Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Sci Total Environ ; 944: 173837, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38866145

ABSTRACT

Human activities are having a massive negative impact on biodiversity and ecological processes worldwide. The rate and magnitude of ecological transformations induced by climate change, habitat destruction, overexploitation and pollution are now so substantial that a sixth mass extinction event is currently underway. The biodiversity crisis of the Anthropocene urges scientists to put forward a transformative vision to promote the conservation of biodiversity, and thus indirectly the preservation of ecosystem functions. Here, we identify pressing issues in global change biology research and propose an integrative framework based on multilayer biological networks as a tool to support conservation actions and marine risk assessments in multi-stressor scenarios. Multilayer networks can integrate different levels of environmental and biotic complexity, enabling us to combine information on molecular, physiological and behaviour responses, species interactions and biotic communities. The ultimate aim of this framework is to link human-induced environmental changes to species physiology, fitness, biogeography and ecosystem impacts across vast seascapes and time frames, to help guide solutions to address biodiversity loss and ecological tipping points. Further, we also define our current ability to adopt a widespread use of multilayer networks within ecology, evolution and conservation by providing examples of case-studies. We also assess which approaches are ready to be transferred and which ones require further development before use. We conclude that multilayer biological networks will be crucial to inform (using reliable multi-levels integrative indicators) stakeholders and support their decision-making concerning the sustainable use of resources and marine conservation.


Subject(s)
Biodiversity , Climate Change , Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Aquatic Organisms/physiology , Environmental Monitoring/methods
2.
PeerJ ; 12: e17091, 2024.
Article in English | MEDLINE | ID: mdl-38708339

ABSTRACT

Monitoring the diversity and distribution of species in an ecosystem is essential to assess the success of restoration strategies. Implementing biomonitoring methods, which provide a comprehensive assessment of species diversity and mitigate biases in data collection, holds significant importance in biodiversity research. Additionally, ensuring that these methods are cost-efficient and require minimal effort is crucial for effective environmental monitoring. In this study we compare the efficiency of species detection, the cost and the effort of two non-destructive sampling techniques: Baited Remote Underwater Video (BRUV) and environmental DNA (eDNA) metabarcoding to survey marine vertebrate species. Comparisons were conducted along the Sussex coast upon the introduction of the Nearshore Trawling Byelaw. This Byelaw aims to boost the recovery of the dense kelp beds and the associated biodiversity that existed in the 1980s. We show that overall BRUV surveys are more affordable than eDNA, however, eDNA detects almost three times as many species as BRUV. eDNA and BRUV surveys are comparable in terms of effort required for each method, unless eDNA analysis is carried out externally, in which case eDNA requires less effort for the lead researchers. Furthermore, we show that increased eDNA replication yields more informative results on community structure. We found that using both methods in conjunction provides a more complete view of biodiversity, with BRUV data supplementing eDNA monitoring by recording species missed by eDNA and by providing additional environmental and life history metrics. The results from this study will serve as a baseline of the marine vertebrate community in Sussex Bay allowing future biodiversity monitoring research projects to understand community structure as the ecosystem recovers following the removal of trawling fishing pressure. Although this study was regional, the findings presented herein have relevance to marine biodiversity and conservation monitoring programs around the globe.


Subject(s)
Biodiversity , DNA, Environmental , Environmental Monitoring , DNA, Environmental/analysis , DNA, Environmental/genetics , Animals , Environmental Monitoring/methods , Aquatic Organisms/genetics , Video Recording/methods , Ecosystem , DNA Barcoding, Taxonomic/methods
3.
Methods Mol Biol ; 2744: 475-489, 2024.
Article in English | MEDLINE | ID: mdl-38683336

ABSTRACT

The MetaZooGene Atlas and Database (MZGdb; https://metazoogene.org/mzgdb/ ) is an open-access data and metadata portal synchronized with the NCBI GenBank and BOLD data repositories. The MZGdb includes sequences for genes used for the classification and identification of marine organisms based on DNA barcoding and metabarcoding. The focus of the MZGdb is biodiversity of marine ecosystems, including phytoplankton and microbes, zooplankton and invertebrates, fish, and other marine vertebrates (pinnipeds, cetaceans, and sea turtles). DNA sequences currently included are mitochondrial cytochrome oxidase I (COI), 12S, and 16S rRNA, and nuclear 18S and 28S rRNA. The MZGdb provides data and mapping tools for assembling and downloading compilations of reference sequence data that are specific to selected genes, taxonomic groups, and/or ocean regions. An additional feature of the MZGdb is the Atlas which summarizes data coverage and proportional completeness based on statistics of species with available sequences versus species commonly found in each ocean region.This chapter is a collaborative effort of the Scientific Committee for Ocean Research (SCOR) Working Group WG157: MetaZooGene: Toward a new global view of marine zooplankton biodiversity based on DNA metabarcoding and reference DNA sequence databases ( https://metazoogene.org ).


Subject(s)
Aquatic Organisms , Biodiversity , DNA Barcoding, Taxonomic , Animals , Aquatic Organisms/genetics , Aquatic Organisms/classification , DNA Barcoding, Taxonomic/methods , Ecosystem , Databases, Genetic , Databases, Nucleic Acid
4.
Data Brief ; 53: 110200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38435734

ABSTRACT

Biodiversity information in the form of species occurrence records is key for monitoring and predicting current and future biodiversity patterns, as well as for guiding conservation and management strategies. However, the reliability and accuracy of this information are frequently undermined by taxonomic and spatial errors. Additionally, biodiversity information facilities often share data in diverse incompatible formats, precluding seamless integration and interoperability. We provide a comprehensive quality-controlled dataset of occurrence records of the Class Demospongiae, which comprises 81% of the entire Porifera phylum. Demosponges are ecologically significant as they structure rich habitats and play a key role in nutrient cycling within marine benthic communities. The dataset aggregates occurrence records from multiple sources, employs dereplication and taxonomic curation techniques, and is flagged for potentially incorrect records based on expert knowledge regarding each species' bathymetric and geographic distributions. It yields 417,626 records of 1,816 accepted demosponge species (of which 321,660 records of 1,495 species are flagged as potentially correct), which are provided under the FAIR principle of Findability, Accessibility, Interoperability and Reusability in the Darwin Core Standard. This dataset constitutes the most up-to-date baseline for studying demosponge diversity at the global scale, enabling researchers to examine biodiversity patterns (e.g., species richness and endemicity), and forecast potential distributional shifts under future scenarios of climate change.

5.
Animals (Basel) ; 14(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38539975

ABSTRACT

Crinoids (Echinodermata) exhibit unique morphological and behavioral characteristics that facilitate a wide range of symbiotic relationships with diverse organisms. Our comprehension of their interactions with microscopic copepod crustaceans is, however, still in a nascent and fragmented state. Here, we review and discuss the 166 literature records to date in which a total of 39 copepod species in 6 families have been reported in association with 33 species of the crinoid order Comatulida. Many of these associations have been reported just once. The respective localities cover 5 of the World Ocean's 12 ecoregions, with a notable concentration of both host and symbiont diversity in the Central and Western Indo-Pacific. In contrast, the documentation of copepod-crinoid associations in the Atlantic appears markedly limited. Copepods have been found predominantly in ectosymbiotic relationships with crinoids, with a lower incidence of endosymbiosis. Copepods of the genera Collocheres Canu, 1893 and Pseudanthessius Claus, 1889 are particularly prominent in the list, and the comatulid family Comatulidae displays the most diverse assortment of copepod associations. The current scope of knowledge encompasses a mere 5% of the potential crinoid host diversity, underscoring the need for more extensive research in this area.

6.
Biol Rev Camb Philos Soc ; 99(4): 1391-1410, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38468189

ABSTRACT

Fluorescence in marine animals has mainly been studied in Cnidaria but is found in many different phyla such as Annelida, Crustacea, Mollusca, and Chordata. While many fluorescent proteins and molecules have been identified, very little information is available about the biological functions of fluorescence. In this review, we focus on describing the occurrence of fluorescence in marine animals and the behavioural and physiological functions of fluorescent molecules based on experimental approaches. These biological functions of fluorescence range from prey and symbiont attraction, photoprotection, photoenhancement, stress mitigation, mimicry, and aposematism to inter- and intraspecific communication. We provide a comprehensive list of marine taxa that utilise fluorescence, including demonstrated effects on behavioural or physiological responses. We describe the numerous known functions of fluorescence in anthozoans and their underlying molecular mechanisms. We also highlight that other marine taxa should be studied regarding the functions of fluorescence. We suggest that an increase in research effort in this field could contribute to understanding the capacity of marine animals to respond to negative effects of climate change, such as rising sea temperatures and increasing intensities of solar irradiation.


Subject(s)
Aquatic Organisms , Animals , Aquatic Organisms/physiology , Fluorescence , Invertebrates/physiology , Behavior, Animal/physiology
7.
Data Brief ; 52: 110023, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38293573

ABSTRACT

Data on contemporary and future geographical distributions of marine species are crucial for guiding conservation and management policies in face of climate change. However, available distributional patterns have overlooked key ecosystem structuring species, despite their numerous ecological and socioeconomic services. Future range estimates are mostly available for few species at regional scales, and often rely on the outdated Representative Concentration Pathway scenarios of climate change, hindering global biodiversity estimates within the framework of current international climate policies. Here, we provide range maps for 980 marine structuring species of seagrasses, kelps, fucoids, and cold-water corals under present-day conditions (from 2010 to 2020) and future scenarios (from 2090 to 2100) spanning from low carbon emission scenarios aligned with the goals of the Paris Agreement (Shared Socioeconomic Pathway 1-1.9), to higher emissions under reduced mitigation strategies (SSP3-7.0 and SSP5-8.5). These models were developed using state-of-the-art and advanced machine learning algorithms linking the most comprehensive and quality-controlled datasets of occurrence records with high-resolution, biologically relevant predictor variables. By integrating the best aspects of species distribution modelling over key ecosystem structuring species, our datasets hold the potential to enhance the ability to inform strategic and effective conservation policy, ultimately supporting the resilience of ocean ecosystems.

8.
Int J Parasitol ; 54(2): 65-88, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37838302

ABSTRACT

Coral-associated fauna predominantly consists of invertebrates and constitutes an important component of coral reef biodiversity. The symbionts depend on their hosts for food, shelter and substrate. They may act as parasites by feeding on their hosts, by overgowing their polyps, or by excavating their skeletons. Because some of these species partly reside inside their hosts, they may be cryptic and can easily be overlooked in biodiversity surveys. Since no quantitative overview is available about these inter-specific relationships, this present study adresses variation in host ranges and specificity across four large coral-associated taxa and between the Atlantic and Indo-Pacific oceans. These taxa are: coral barnacles (Pyrgomatidae, n = 95), coral gall crabs (Cryptochiridae, n = 54), tubeworms (Serpulidae, n = 31), and date mussels (Lithophaginae, n = 23). A total of 335 host coral species was recorded. An index of host specificity (STD) was calculated per symbiont species, based on distinctness in taxonomic host range levels (species, genus, family, etc.). Mean indices were statistically compared among the four associated taxa and the two oceanic coral reef regions. Barnacles were the most host-specific, tubeworms the least. Indo-Pacific associates were approximately 10 times richer in species and two times more host-specific than their Atlantic counterparts. Coral families varied in the number of associates, with some hosting none. This variation could be linked to host traits (coral growth form, maximum host size) and is most probably also a result of the evolutionary history of the interspecific relationships.


Subject(s)
Anthozoa , Coral Reefs , Animals , Biodiversity , Biological Evolution , Host Specificity
9.
Mar Environ Res ; 193: 106289, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38048659

ABSTRACT

Coastal ecosystems have received international interest for their possible role in climate change mitigation, highlighting the importance of being able to assess and predict how changes in habitat distributions and their associated communities may impact the greenhouse gas sink potential of these vegetated seascapes. Importantly, the range and diversity of macrophytes within the vegetated seascape have different capacities to store C within their biomass and potentially sequester C depending on their functional trait characteristics. To bridge the present knowledge gaps in linking macrophyte traits to C storage in tissue, we (1) quantified biomass-bound C stocks within diverse macrophyte communities, separately for soft and hard bottom habitats and (2) explored the links between various traits of both vascular plants and macroalgae and their respective biomass-bound C stocks using structural equation modeling (SEM). We conducted a field survey where we sampled 6 soft bottom locations dominated by aquatic vascular plants and 6 hard bottom locations dominated by the brown algae Fucus vesiculosus in the Finnish archipelago. Macrophyte carbon stocks of hard bottom locations were an order of magnitude higher than those found in soft bottom locations. Biodiversity was associated with aquatic plant carbon stocks through mass ratio effects, highlighting that carbon stocks were positively influenced by the dominance of species with more acquisitive resource strategies, whereas age was the main driver of carbon in the mono-specific macroalgal communities. Overall, our results demonstrate that habitat type and dominating life-history strategies influenced the size of the organism-bound carbon stocks. Moreover, we showed the importance of accounting for the diversity of different traits to determine the drivers underpinning carbon storage in heterogenous seascapes composed of macrophyte communities with high functional diversity.


Subject(s)
Carbon , Ecosystem , Biomass , Biodiversity , Plants
10.
Pathogens ; 12(11)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38003830

ABSTRACT

Red mullet (Mullus barbatus) is a commercially relevant fish species, yet epidemiological data on anisakid nematode infestation in M. barbatus are scarce. To fill this gap, we report the occurrence of Anisakis larvae in red mullet in the Ligurian Sea (western Mediterranean). This survey was performed between 2018 and 2020 on fresh specimens of M. barbatus (n = 838) from two commercial fishing areas (Imperia, n = 190; Savona, n = 648) in the Ligurian Sea. Larvae morphologically identified as Anisakis spp. (n = 544) were characterized using PCR-RFLP as Anisakis pegreffii. The overall prevalence of A. pegreffii was 24.46%; the prevalence at each sampling site was 6.32% for Imperia and 29.78% for Savona. Furthermore, 3300 larvae of Hysterothylacium spp. were detected in the visceral organs of fish coinfected with A. pegreffii, showing that coinfection with two parasitic species is not rare. This study provides a timely update on the prevalence of ascaridoid nematodes in red mullet of the Ligurian Sea, an important commercial fishing area in the Mediterranean.

11.
Mar Environ Res ; 191: 106130, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37625953

ABSTRACT

Coastal ecosystems and their marine populations are increasingly threatened by global environmental changes. Bivalves have emerged as crucial bioindicators within these ecosystems, offering valuable insights into biodiversity and overall ecosystem health. In particular, bivalves serve as hosts to trematode parasites, making them a focal point of study. Trematodes, with their life cycles intricately linked to external factors, provide excellent indicators of environmental changes and exhibit a unique ability to accumulate pollutants beyond ambient levels. Thus, they act as living sentinels, reflecting the ecological condition of their habitats. This paper presents a comprehensive review of recent research on the use of bivalve species as hosts for trematodes, examining the interactions between these organisms. The study also investigates the combined impact of trematode infections and other pollutants on bivalve molluscs. Trematode infections have multifaceted consequences for bivalve species, influencing various aspects of their physiology and behavior, including population-wide mortality. Furthermore, the coexistence of trematode infections and other sources of pollution compromises host resistance, disrupts parasite transmission, and reduces the abundance of intermediate hosts for complex-living parasites. The accumulation process of these parasites is influenced not only by external factors but also by host physiology. Consequently, the implications of climate change and environmental factors, such as temperature, salinity, and ocean acidification, are critical considerations. In summary, the intricate relationship between bivalves, trematode parasites, and their surrounding environment provides valuable insights into the health and sustainability of coastal ecosystems. A comprehensive understanding of these interactions, along with the influence of climate change and environmental parameters, is essential for effective management and conservation strategies aimed at preserving these delicate ecosystems and the diverse array of species that rely on them.


Subject(s)
Bivalvia , Environmental Pollutants , Trematoda , Trematode Infections , Animals , Ecosystem , Climate Change , Hydrogen-Ion Concentration , Seawater , Bivalvia/parasitology , Trematode Infections/veterinary , Trematode Infections/parasitology
12.
Microorganisms ; 11(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37512841

ABSTRACT

The emergence of open ocean global-scale studies provided important information about the genomics of oceanic microbial communities. Metagenomic analyses shed light on the structure of marine habitats, unraveling the biodiversity of different water masses. Many biological and environmental factors can contribute to marine organism composition, such as depth. However, much remains unknown about microbial communities' taxonomic and functional features in different water layer depths. Here, we performed a metagenomic analysis of 76 publicly available samples from the Tara Ocean Project, distributed in 8 collection stations located in tropical or subtropical regions, and sampled from three layers of depth (surface water layer-SRF, deep chlorophyll maximum layer-DCM, and mesopelagic zone-MES). The SRF and DCM depth layers are similar in abundance and diversity, while the MES layer presents greater diversity than the other layers. Diversity clustering analysis shows differences regarding the taxonomic content of samples. At the domain level, bacteria prevail in most samples, and the MES layer presents the highest proportion of archaea among all samples. Taken together, our results indicate that the depth layer influences microbial sample composition and diversity.

13.
Microorganisms ; 11(7)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37512939

ABSTRACT

The order Saprospirales, a group of bacteria involved in complex degradation pathways, comprises three officially described families: Saprospiraceae, Lewinellaceae, and Haliscomenobacteraceae. These collectively contain 17 genera and 31 species. The current knowledge on Saprospirales diversity is the product of traditional isolation methods, with the inherited limitations of culture-based approaches. This study utilized the extensive information available in public sequence repositories combined with recent analytical tools to evaluate the global evidence-based diversity of the Saprospirales order. Our analysis resulted in 1183 novel molecular families, 15,033 novel molecular genera, and 188 K novel molecular species. Of those, 7 novel families, 464 novel genera, and 1565 species appeared in abundances at ≥0.1%. Saprospirales were detected in various environments, such as saline water, freshwater, soil, various hosts, wastewater treatment plants, and other bioreactors. Overall, saline water was the environment showing the highest prevalence of Saprospirales, with bioreactors and wastewater treatment plants being the environments where they occurred with the highest abundance. Lewinellaceae was the family containing the majority of the most prevalent species detected, while Saprospiraceae was the family with the majority of the most abundant species found. This analysis should prime researchers to further explore, in a more targeted way, the Saprospirales proportion of microbial dark matter.

14.
Data Brief ; 48: 109223, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383736

ABSTRACT

Species distribution data are key for monitoring present and future biodiversity patterns and informing conservation and management strategies. Large biodiversity information facilities often contain spatial and taxonomic errors that reduce the quality of the provided data. Moreover, datasets are frequently shared in varying formats, inhibiting proper integration and interoperability. Here, we provide a quality-controlled dataset of the diversity and distribution of cold-water corals, which provide key ecosystem services and are considered vulnerable to human activities and climate change effects. We use the common term cold-water corals to refer to species of the orders Alcyonacea, Antipatharia, Pennatulacea, Scleractinia, Zoantharia of the subphylum Anthozoa, and order Anthoathecata of the class Hydrozoa. Distribution records were collated from multiple sources, standardized using the Darwin Core Standard, dereplicated, taxonomically corrected and flagged for potential vertical and geographic distribution errors based on peer-reviewed published literature and expert consulting. This resulted in 817,559 quality-controlled records of 1,170 accepted species of cold-water corals, openly available under the FAIR principle of Findability, Accessibility, Interoperability and Reusability of data. The dataset represents the most updated baseline for the global cold-water coral diversity, and it can be used by the broad scientific community to provide insights into biodiversity patterns and their drivers, identify regions of high biodiversity and endemicity, and project potential redistribution under future climate change. It can also be used by managers and stakeholders to guide biodiversity conservation and prioritization actions against biodiversity loss.

15.
Conserv Biol ; 37(5): e14090, 2023 10.
Article in English | MEDLINE | ID: mdl-37246556

ABSTRACT

To understand the scope and scale of the loss of biodiversity, tools are required that can be applied in a standardized manner to all species globally, spanning realms from land to the open ocean. We used data from the International Union for the Conservation of Nature Red List to provide a synthesis of the conservation status and extinction risk of cetaceans. One in 4 cetacean species (26% of 92 species) was threatened with extinction (i.e., critically endangered, endangered, or vulnerable) and 11% were near threatened. Ten percent of cetacean species were data deficient, and we predicted that 2-3 of these species may also be threatened. The proportion of threatened cetaceans has increased: 15% in 1991, 19% in 2008, and 26% in 2021. The assessed conservation status of 20% of species has worsened from 2008 to 2021, and only 3 moved into categories of lesser threat. Cetacean species with small geographic ranges were more likely to be listed as threatened than those with large ranges, and those that occur in freshwater (100% of species) and coastal (60% of species) habitats were under the greatest threat. Analysis of odontocete species distributions revealed a global hotspot of threatened small cetaceans in Southeast Asia, in an area encompassing the Coral Triangle and extending through nearshore waters of the Bay of Bengal, northern Australia, and Papua New Guinea and into the coastal waters of China. Improved management of fisheries to limit overfishing and reduce bycatch is urgently needed to avoid extinctions or further declines, especially in coastal areas of Asia, Africa, and South America.


Estado en la lista roja y riesgo de extinción de las ballenas, delfines y marsopas del mundo Resumen Para comprender el alcance y la escala de la pérdida de biodiversidad, se necesitan herramientas que puedan aplicarse de forma estandarizada a todas las especies a nivel mundial y que abarquen todos los ámbitos desde la tierra hasta el océano. Utilizamos datos de la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza para proporcionar una síntesis del estado de conservación y el riesgo de extinción de los cetáceos. Una de cada 4 especies de cetáceos (26% de 92 especies) se encuentra amenazada (es decir, en peligro crítico, en peligro o vulnerable) y el 11% de las especies está clasificado como casi amenazada. El 10% de las especies de cetáceos carecía de datos, por lo que predijimos que 2-3 de estas especies también podrían estar amenazadas. La proporción de cetáceos amenazados ha aumentado: 15% en 1991, 19% en 2008 y 26% en 2021. El estado de conservación evaluado del 20% de las especies ha empeorado de 2008 a 2021, pues sólo 3 pasaron a categorías de menor amenaza. Las especies de cetáceos con áreas de distribución geográficas pequeñas tenían más probabilidades de ser catalogadas como amenazadas que aquellas con áreas de distribución extensas, y aquellas que ocurren en hábitats de agua dulce (100% de las especies) y costeros (60% de las especies) eran las que se encontraban bajo mayor amenaza. La superposición de los mapas de distribución de las especies reveló la existencia de puntos calientes de pequeños cetáceos amenazados en el sudeste asiático y en una zona que abarca el Triángulo de Coral y se extiende por las aguas cercanas a la costa de la Bahía de Bengala, el norte de Australia, Papúa Nueva Guinea y las aguas costeras de China. Urge mejorar la gestión de las pesquerías para limitar la sobrepesca y reducir la captura accesoria con el fin de evitar extinciones o mayores descensos, especialmente en las zonas costeras de Asia, África y Sudamérica.


Subject(s)
Dolphins , Porpoises , Animals , Conservation of Natural Resources , Extinction, Biological , Whales , Fisheries , Biodiversity , Endangered Species
16.
Natl Sci Rev ; 10(6): nwac241, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37181093

ABSTRACT

Marine biodiversity plays important roles in ocean ecosystem services and has substantial economic value. Species diversity, genetic diversity and phylogenetic diversity, which reflect the number, evolutionary potential and evolutionary history of species in ecosystem functioning, are three important dimensions of biodiversity. Marine-protected areas have been demonstrated as an effective area-based tool for protecting marine biodiversity, but only 2.8% of the ocean has been fully protected. It is urgent to identify global conservation priority areas and percentage of the ocean across multiple dimensions of biodiversity based on Post-2020 Global Biodiversity Framework. Here, we investigate the spatial distribution of marine genetic and phylogenetic diversity using 80 075 mitochondrial DNA barcode sequences from 4316 species and a newly constructed phylogenetic tree of 8166 species. We identify that the Central Indo-Pacific Ocean, Central Pacific Ocean and Western Indian Ocean harbor high levels of biodiversity across three dimensions of biodiversity, which could be designated as conservation priority areas. We also find that strategically protecting ∼22% of the ocean would allow us to reach the target of conserving ∼95% of currently known taxonomic, genetic and phylogenetic diversity. Our study provides insights into the spatial distribution pattern of multiple marine diversities and the findings would help to design comprehensive conservation schemes for global marine biodiversity.

17.
Ecol Evol ; 13(4): e9945, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37066063

ABSTRACT

The relative influence of geography, currents, and environment on gene flow within sessile marine species remains an open question. Detecting subtle genetic differentiation at small scales is challenging in benthic populations due to large effective population sizes, general lack of resolution in genetic markers, and because barriers to dispersal often remain elusive. Marine lakes can circumvent confounding factors by providing discrete and replicated ecosystems. Using high-resolution double digest restriction-site-associated DNA sequencing (4826 Single Nucleotide Polymorphisms, SNPs), we genotyped populations of the sponge Suberites diversicolor (n = 125) to test the relative importance of spatial scales (1-1400 km), local environmental conditions, and permeability of seascape barriers in shaping population genomic structure. With the SNP dataset, we show strong intralineage population structure, even at scales <10 km (average F ST = 0.63), which was not detected previously using single markers. Most variation was explained by differentiation between populations (AMOVA: 48.8%) with signatures of population size declines and bottlenecks per lake. Although the populations were strongly structured, we did not detect significant effects of geographic distance, local environments, or degree of connection to the sea on population structure, suggesting mechanisms such as founder events with subsequent priority effects may be at play. We show that the inclusion of morphologically cryptic lineages that can be detected with the COI marker can reduce the obtained SNP set by around 90%. Future work on sponge genomics should confirm that only one lineage is included. Our results call for a reassessment of poorly dispersing benthic organisms that were previously assumed to be highly connected based on low-resolution markers.

18.
Mar Pollut Bull ; 191: 114942, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37087825

ABSTRACT

The marine environment faces multiple threats, many of which are still undiscovered. Anthropogenic noise is considered a representative indicator of the human footprint. The aim of this short communication is to protect marine biodiversity by exploiting basic principles of Landscape and Soundscape Ecology and borrowing methods and tools to identify and map the human induced noise of the marine environment and thus create, based on this information layer, a connectivity pathway among all Marine Protected Areas (MPAs). Today it is of vital importance to take urgent action towards protecting the marine environment. Could we be inspired by effective and practical solutions of biodiversity conservation, already successfully implemented in the terrestrial environment, taking into account the special and diverse characteristics of the marine environment to protect marine biodiversity?


Subject(s)
Biodiversity , Conservation of Natural Resources , Humans , Ecology , Ecosystem
19.
Mar Pollut Bull ; 189: 114792, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36921451

ABSTRACT

Gathering comprehensive marine biodiversity data can be difficult, costly and time consuming, preventing adequate knowledge of diversity patterns in many areas worldwide. We propose fishing ports as "natural" sinks of biodiversity information collected by fishing vessels probing disparate habitats, depths, and environments. By combining rapid environmental DNA metabarcoding (eDNA) surveys and data from public registers and Automatic Identification Systems, we show significant positive relationships between fishing fleet activities (i.e. fishing effort and characteristics of the fishing grounds) and the taxonomic fish assemblage composition in eleven Mediterranean fishing ports. Overall, we identified 160 fish and 123 invertebrate OTUs, including at least seven non-indigenous species, in some instances well beyond their known distribution areas. Our findings suggest that eDNA assessments of fishing harbours' waters might offer a rapid way to monitor marine biodiversity in unknown or under-sampled areas, as well as to reconstruct fishing catches, often underreported in several regions.


Subject(s)
Ecosystem , Hunting , Animals , Mediterranean Sea , Biodiversity , Invertebrates , DNA Barcoding, Taxonomic , Fishes
20.
Biology (Basel) ; 12(2)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36829426

ABSTRACT

Macrozoobenthos plays a key role in the transformation of inputs from rivers to the sea, such as nutrients, organic matter, or pollutants, and influences biogeochemical processes in the sediments through bioturbation and bioirrigation activity. The purpose of our study was to determine the structure of benthic communities, their bioturbation (BPC) and bioirrigation potential (IPC), and the vertical distribution of macrofauna in the Gulf of Gdansk. The study revealed changes in the structure of benthic communities and, consequently, in the bioturbation and bioirrigation potential in the study area. Despite the presence of diverse and rich communities in the coastal zone, BPC and IPC values, although high, were formed by a few species. Both indices were formed mainly by the clam Macoma balthica and polychaetes, although the proportion of polychaetes in IPC was higher than in BPC. In the deepest zones, the communities became poorer until they eventually disappeared, along with all macrofaunal functions. Both indices changed similarly with distance from the Vistula River mouth, and there was a very strong correlation between them. We also demonstrated that the highest diversity of the macrofauna was observed in the upper first cm of the sediment, but the highest biomass was observed in deeper layers-at a depth of up to 6 cm, and single individuals occurred even below 10 cm.

SELECTION OF CITATIONS
SEARCH DETAIL
...