Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.324
Filter
1.
Hum Vaccin Immunother ; 20(1): 2373521, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39007904

ABSTRACT

Influenza remains a serious global health concern, causing significant morbidity and mortality each year. Vaccination is crucial to mitigate its impact, but requires rapid and efficient manufacturing strategies to handle timing and supply. Traditionally relying on egg-based production, the field has witnessed a paradigm shift toward cell culture-based methods offering enhanced flexibility, scalability, and process safety. This review provides a concise overview of available cell substrates and technological advancements. We summarize crucial steps toward process intensification - from roller bottle production to dynamic cultures on carriers and from suspension cultures in batch mode to high cell density perfusion using various cell retention devices. Moreover, we compare single-use and conventional systems and address challenges including defective interfering particles. Taken together, we describe the current state-of-the-art in cell culture-based influenza virus production to sustainably meet vaccine demands, guarantee a timely supply, and keep up with the challenges of seasonal epidemics and global pandemics.


Subject(s)
Cell Culture Techniques , Influenza Vaccines , Influenza Vaccines/immunology , Humans , Cell Culture Techniques/methods , Animals , Influenza, Human/prevention & control , Virus Cultivation/methods , Cell Count
2.
Article in English | MEDLINE | ID: mdl-39023729

ABSTRACT

There is a growing emphasis on fostering green growth and lowering carbon emissions in order to achieve sustainable economic development. This study uses the Tapio decoupling model and analyzes the factors influencing changes in carbon emissions from manufacturing in India utilizing the log mean Divisia index (LMDI) techniques. Furthermore, the nexus between carbon emission intensity, information and communication technology (ICT), total factor productivity (TFP), skill, and energy intensity has been analyzed using the system-GMM approach. It is based on the plant-level Annual Survey of Industries (ASI) datasets for the organized manufacturing sector of India from 2001 to 2002 to 2019 2020 for the major 21 Indian states/UT. The findings reflect the presence of weak decoupling in the manufacturing sector both at the aggregate level and in states. This indicates that both output and emissions are increasing; however, output growth surpasses emission growth, which signifies an effort to transition towards more environmentally friendly production methods and enhanced energy efficiency. The output and population effect are found to be leading factors in carbon emissions, while energy intensity is found to be reducing the effect. Further, the system-GMM estimates show that ICT and energy intensity positively affect total factor productivity, while with an increase in carbon emission intensity, productivity declines. The study confirms the existence of an inverted N-shaped Kuznets curve in the sector. This present study will contribute to formulating energy and environmental strategies to reduce emissions and promote adopting cleaner energy sources. These efforts will facilitate the attainment of carbon neutrality and enhance energy efficiency within the sector.

3.
Data Brief ; 55: 110614, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39015254

ABSTRACT

Battery technology is increasingly important for global electrification efforts. However, batteries are highly sensitive to small manufacturing variations that can induce reliability or safety issues. An important technology for battery quality control is computed tomography (CT) scanning, which is widely used for non-destructive 3D inspection across a variety of clinical and industrial applications. Historically, however, the utility of CT scanning for high-volume manufacturing has been limited by its low throughput as well as the difficulty of handling its large file sizes. In this work, we present a dataset of over one thousand CT scans of as-produced commercially available batteries. The dataset spans various chemistries (lithium-ion and sodium-ion) as well as various battery form factors (cylindrical, pouch, and prismatic). We evaluate seven different battery types in total. The manufacturing variability and the presence of battery defects can be observed via this dataset. This dataset may be of interest to scientists and engineers working on battery technology, computer vision, or both.

4.
Mol Ther Methods Clin Dev ; 32(3): 101280, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39015407

ABSTRACT

Adeno-associated virus (AAV) vectors have become the leading platform for gene delivery in both preclinical research and therapeutic applications, making the production of high-titer AAV preparations essential. To date, most AAV-based studies use constitutive promoters (e.g., CMV, CAG), which are also active in human embryonic kidney (HEK)-293 producer cells, thus leading to the expression of the transgene already during production. Depending on the transgene's function, this might negatively impact producer cell performance and result in decreased AAV vector yields. Here, we evaluated a panel of diverse microRNA (miRNA)-based shRNA designs to identify a highly potent artificial miRNA for the transient suppression of transgenes during AAV production. Our results demonstrate that insertion of miRNA target sites into the 3' UTR of the transgene and simultaneous expression of the corresponding miRNA from the 3' UTR of conventional AAV production plasmids (rep/cap, pHelper) enabled efficient silencing of toxic transgene expression, thereby increasing AAV vector yields up to 240-fold. This strategy not only allows to maintain the traditional triple-transfection protocol, but also represents a universally applicable approach to suppress toxic transgenes, thereby boosting vector yields with so far unprecedented efficiency.

5.
Article in English | MEDLINE | ID: mdl-39018172

ABSTRACT

Customizing the engineering targeted thermal deformations is of vital significance for dimensional stability or shape morphing in materials and structures. However, current metamaterials are designed solely in the homogeneous form to respond only to the time-variant temperature (TVT) stimuli, far behind the practical engineering scenario and demands. Here, a new strategy is originally proposed and experimentally verified to design a series of both homogeneous and inhomogeneous multimaterial metamaterials, which uniquely output various thermal deformation modes, responding to time-variant and space-variant temperature (SVT) stimuli. Specifically, in addition to the regular isotropic thermal deformations, the metamaterials could exclusively output the entirely different positive and negative thermal deformations along the two orthotropic directions. Besides, stimulated by both TVT and SVT, the metamaterials provide more flexibility to customize the targeted thermal deformations. That is, the uniform thermal deformations could be well customized by the metamaterials stimulated by either TVT or SVT. More importantly, the customizability is remarkably broadened, as the nonuniform, specifically, mathematicized linear and nonlinear thermal deformations, are elaborately customized. Overall, these originally devised metamaterials open a new avenue for the purpose of customizing the engineering targeted thermal deformations in various modes under both TVT and SVT stimuli.

6.
Sci Rep ; 14(1): 16275, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009739

ABSTRACT

This study presented a comprehensive computational fluid dynamics-based model for fused filament fabrication (FFF) three-dimensional (3D) printing multiphase and multiphysics coupling. A model based on the framework of computational fluid dynamics was built, utilizing the front-tracking method for high precision of multiphase material interfaces, a fully resolved simulation at the mesoscale explores the underlying physical mechanism of the self-supported horizontal printing. The study investigated the influence of printing temperature and velocity on the FFF process, exhibiting a certain self-supporting forming ability over a specific range. The results indicated that during the printing of large-span horizontal extension structures, the bridge deck material transitions from initial straight extension to sagging deformation, ultimately adopting a curved shape. The straight extension distance is inversely proportional to the depth of the sagging deformation. Additionally, the study revealed that printing temperature primarily affected the curing time of the molten material, while printing velocity fundamentally affected the relaxation time of both thermal and dynamic characteristics of the material.

7.
Heliyon ; 10(12): e32715, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38952385

ABSTRACT

This review paper covers an analysis of the empirical calculations, additive manufacturing (AM) and hydrogen storage of refractory high-entropy alloys undertaken to determine the structural compositions, particularly focusing on their applicability in research and experimental settings. The inventors of multi-component high-entropy alloys (HEAs) calculated that trillions of materials could be manufactured from elements in the periodic table, estimating a vast number, N = 10^100, using Stirling's approximation. The significant contribution of semi-empirical parameters such as Gibbs free energy ΔG, enthalpy of mixing ΔH mix , entropy of mixing ΔS mix , atomic size difference Δδ, valence electron concentration VEC, and electronegativity difference Δχ are to predict BCC and/or FCC phases in HEAs. Additive manufacturing facilitates the determination of refractory HEAs systems with the most stable solid-solution and single-phase, and their subsequent hydrogen storage capabilities. Hydride materials, especially those from HEAs manufactured by AM as bulk and solid materials, have great potential for H2 storage, with storage capacities that can be as high as 1.81 wt% of H2 adsorbed for a ZrTiVCrFeNi system. Furthermore, laser metal deposition (LMD) is the most commonly employed technique for fabricating refractory high entropy alloys, surpassing other methods in usage, thus making it particularly suitable for H2 storage.

9.
Heliyon ; 10(11): e32161, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947488

ABSTRACT

Additive manufacturing (AM) has gained significant attention in recent years owing to its ability to fabricate intricate shapes and structures that are often challenging or unattainable using conventional manufacturing techniques. This high-quality development trend entails higher requirements for the structural design of 3D printers. In this study, polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) filaments were fed through a heated extrusion nozzle, which melted the material and deposited it onto a build platform. This study's objectives are high-gravitational material extrusion (HG-MEX) systems development, analyzing the high gravity influences on the flow behavior of materials during extrusion, and understanding the effects of gravitational on material flow and overall extrusion performance. HG-MEX systems have great potential for addressing various challenges in additive manufacturing, such as precise manufacturing. The highlight of the progress is that we developed an HG-MEX system and applied surface science to material extrusion in different gravity. We established a system and obtained results on different gravity, we analyzed the analogy between different gravity phenomena. We analyzed the interplay between the behavior of the fabricated parts and gravity. We analyzed high gravity effects on extrusion processes. The results confirmed the characteristics and feasibility of the developed system. The results suggest that a material extrusion line operating under 15 G conditions resulted in better printing quality compared to one operating under 1 G conditions. This observation implies that high gravity had a positive effect on the extrusion process, leading to improved material extrusion performance.

10.
Mol Ther Nucleic Acids ; 35(2): 102223, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38948330

ABSTRACT

The development of messenger RNA (mRNA) vaccines and therapeutics necessitates the production of high-quality in vitro-transcribed mRNA drug substance with specific critical quality attributes (CQAs), which are closely tied to the uniformity of linear DNA template. The supercoiled plasmid DNA is the precursor to the linear DNA template, and the supercoiled DNA percentage is commonly regarded as a key in-process control (IPC) during the manufacturing of linear DNA template. In this study, we investigate the influence of supercoiled DNA percentage on key mRNA CQAs, including purity, capping efficiency, double-stranded RNA (dsRNA), and distribution of poly(A) tail. Our findings reveal a significant impact of supercoiled DNA percentage on mRNA purity and in vitro transcription yield. Notably, we observe that the impact on mRNA purity can be mitigated through oligo-dT chromatography, alleviating the tight range of DNA supercoiled percentage to some extent. Overall, this study provides valuable insights into IPC strategies for DNA template chemistry, manufacturing, and controls (CMC) and process development for mRNA drug substance.

11.
MAbs ; 16(1): 2373330, 2024.
Article in English | MEDLINE | ID: mdl-38946434

ABSTRACT

Therapeutic monoclonal antibody (mAb) development and the processes for manufacturing drug substance have evolved since the first approval of the mAb in 1986. As the past is often the prologue to the future, the history of these technologies has been classified here into three eras, leading to speculation about what the next era may hold with regard to development and manufacturing strategies, as well as the potential impacts to patients. The substantial increase in production culture titers and bioreactor production volumes and the availability of large-scale contract manufacturing facilities could translate into improved global access for these therapies and an expansion of indications for therapeutic antibodies.


Subject(s)
Antibodies, Monoclonal , Animals , Humans , Antibodies, Monoclonal/therapeutic use , Bioreactors , Drug Development/methods , History, 20th Century , History, 21st Century
12.
Sci Rep ; 14(1): 14998, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951136

ABSTRACT

Herein, additive manufacturing, which is extremely promising in different sectors, has been adopted in the electrical energy storage field to fabricate efficient materials for supercapacitor applications. In particular, Al2O3-, steel-, and Cu-based microparticles have been used for the realization of 3D self-assembling materials covered with reduced graphene oxide to be processed through additive manufacturing. Functionalization of the particles with amino groups and a subsequent "self-assembly" step with graphene oxide, which was contextually partially reduced to rGO, was carried out. To further improve the electrical conductivity and AM processability, the composites were coated with a polyaniline-dodecylbenzene sulfonic acid complex and further blended with PLA. Afterward, they were extruded in the form of filaments, printed through the fused deposition modeling technique, and assembled into symmetrical solid-state devices. Electrochemical tests showed a maximum mass capacitance of 163 F/g, a maximum energy density of 15 Wh/Kg at 10 A/g, as well as good durability (85% capacitance retention within 5000 cycles) proving the effectiveness of the preparation and the efficiency of the as-manufactured composites.

13.
Sci Rep ; 14(1): 15017, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951557

ABSTRACT

In recent years, clear aligner can enhance individual appearance with dental defects, so it used more and more widely. However, in manufacturing process, there are still some problems, such as low degree of automation and high equipment cost. The problem of coordinate system mismatch between gingival curve point cloud and dental CAD model is faced to. The PCA-ICP registration algorithm is proposed, which includes coarse match algorithm and improve-ICP registration algorithm. The principal component analysis (PCA) based method can roughly find the posture relationship between the two point clouds. Using z-level dynamic hierarchical, the ICP registration can accurately find the posture between these two clouds. The final registration maximum distance error is 0.03 mm, which is smaller than robot machining error. Secondly, the clear aligner machining process is conducted to verify the registration effectiveness. Before machining, the path is generated based on the well registered gingival curve. After full registration, the tool path is calculated by establishing a local coordinate system between the workpiece and the tool to avoid interference. This path is calculated and generated as an executable program for ABB industrial robots. Finally, the robot was used for flexible cutting of clear aligners and was able to extract products, ensuring the effectiveness of the proposed research. This method can effectively solve the limitations of traditional milling path planning under such complex conditions.

14.
Biomed Mater ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38986475

ABSTRACT

Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt. %) were modified with 1%, 5%, and 10 wt. % of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 µm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.

15.
J Law Biosci ; 11(2): lsae012, 2024.
Article in English | MEDLINE | ID: mdl-38989053

ABSTRACT

Bedside manufacturing is having a revival in healthcare, with a promise to revolutionize personalized medicine through on-site drug production. While this concept holds considerable promise, it also encounters a complex web of legal uncertainties. The current regulatory framework in Switzerland and the EU, which includes the Swiss Therapeutic Products Act and the EU directives, regulations, and guidelines, fails to adequately address its distinct challenges. Rising new technologies underscore the urgent need for regulatory reform. These technologies highlight the pressing demand for comprehensive legal frameworks that can reconcile the rapid pace of innovation with the imperatives of patient safety and product efficacy. Legal concerns extend beyond mere compliance; they encapsulate quality assurance, and liability in cases of human error. This study outlines the call for a recalibrated legal landscape that prioritizes patient-centered care while fostering the growth of bedside manufacturing. It is crucial for the legal system to evolve in tandem with these medical advancements, ensuring a secure, efficacious, and equitable integration of bedside manufacturing into healthcare.

16.
Article in English | MEDLINE | ID: mdl-38989676

ABSTRACT

BACKGROUND: There is limited knowledge on the fabrication trueness and fit of additively or subtractively manufactured complete-arch implant-supported frameworks in recently introduced polymers. PURPOSE: To evaluate the trueness and marginal fit of additively or subtractively manufactured polymer-based complete-arch implant-supported frameworks, comparing with those of strength gradient zirconia frameworks. MATERIALS AND METHODS: A typodont model with 4 implants (left first molar (abutment 1), left canine (abutment 2), right canine (abutment 3), and right first molar (abutment 4)) was digitized (ATOS Core 80 5MP) and an implant-supported complete-arch framework was designed. This design file was used to fabricate frameworks from 5 different materials: strength gradient zirconia (SM-ZR), high impact polymer composite (SM-CR), nanographene-reinforced PMMA (SM-GR), PMMA (SM-PM), and additively manufactured temporary resin (AM) (n = 10). These frameworks were digitized and each scan file was virtually segmented into 4 regions (abutments, occlusal, overall without occlusal, and overall). The surface deviations at these regions, and linear and interimplant distance deviations were evaluated (Geomagic Control X). Marginal gaps were evaluated according to triple-scan protocol after seating frameworks on the model with the 1-screw test. Data were statistically analyzed (α = 0.05). RESULTS: Surface deviations of all regions differed among tested materials (p ≤ 0.001). AM frameworks mostly had surface deviations that were similar to or lower than those of other materials (p ≤ 0.031), except for the occlusal surface, where it mostly had higher deviations (p ≤ 0.013). Abutment 4 of SM-CR had higher linear deviations than abutment 2 (p = 0.025), and material type did not affect the linear deviations within abutments (p ≥ 0.171). Interimplant distance deviations differed within and among materials (p ≤ 0.017), except for those between abutments 1 and 2 among materials (p = 0.387). Marginal gaps of subtractively manufactured materials differed among abutments, while those of abutments 3 and 4 differed among materials (p ≤ 0.003). AM frameworks mostly had lower marginal gaps at abutments 3 and 4 (p ≤ 0.048). CONCLUSIONS: Although there was no clear trend among tested materials for measured deviations, marginal gaps of additively manufactured resin were mostly lower than those of subtractively manufactured materials and did not differ among abutment sites. Nevertheless, the differences in measured deviations among materials were small and marginal gaps were within the previously reported acceptability thresholds.

17.
Pharm Dev Technol ; : 1-7, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38995216

ABSTRACT

The appearance of an extrudate formulation was monitored during hot-melt extrusion (HME) continuous manufacturing over 3 days. The formulation matrix consisted of a polymeric component, copovidone, and a low molecular weight surfactant, polysorbate 80. Based on studies prior to the continuous manufacturing, the desired appearance of the target extrudate is translucent. Although process parameters such as feed rate and screw speed were fixed during the continuous manufacturing, the extrudate appearance changed over time from turbid to translucent. For root-cause investigation, the extrudates were analyzed offline by differential scanning calorimetry (DSC) and advanced polymer chromatography (APC™). Although the polysorbate 80 content of both turbid and translucent extrudates was within target, the glass transition temperature of the turbid extrudate was 2 °C above expected value. The observed turbidity was traced to lot-to-lot variability of the polysorbate 80 used in the continuous manufacturing, where APC™ analysis revealed that the relative content of the low molecular weight component varied from 23% to 27% in correlation with the evolution from turbid to translucent extrudates. This work stresses the importance of taking feeding material variability into account during continuous manufacturing.

18.
J Prosthodont ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992883

ABSTRACT

PURPOSE: This systematic review and meta-analysis aimed to evaluate the depth distortion and angular deviation of fully-guided tooth-supported static surgical guides (FTSG) in partially edentulous arches compared to partially guided surgical guides or freehand. MATERIAL AND METHODS: This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and was registered in the Open Science Framework (OSF). The formulated population, intervention, comparison, and outcome (PICO) question was: "In partially edentulous arches, what are the depth distortion and angular deviation of FTSG compared to partially guided surgical guides or freehand?" The search strategy involved four main electronic databases, and an additional manual search was completed in November 2023 by following an established search strategy. Initial inclusion was based on titles and abstracts, followed by a detailed review of selected studies, and clinical studies that evaluated the angular deviations or depth distortion in FTSG in partial arches, compared to partially guided surgical guides or freehand, were included. In FTSG, two surgical approaches were compared: open flap and flapless techniques, and two digital methods were assessed for surgical guide design with fiducial markers or dental surfaces. A qualitative analysis for clinical studies was used to assess the risk of bias. The certainty of the evidence was assessed according to the grading of recommendations, assessment, development, and evaluations (GRADE) system. In addition, a single-arm meta-analysis of proportion was performed to evaluate the angular deviation of freehand and FTSG. RESULTS: Ten studies, published between 2018 and 2023, met the eligibility criteria. Among them, 10 studies reported angular deviations ranging from -0.32° to 4.96° for FTSG. Regarding FTSG surgical approaches, seven studies examined the open flap technique for FTSG, reporting mean angular deviations ranging from 2.03° to 4.23°, and four studies evaluated flapless FTSG, reporting angular deviations ranging from -0.32° to 3.38°. Six studies assessed the freehand surgical approach, reporting angular deviations ranging from 1.40° to 7.36°. The mean depth distortion ranged between 0.19 mm to 2.05 mm for open flap FTSG, and between 0.15 mm to 0.45 mm for flapless FTSG. For partially guided surgical guides, two studies reported angular deviations ranging from 0.59° to 3.44°. Seven studies were eligible for meta-analysis, focusing on the FTSG in open flap technique, with high heterogeneity (I2 (95%CI) = 92.3% (88.7%-96.4%)). In contrast, heterogeneity was low in studies comparing freehand versus FTSG in open flap techniques (I2 (95%CI) = 21.3% (0.0%-67.8%)), favoring the FTSG surgical approach. CONCLUSION: In partially edentulous arches, FTSG systems exhibited less angular deviation than freehand and partially guided surgical guides. Flapless surgical approaches were associated with reduced angular deviation and depth distortion, suggesting a potential preference for the FTSG method in these procedures.

19.
Article in English | MEDLINE | ID: mdl-38993098

ABSTRACT

INTRODUCTION: 3D Printing (3DP) is an innovative fabrication technology that has gained enormous popularity through its paradigm shifts in manufacturing in several disciplines, including healthcare. In this past decade, we have witnessed the impact of 3DP in drug product development. Almost eight years after the first USFDA approval of the 3D printed tablet Levetiracetam (Spritam), the interest in 3DP for drug products is high. However, regulatory agencies have often questioned its large-scale industrial practicability, and 3DP drug approval/guidelines are yet to be streamlined. AREAS COVERED: In this review, major technologies involved with the fabrication of drug products are introduced along with the prospects of upcoming technologies, including AI (Artificial Intelligence). We have touched upon regulatory updates and discussed the burning limitations, which require immediate focus, illuminating status, and future perspectives on the near future of 3DP in the pharmaceutical field. EXPERT OPINION: 3DP offers significant advantages in rapid prototyping for drug products, which could be beneficial for personalizing patient-based pharmaceutical dispensing. It seems inevitable that the coming decades will be marked by exponential growth in personalization, and 3DP could be a paradigm-shifting asset for pharmaceutical professionals.

20.
Adv Sci (Weinh) ; : e2405320, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995232

ABSTRACT

The growing importance of submicrometer-structured surfaces across a variety of different fields has driven progress in light manipulation, color diversity, water-repellency, and functional enhancements. To enable mass production, processes like hot-embossing (HE), roll-to-roll replication (R2R), and injection molding (IM) are essential due to their precision and material flexibility. However, these processes are tool-based manufacturing (TBM) techniques requiring metal molds, which are time-consuming and expensive to manufacture, as they mostly rely on galvanoforming using templates made via precision microlithography or two-photon-polymerization (2PP). In this work, a novel approach is demonstrated to replicate amorphous metals from fused silica glass, derived from additive manufacturing and structured using hot embossing and casting, enabling the fabrication of metal insets with features in the range of 300 nm and a surface roughness of below 10 nm. By partially crystallizing the amorphous metal, during the replication process, the insets gain a high hardness of up to 800 HV. The metal molds are successfully used in polymer injection molding using different polymers including polystyrene (PS) and polyethylene (PE) as well as glass nanocomposites. This work is of significant importance to the field as it provides a production method for the increasing demand for sub-micron-structured tooling in the area of polymer replication while substantially reducing their cost of production.

SELECTION OF CITATIONS
SEARCH DETAIL
...