Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 20947, 2024 09 09.
Article in English | MEDLINE | ID: mdl-39251772

ABSTRACT

Seal lice, unique among insects, show remarkable adaptability to the extreme conditions of the deep sea. Evolving with their seal and sea lion hosts, they have managed to tolerate hypoxia, high salinity, low temperature, and elevated hydrostatic pressure. Given the diving capabilities of their mammalian hosts, which can reach depths of hundreds to thousands of meters, our study examines the morphological variation among closely related seal lice species infesting hosts with different maximum diving depths. In particular, our research reveals a significant morphological difference between lice associated with regular and deep-diving hosts, where lice from deep-diving hosts tend to be rounder. This could be an adaptation to withstand the high hydrostatic pressures found in the deep ocean. The rounded shape optimizes the louse's ability to withstand external pressure by redistributing it over a larger ventral/dorsal plane. This in turn minimizes the internal energy required to support body deformations, thereby increasing the louse's resilience in the deep sea environment.


Subject(s)
Diving , Animals , Diving/physiology , Host-Parasite Interactions , Lice Infestations/parasitology , Lice Infestations/veterinary , Seals, Earless/parasitology , Seals, Earless/physiology , Sea Lions/parasitology , Sea Lions/physiology
2.
J Exp Biol ; 223(Pt 17)2020 09 09.
Article in English | MEDLINE | ID: mdl-32680903

ABSTRACT

Lice from pinnipeds - sea lions, seals and walruses - are the only insects capable of surviving marine dives. Throughout their evolutionary history, they have adapted to tolerate hypoxia, high salinity, low temperature and, in particular, to tolerate conditions of high hydrostatic pressure. To understand the limits of the capacity of lice to survive during host deep dives, we conducted a series of controlled experiments in the laboratory. We collected lice from elephant seals and submitted the different life stages to high pressure conditions. Lice were first exposed to one of four hydrostatic pressures: 30, 80, 150 or 200 kg cm-2 They were then exposed a second time to higher or lower hydrostatic pressure conditions to test for the impact of the first experience, which could either be deleterious or trigger physiological adaption, allowing them a better tolerance to high pressure. We found that lice from elephant seals can tolerate hydrostatic pressures higher than 200 kg cm-2 (close to 200 atm), which is equivalent to 2000 m depth. Adults exhibited lower recovery times than nymphs after immersion at high hydrostatic pressure. Our findings show that lice have developed unique adaptations to endure extreme marine conditions. We discuss these extreme performances in relation to the morphological characteristics and physiological responses to diving in these insects.


Subject(s)
Caniformia , Diving , Phthiraptera , Sea Lions , Seals, Earless , Animals , Walruses
SELECTION OF CITATIONS
SEARCH DETAIL