mass spectrometry(GC-MS). Principal component analysis(PCA)and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to analyze the data of each sample by SIMCA 14.1. The relative contents of different processed products were compared two by two with those of and raw products or ginger-fried products, and the markers that might be related to the irritation were sorted out according to the principles of variable importance in the projection(VIP) value >1 and P<0.05, and the factors influencing the differences in irritation were analyzed. ResultCompared with the blank group, the administration groups all had irritation to the eyes of rabbits, and the degree of irritation was in the order of raw products>water-processed products>ginger-dried products>ginger-fried products(10%)>ginger-fried products(50%). The results of PCA and OPLS-DA showed that there were differences in the volatile oil from raw products and different processed products. According to VIP value>1 and P<0.05, and combined with the results of eye irritation experiment, ten volatile compounds related to irritation changes were screened out. Among them, cis-cinnamaldehyde was only detected in raw products, the relative contents of β-caryophyllene, (+)-delta-cadinene, α-humulene, γ-muurolene, (-)-isoledene and citral all increased to different degrees, the contents of p-cymene, 1(10)-4-cadinadien-15-ol and β-eudesmol all decreased to different degrees. ConclusionThe irritation of MOC is reduced after heating and processing with ginger juice, and the synergistic effect of both is more effective for reducing irritation. Among the differential markers associated with changes in irritation, the increase in the relative content of citral is closely related to the addition of ginger juice, while the decrease in the relative contents of cis-cinnamaldehyde, p-cymene, 1(10)-4-cadinadien-15-ol is related to heating, and the changes of other components may be related to the synergistic effect of heating and ginger juice.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-973144

ABSTRACT

ObjectiveTo explore the pretreatment methods to promote the enzymatic digestion and extraction of active ingredients from Magnoliae Officinalis Cortex dregs(MOCD), and to provide a reference basis for the utilization of resource components in MOCD. MethodLiquid chromatography-mass spectrometry(LC-MS) was used for qualitative analysis of resource components in MOCD with an Agilent C18 reversed-phase column(3.0 mm×100 mm, 2.7 µm) at the flow rate of 0.4 mL·min-1, the mobile phase was water(A)-acetonitrile(B) for gradient elution(0-3 min, 25%-48%B; 3-6 min, 48%-59%B; 6-10 min, 59%-80%B; 10-20 min, 80%-90%B; 20-25 min, 90%B), electrospray ionization(ESI) was employed with negative ion mode scanning and scanning range of m/z 50-1 200. A high performance liquid chromatography(HPLC), which refered to the determination in the 2020 edition of Chinese Pharmacopoeia, was used for quantitative analysis of resource components in MOCD. Four kinds of pretreatment agents were used to separate the resource components from MOCD, and the mechanism of different pretreatment agents was investigated by field emission scanning electron microscopy(FESEM), X-ray powder diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR). ResultMagnolol, honokiol and lignocellulose were identified as the main resource components of MOCD by qualitative and quantitative analysis. Under the conditions of 1% NaOH, reaction temperature at 80 ℃ and reaction time of 60 min, the concentration of reducing sugar produced by the enzymatic hydrolysis was 32.18 g·L-1, which was 79.8% higher than that of the untreated MOCD. After adding tween-80, the enzymatic hydrolysis time was reduced to 1/3 of the original time, the concentration of reducing sugar was increased by 102.0%. And the total recovery of magnolol and honokiol in the pretreatment solution was 69.23%. ConclusionMagnolol, honokiol and lignocellulosic components in MOCD are valuable for development and utilization, the combination of alkaline pretreatment and tween-80 can realize the recovery and utilization of these three resource components, which can provide a new idea for comprehensive utilization of resource components in MOCD.

9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981320

ABSTRACT

This study aimed to investigate the impact of ginger juice on chemical profile of Magnoliae Officinalis Cortex(MOC) when they were processed together. Ultra-high-performance liquid chromatography coupled to quadrupole-orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was used for qualitative analysis of the chemical component of MOC samples before and after being processed with ginger juice. UPLC was performed to observe the content variation of eight main components in processed MOC. A total of 174 compounds were identified or tentatively deduced from processed and unprocessed MOC samples according to MS data obtained in positive and negative ion mode. After MOC was processed with ginger juice, the peak areas of most phenolics increased, while the peak areas of most phenylethanoid glycosides decreased; as for neolignans, oxyneolignans, other lignans and alkaloids, changes in the peak area were variable, and the peak areas of terpenoid-lignans varied little. Additionally, gingerols and diarylheptanoids were only detected in the processed MOC sample. The contents of syringin, magnoloside A, and magnoloside B decreased significantly in the processed MOC sample while no significant difference was observed in the contents of magnoflorine, magnocurarine, honokiol, obovatol, and magnolol. This study comprehensively explored the content variation of chemical components in processed and unprocessed MOC samples derived from different regions and with different tree ages using UPLC and UHPLC-Q-Orbitrap HRMS, and summarized the variation characteristics of various compounds. The results provide a data foundation for further research on pharmacodynamic substances of MOC processed with ginger juice.


Subject(s)
Zingiber officinale , Trees , Chromatography, High Pressure Liquid/methods , Alkaloids , Lignans/analysis
10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981513

ABSTRACT

The weight coefficients of appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol were determined by analytic hierarchy process(AHP), criteria importance though intercrieria correlation(CRITIC), and AHP-CRITIC weighting method, and the comprehensive scores were calculated. The effects of ginger juice dosage, moistening time, proces-sing temperature, and processing time on the quality of Magnoliae Officinalis Cortex(MOC) were investigated, and Box-Behnken design was employed to optimize the process parameters. To reveal the processing mechanism, MOC, ginger juice-processed Magnoliae Officinalis Cortex(GMOC), and water-processed Magnoliae Officinalis Cortex(WMOC) were compared. The results showed that the weight coefficients of the appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol determined by AHP-CRITIC weighting method were 0.134, 0.287, and 0.579, respectively. The optimal processing parameters of GMOC were ginger juice dosage of 8%, moistening time of 120 min, and processing at 100 ℃ for 7 min. The content of syringoside and magnolflorine in MOC decreased after processing, and the content of honokiol and magnolol followed the trend of GMOC>MOC>WMOC, which suggested that the change in clinical efficacy of MOC after processing was associated with the changes of chemical composition. The optimized processing technology is stable and feasible and provides references for the modern production and processing of MOC.


Subject(s)
Zingiber officinale , Magnolia/chemistry , Drugs, Chinese Herbal/chemistry , Biphenyl Compounds/chemistry , Lignans/chemistry
11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-964949

ABSTRACT

By reviewing ancient materia medica and combining with modern literature, the textual research of Magnoliae Flos has been conducted to verify the name, origin, producing area, harvesting and processing methods, in order to provide basis for the selection and use of this herb in the development of famous classical formulas. After the textual research, it could be seen that the correct name of Magnoliae Flos was Xinyi in the past dynasties, meaning spicy flower buds. The main original plants used in past dynasties are Magnolia denudata and M. biondii. The history of the research on its scientific name in recent times is complicated, many foreign scholars have given several different scientific names, but most of them are inconsistent with the actual situation of Magnoliae Flos used in ancient China, because foreign scholars failed to collect the original plants of Magnoliae Flos for accurate identification. Before the Ming dynasty, Magnoliae Flos was mainly produced in Shaanxi, and then the recorded production areas gradually increased. After the founding of the People's Republic of China, the products produced in Henan named M. biondii were highly respected, and Henan was regarded as authentic producing area, and because of the collection and distribution through Yuzhou, it was customarily called Huichunhua. In ancient times, the harvesting period of Magnoliae Flos mostly concentrated in the first and second months of the lunar calendar, and the flower buds of M. biondii were also recommended to be used as medicine, but nowadays the flower buds are mostly collected in winter and spring, and those with dry buds, large size, yellow-green color, tight inner petals, fragrant smell, and no impurities are preferred. In the past dynasties, raw products were the mainstream, and there were also frying, soaking and so on. Based on the results, it is suggested that the flower buds of M. biondii should be used in the development of famous classical formulas. If the original formula does not specify the processing requirements, the raw products can be used as medicine.

12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-989690

ABSTRACT

Objective:To screen the optimal process of ambi-extracting of Xinyi Powder and inclusion of volatile oil.Methods:Single factor experiment was used to optimize the extraction process of Xinyi Powder by taking crushing particle size, extraction times, the amount of water added and extraction time as the investigation factors. L 9(3 4) orthogonal test was used to optimize the inclusion process of volatile oil in Xinyi Powder. Results:The optimal extraction process of ambi-extracting of Xinyi Powder was as follows: the slices were not crushed, 10 times the amount of water was added, and extracted for 3 hours; the best inclusion process of volatile oil as follows: β-cyclodextrin:water=1:25, β-cyclodextrin:volatile oil=6:1, inclusion temperature 35 ℃, inclusion time 3 hours.Conclusion:The ambi-extracting process and volatile oil inclusion process are simple, stable and feasible.

13.
Molecules ; 27(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35745013

ABSTRACT

Magnolia officinalis Rehd. et Wils. and Magnolia officinalis Rehd. et Wils. var. biloba Rehd. et Wils, as the legal botanical origins of Magnoliae Officinalis Cortex, are almost impossible to distinguish according to their appearance traits with respect to medicinal bark. The application of AFLP molecular markers for differentiating the two origins has not yet been successful. In this study, a combination of e-nose measurements, e-tongue measurements, and chemical analyses coupled with multiple-source data fusion was used to differentiate the two origins. Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) were applied to compare the discrimination results. It was shown that the e-nose system presented a good discriminant ability with a low classification error for both LDA and QDA compared with e-tongue measurements and chemical analyses. In addition, the discriminating capacity of LDA for low-level fusion with original data, similar to a combined system, was superior or equal to that acquired individually with the three approaches. For mid-level fusion, the combination of different principals extracted by PCA and variables obtained on the basis of PLS-VIP exhibited an analogous discrimination ability for LDA (classification error 0.0%) and was significantly superior to QDA (classification error 1.67-3.33%). As a result, the combined e-nose, e-tongue, and chemical analysis approach proved to be a powerful tool for differentiating the two origins of Magnoliae Officinalis Cortex.


Subject(s)
Magnolia , Amplified Fragment Length Polymorphism Analysis , Chromatography, Gas , Electronic Nose , Magnolia/chemistry , Tongue
14.
Phytochem Anal ; 33(5): 722-734, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35318753

ABSTRACT

INTRODUCTION: Magnoliae officinalis cortex (MOC), a traditional Chinese medicine, has been used in treating gastrointestinal diseases since ancient time. According to the Chinese Pharmacopoeia, it includes two kinds of decoction pieces, raw and ginger juice processed Magnoliae officinalis cortex (RMOC and GMOC). OBJECTIVE: The aim of this paper was to study the differences between non-volatile and volatile components in RMOC and GMOC. METHODS: The non-volatile components were detected by HPLC fingerprinting coupled with content determination (syringin, magnoflorine, honokiol and magnolol). Meanwhile, their odor information was obtained using a Heracles NEO ultra-fast gas phase electronic nose to conduct radar fingerprint analysis, principal component analysis and discriminant factor analysis, and the volatile components were analyzed qualitatively by the Kovats retention index and the AroChemBase database. RESULTS: The HPLC fingerprints were established and 20 common peaks were found in all chromatograms with similarity values of more than 0.900. The content determination results showed that the contents of syringin and magnoflorine decreased, while the contents of honokiol and magnolol increased in GMOC. By the gas phase electronic nose, the two decoction pieces could be distinguished obviously and 16 possible compounds were identified. Among them, the relative contents of (-)-α-pinene and ß-pinene increased, while ß-phellandrene and (+)-limonene levels decreased. CONCLUSION: The results suggested that honokiol, magnolol, (-)-α-pinene and ß-pinene might be the main substances which could enhance the harmonizing effect on the stomach. Moreover, this paper could lay a foundation for exploring the processing mechanism of MOC and provide a novel method for the research of other traditional Chinese medicine with strong aroma.


Subject(s)
Drugs, Chinese Herbal , Lignans , Magnolia , Zingiber officinale , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Electronic Nose , Lignans/analysis
15.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1262-1272, 2022 Mar.
Article in Chinese | MEDLINE | ID: mdl-35343153

ABSTRACT

In this study, we employed Q Exactive to determine the main differential metabolites of Magnoliae Officinalis Cortex du-ring the "sweating" process. Further, we quantified the color parameters and determined the activities of polyphenol oxidase(PPO), peroxidase(POD), and tyrosinase of Magnoliae Officinalis Cortex during the "sweating" process. Gray correlation analysis was performed for the color, chemical composition, and enzyme activity to reveal the effect of enzymatic reaction on the color of Magnoliae Officinalis Cortex during the "sweating" process. Magnoliae Officinalis Cortex sweating in different manners showed similar metabolite changes. The primary metabolites that changed significantly included amino acids, nucleotides, and sugars, and the secondary metabolites with significant changes were phenols and phenylpropanoids. Despite the different sweating methods, eleven compounds were commonly up-regulated, including L-glutamic acid, acetylarginine, hypoxanthine, and xanthine; six compounds were commonly down-re-gulated, including L-arginine, L-aspartic acid, and phenylalanine. The brightness value(L~*), red-green value(a~*), and yellow-blue value(b~*) of Magnoliae Officinalis Cortex kept decreasing during the "sweating" process. The changes in the activities of PPO and POD during sweating were consistent with those in the color parameter values. The gray correlation analysis demonstrated that the main differential metabolites such as amino acids and phenols were closely related to the color parameters L~*, a~* and b~*; POD was correlated with amino acids and phenols; PPO had strong correlation with phenols. The results indicated that the color change of Magnoliae Officinalis Cortex during "sweating" was closely related to the reactions of enzymes dominated by PPO and POD. The study analyzed the correlations among the main differential metabolites, color parameters, and enzyme activities of Magnoliae Officinalis Cortex in the "sweating" process. It reveals the common law of material changes and ascertains the relationship between color changes and enzymatic reactions of Magnoliae Officinalis Cortex during "sweating". Therefore, this study provides a reference for studying the "sweating" mechanism of Magnoliae Officinalis Cortex and is of great significance to guarantee the quality of Magnoliae Officinalis Cortex.


Subject(s)
Magnolia , Magnolia/chemistry , Quality Control , Sweating
16.
Phytomedicine ; 98: 153957, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35121393

ABSTRACT

BACKGROUND: The quality of traditional Chinese medicines (TCMs) has been closely related to their growth regions. The geo-herbalism of TCMs is just like the protected destination of origin on foodstuffs and wines, telling us the specific geographic regions could yield TCMs with superior quality. However, the impact of habitat on TCMs could hardly been indicated in current quality evaluation, defects were as follows: (1) few studies involved the effect of environmental factors, (2) more attentions were paid to several abundant compounds, while global components especially water-soluble compounds were prone to be ignored. PURPOSE: A new integrated metabolomics analysis based on global and water-soluble components was proposed aiming to explore habitat-related chemomarkers for TCMs combined with correlation analysis to environmental factors. The geo-herbalism of Magnoliae officinalis cortex (MOC) was studied as an example. METHODS: Multi-metabolomics approach based on UPLC/Q-TOF-MS and GC-MS combined with LC-2ECD were employed to analyze global components and accurately quantified water-soluble compounds, respectively. Meanwhile, decision tree, partial least squares discriminant analysis (PLS-DA) as well as hierarchical clustering analysis (HCA) heat map was applied to classify different samples and explore habitat-related chemomarkers. In addition, support vector machines model was used to verify the importance of screened out chemomarkers in predicting sample classification, and the impact of environmental factors on the markers were also demonstrated by correlation analysis. RESULTS: By analyzing 148 batches of MOC samples from 21 habitats, 238 variables were picked and 84 of them were identified by UNIFI, meanwhile, seven water-soluble compounds were accurately quantified. Among them, thirteen markers including Var.1, magnolignan E, magnoloside N isomer, α-agarofuran, γ-eudesmol, ß-eudesmol, magnolosides A, B, D, F, H, L and M were suggested importance in grouping Chuan-po and the other MOC samples. Support vector machines model also indicated well prediction performance with an accuracy of 96.97%. Most markers belong to water-soluble compounds and temperature and precipitation contributed to such chemical differences. CONCLUSIONS: The proposed strategy based on multi-metabolomics analysis could aid exploration of habitat-related chemomarkers for TCMs. Meanwhile, the screened out water-soluble compounds could perform equivalent functions in recognition of Daodi medicinal materials (DMMs) and non-DMM samples compared to the global components to some extent.

17.
BMC Genom Data ; 23(1): 15, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35176999

ABSTRACT

BACKGROUND: Administration of Magnoliae Cortex (MC) could induce remission of cisplatin-induced sarcopenia in mice, however, whether it is effective on sarcopenia patients and the underlying mechanisms remain unclear. METHODS: Sarcopenia related differentially expressed genes were analysed based on three Gene Expression Omnibus (GEO) transcriptome profiling datasets, which was merged and de duplicated with disease databases to obtain sarcopenia related pathogenic genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were than performed to analyse the role of proteins encoded by sarcopenia related pathogenic genes and the signal regulatory pathways involved in. The main active components and target proteins of MC were obtained by searching traditional Chinese medicine network databases (TCMSP and BATMAN-TCM). MC and sarcopenia related pathogenic genes shared target proteins were identified by matching the two. A protein-protein interaction network was constructed subsequently, and the core proteins were filtered according to the topological structure. GO and KEGG analysis were performed again to analyse the key target proteins and pathways of MC in the treatment of sarcopenia, and build the herbs-components-targets network, as well as core targets-signal pathways network. Molecular docking technology was used to verify the main compounds-targets. RESULTS: Sarcopenia related gene products primarily involve in aging and inflammation related signal pathways. Seven main active components (Anonaine, Eucalyptol, Neohesperidin, Obovatol, Honokiol, Magnolol, and beta-Eudesmol) and 26 target proteins of MC-sarcopenia, of which 4 were core proteins (AKT1, EGFR, INS, and PIK3CA), were identified. The therapeutic effect of MC on sarcopenia may associate with PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor resistance, longevity regulating pathway, and other cellular and innate immune signaling pathways. CONCLUSION: MC contains potential anti-sarcopenia active compounds. These compounds play a role by regulating the proteins implicated in regulating aging and inflammation related signaling pathways, which are crucial in pathogenesis of sarcopenia. Our study provides new insights into the development of a natural therapy for the prevention and treatment of sarcopenia.


Subject(s)
Drugs, Chinese Herbal , Sarcopenia , Animals , Drugs, Chinese Herbal/pharmacology , Humans , Inflammation , Mice , Molecular Docking Simulation , Network Pharmacology , Sarcopenia/drug therapy
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-954483

ABSTRACT

Objective:To study the HPLC fingerprints of Coptidis Rhizoma- Magnoliae Officmalis Cortex formula granules and the differences of active ingredients in different proportions; To explore the content changes of key components in different proportions of Coptidis Rhizoma- Magnoliae Officmalis Cortex. Methods:HPLC was used to determine the contents of several alkaloids and total phenol of Magnolia officinalis in Coptidis Rhizoma- Magnoliae Officmalis Cortex formula granules and their fingerprints, and the similarity evaluation, cluster analysis and principal component analysis were performed. Results:The similarity of fingerprint of 10 batches of Coptidis Rhizoma- Magnoliae Officmalis Cortex was > 0.950. 17 common peaks were identified, and 6 components were identified. Compared with single medicine, the contents of alkaloids and total phenols in the Coptidis Rhizoma- Magnoliae Officmalis Cortex formula granules were significantly reduced. The contents of multiple alkaloids and total phenols in the Coptidis Rhizoma- Magnoliae Officmalis Cortex formula granules in different proportions were different, and the contents of alkaloids and total phenols were the highest when the proportion of Coptidis Rhizoma- Magnoliae Officmalis Cortex was 2∶1. Conclusion:The contents of main components of Coptidis Rhizoma- Magnoliae Officmalis Cortex formula granules with different proportions are different, which can provide a certain basis for studying the compatibility mechanism of TCM couplet medicines.

19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940340

ABSTRACT

Based on the ancient literature of all dynasties, this article makes a systematic textual research on the name, origin, producing area, quality, harvesting and processing of Magnoliae Officinalis Cortex used in the famous classical formulas, and clarifies its information of each link in different historical periods, so as to provide a reference and basis for the development and utilization of the related formulas. The results showed that the main varieties of Magnoliae Officinalis Cortex were Magnolia officinalis or M. officinalis var. biloba. The main production areas are Hubei, Sichuan, Chongqing and other places, forming the famous authentic medicine. The processing methods of the past dynasties are mainly cleansing and processing with ginger. In the formulas clearly marked with ginger processing, ginger-processed products is suggested to choose. If not clearly marked, raw or ginger-processed products can be used as needed.

20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-928051

ABSTRACT

In this study, we employed Q Exactive to determine the main differential metabolites of Magnoliae Officinalis Cortex du-ring the "sweating" process. Further, we quantified the color parameters and determined the activities of polyphenol oxidase(PPO), peroxidase(POD), and tyrosinase of Magnoliae Officinalis Cortex during the "sweating" process. Gray correlation analysis was performed for the color, chemical composition, and enzyme activity to reveal the effect of enzymatic reaction on the color of Magnoliae Officinalis Cortex during the "sweating" process. Magnoliae Officinalis Cortex sweating in different manners showed similar metabolite changes. The primary metabolites that changed significantly included amino acids, nucleotides, and sugars, and the secondary metabolites with significant changes were phenols and phenylpropanoids. Despite the different sweating methods, eleven compounds were commonly up-regulated, including L-glutamic acid, acetylarginine, hypoxanthine, and xanthine; six compounds were commonly down-re-gulated, including L-arginine, L-aspartic acid, and phenylalanine. The brightness value(L~*), red-green value(a~*), and yellow-blue value(b~*) of Magnoliae Officinalis Cortex kept decreasing during the "sweating" process. The changes in the activities of PPO and POD during sweating were consistent with those in the color parameter values. The gray correlation analysis demonstrated that the main differential metabolites such as amino acids and phenols were closely related to the color parameters L~*, a~* and b~*; POD was correlated with amino acids and phenols; PPO had strong correlation with phenols. The results indicated that the color change of Magnoliae Officinalis Cortex during "sweating" was closely related to the reactions of enzymes dominated by PPO and POD. The study analyzed the correlations among the main differential metabolites, color parameters, and enzyme activities of Magnoliae Officinalis Cortex in the "sweating" process. It reveals the common law of material changes and ascertains the relationship between color changes and enzymatic reactions of Magnoliae Officinalis Cortex during "sweating". Therefore, this study provides a reference for studying the "sweating" mechanism of Magnoliae Officinalis Cortex and is of great significance to guarantee the quality of Magnoliae Officinalis Cortex.


Subject(s)
Magnolia/chemistry , Quality Control , Sweating
SELECTION OF CITATIONS
SEARCH DETAIL
...