Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Language
Publication year range
1.
Saudi J Biol Sci ; 29(8): 103342, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35846388

ABSTRACT

Backgrounds: Diverse marine habitats along Jeddah's Red Sea coast support rich biodiversity. Few studies have been done on its diverse communities, especially its microbial counterparts. Metagenomic analysis of marine benthic micro-eukaryotic communities was performed for the first time on the Red Sea coast of Jeddah. This research looks into their community structure and metabolic potential. Methods: Next-generation sequencing was used to examine the micro-eukaryotic communities of seven sedimentary soil samples from four Jeddah coast locations. After isolating DNA from seven benthic sedimentary soil samples, the 18S rDNA V4 regions were amplified and sequenced on the Illumina MiSeq. It was also verified using an Agilent Technologies 2100 Bioanalyzer with a DNA 1000 chip (Agilent Technologies, Fisher Scientific). A standard curve of fluorescence readings generated by qPCR quantification using the Illumina library was achieved using the GS FLX library. Metagenomic data analysis was used to evaluate the microbial communities' biochemical and enzymatic allocations in studied samples. Results: Blast analysis showed that the top ten phyla were Annelida, Eukaryota, Diatomea, Porifera, Phragmoplastophyta, Arthropoda, Dinoflagellata, Xenacoelomorpha Nematoda, and uncultured. Annelida was also found in the highest percentage (93%), in the sample M followed by Porifera (64%), the most abundant in the control sample then Eukaryotes (61%), Phragmatoplastophyta (55%), Arthropoda, and Diatomea (the least common) (32%). community diversity analysis: using Shannon and inverse Simpson indices showed sediment composition to be effective. Also, PICRUST2 indicated that the most abundant pathways were pyruvate fermentation to isobutanol, pyrimidine deoxyribonucleotide phosphorylation, adenosine ribonucleotide de novo biosynthesis, guanosine ribonucleotide de novo biosynthesis, NAD salvage pathway I, the super pathway of glyoxylate bypass and aerobic respiration I (cytochrome c). Conclusion: Results showed that high throughput metagenomics could reveal species diversity and estimate gene profiles. Environmental factors appear to be more important than geographic variation in determining the structure of these microbial communities. This study provides the first report of marine benthic micro-eukaryotic communities found on the Red Sea coast of Jeddah and will serve as a good platform for future research.

2.
Microb Ecol ; 81(2): 540-548, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32909073

ABSTRACT

Plasmidomes have become the research area of interest for ecologists exploring bacteria rich ecosystems. Marine environments are among such niche that host a huge number of microbes and have a complex environment which pose the need to study these bacterial indicators of horizontal gene transfer events for survival and stability. The plasmid content of the metagenomics data from 8 sediment samples of the Gulfs of Kathiawar and an open Arabian Sea sample was screened. The reads corresponding to hits against the plasmid database were assembled and studied for diversity using Kraken and functional content using MG-RAST. The sequences were also checked for resistome and virulence factors. The replicon hosts were overall dominated by Proteobacteria, Firmicutes, and Actinobacteria while red algae specific to the Kutch samples. The genes encoded were dominant in the flagella motility and type VI secretion systems. Overall, results from the study confirmed that the plasmids encoded traits for metal, antibiotic, and phage resistance along with virulence systems, and these would be conferring benefit to the hosts. The study throws insights into the environmental role of the plasmidome in adaptation of the microbes in the studied sites to the environmental stresses.


Subject(s)
Geologic Sediments/microbiology , Metagenome/genetics , Plasmids/genetics , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Drug Resistance, Bacterial/genetics , Ecosystem , Genes, Bacterial/genetics , Oceans and Seas , Virulence Factors/genetics
3.
Mar Drugs ; 18(9)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899763

ABSTRACT

Marine natural products have achieved great success as an important source of new lead compounds for drug discovery. The Red Sea provides enormous diversity on the biological scale in all domains of life including micro- and macro-organisms. In this review, which covers the literature to the end of 2019, we summarize the diversity of bioactive secondary metabolites derived from Red Sea micro- and macro-organisms, and discuss their biological potential whenever applicable. Moreover, the diversity of the Red Sea organisms is highlighted as well as their genomic potential. This review is a comprehensive study that compares the natural products recovered from the Red Sea in terms of ecological role and pharmacological activities.


Subject(s)
Aquatic Organisms/metabolism , Biological Products/pharmacology , Animals , Aquatic Organisms/genetics , Biological Products/chemistry , Biological Products/isolation & purification , Humans , Indian Ocean , Metagenomics , Secondary Metabolism
4.
Gigascience ; 9(5)2020 05 01.
Article in English | MEDLINE | ID: mdl-32391909

ABSTRACT

BACKGROUND: The rise of antibiotic resistance (AR) in clinical settings is of great concern. Therefore, the understanding of AR mechanisms, evolution, and global distribution is a priority for patient survival. Despite all efforts in the elucidation of AR mechanisms in clinical strains, little is known about its prevalence and evolution in environmental microorganisms. We used 293 metagenomic samples from the TARA Oceans project to detect and quantify environmental antibiotic resistance genes (ARGs) using machine learning tools. RESULTS: After manual curation of ARGs, their abundance and distribution in the global ocean are presented. Additionally, the potential of horizontal ARG transfer by plasmids and their correlation with environmental and geographical parameters is shown. A total of 99,205 environmental open reading frames (ORFs) were classified as 1 of 560 different ARGs conferring resistance to 26 antibiotic classes. We found 24,567 ORFs in putative plasmid sequences, suggesting the importance of mobile genetic elements in the dynamics of environmental ARG transmission. Moreover, 4,804 contigs with >=2 putative ARGs were found, including 2 plasmid-like contigs with 5 different ARGs, highlighting the potential presence of multi-resistant microorganisms in the natural ocean environment. Finally, we identified ARGs conferring resistance to some of the most relevant clinical antibiotics, revealing the presence of 15 ARGs similar to mobilized colistin resistance genes (mcr) with high abundance on polar biomes. Of these, 5 are assigned to Psychrobacter, a genus including opportunistic human pathogens. CONCLUSIONS: This study uncovers the diversity and abundance of ARGs in the global ocean metagenome. Our results are available on Zenodo in MySQL database dump format, and all the code used for the analyses, including a Jupyter notebook js avaliable on Github. We also developed a dashboard web application (http://www.resistomedb.com) for data visualization.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Resistance, Microbial , Water Microbiology , Algorithms , Anti-Bacterial Agents/pharmacology , Computational Biology/methods , DNA Barcoding, Taxonomic , Genes, Bacterial , Humans , Metagenome , Metagenomics/methods , Oceans and Seas , Plasmids
6.
BMC Bioinformatics ; 19(Suppl 15): 443, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30497362

ABSTRACT

BACKGROUND: Environmental metagenomics is a challenging approach that is exponentially spreading in the scientific community to investigate taxonomic diversity and possible functions of the biological components. The massive amount of sequence data produced, often endowed with rich environmental metadata, needs suitable computational tools to fully explore the embedded information. Bioinformatics plays a key role in providing methodologies to manage, process and mine molecular data, integrated with environmental metagenomics collections. One such relevant example is represented by the Tara Ocean Project. RESULTS: We considered the Tara 16S miTAGs released by the consortium, representing raw sequences from a shotgun metagenomics approach with similarities to 16S rRNA genes. We generated assembled 16S rDNA sequences, which were classified according to their lengths, the possible presence of chimeric reads, the putative taxonomic affiliation. The dataset was included in GLOSSary (the GLobal Ocean 16S Subunit web accessible resource), a bioinformatics platform to organize environmental metagenomics data. The aims of this work were: i) to present alternative computational approaches to manage challenging metagenomics data; ii) to set up user friendly web-based platforms to allow the integration of environmental metagenomics sequences and of the associated metadata; iii) to implement an appropriate bioinformatics platform supporting the analysis of 16S rDNA sequences exploiting reference datasets, such as the SILVA database. We organized the data in a next-generation NoSQL "schema-less" database, allowing flexible organization of large amounts of data and supporting native geospatial queries. A web interface was developed to permit an interactive exploration and a visual geographical localization of the data, either raw miTAG reads or 16S contigs, from our processing pipeline. Information on unassembled sequences is also available. The taxonomic affiliations of contigs and miTAGs, and the spatial distribution of the sampling sites and their associated sequence libraries, as they are contained in the Tara metadata, can be explored by a query interface, which allows both textual and visual investigations. In addition, all the sequence data were made available for a dedicated BLAST-based web application alongside the SILVA collection. CONCLUSIONS: GLOSSary provides an expandable bioinformatics environment, able to support the scientific community in current and forthcoming environmental metagenomics analyses.


Subject(s)
Computational Biology/methods , Internet , Oceans and Seas , RNA, Ribosomal, 16S/genetics , Software , Geography , Metagenomics/methods , User-Computer Interface
7.
Mar Drugs ; 15(4)2017 Mar 25.
Article in English | MEDLINE | ID: mdl-28346340

ABSTRACT

Sponges are important sources of bioactive secondary metabolites. These compounds are frequently synthesized by bacterial symbionts, which may be recruited from the surrounding seawater or transferred to the sponge progeny by the parent. In this study, we investigated the bacterial communities associated with the sponge Tethya rubra Samaai and Gibbons 2005. Sponge specimens were collected from Evans Peak and RIY Banks reefs in Algoa Bay, South Africa and taxonomically identified by spicule analysis and molecular barcoding. Crude chemical extracts generated from individual sponges were profiled by ultraviolet high performance liquid chromatography (UV-HPLC) and subjected to bioactivity assays in mammalian cells. Next-generation sequencing analysis of 16S rRNA gene sequences was used to characterize sponge-associated bacterial communities. T. rubra sponges collected from the two locations were morphologically and genetically indistinguishable. Chemical extracts from sponges collected at RIY banks showed mild inhibition of the metabolic activity of mammalian cells and their UV-HPLC profiles were distinct from those of sponges collected at Evans Peak. Similarly, the bacterial communities associated with sponges from the two locations were distinct with evidence of vertical transmission of symbionts from the sponge parent to its embryos. We conclude that these distinct bacterial communities may be responsible for the differences observed in the chemical profiles of the two Algoa Bay T. rubra Samaai and Gibbons 2005 populations.


Subject(s)
Bacteria/genetics , Bays/microbiology , Porifera/microbiology , Animals , Biodiversity , DNA, Bacterial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA/methods , South Africa
8.
Proc Natl Acad Sci U S A ; 112(4): 1173-8, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25587132

ABSTRACT

Thaumarchaeota are among the most abundant microbial cells in the ocean, but difficulty in cultivating marine Thaumarchaeota has hindered investigation into the physiological and evolutionary basis of their success. We report here a closed genome assembled from a highly enriched culture of the ammonia-oxidizing pelagic thaumarchaeon CN25, originating from the open ocean. The CN25 genome exhibits strong evidence of genome streamlining, including a 1.23-Mbp genome, a high coding density, and a low number of paralogous genes. Proteomic analysis recovered nearly 70% of the predicted proteins encoded by the genome, demonstrating that a high fraction of the genome is translated. In contrast to other minimal marine microbes that acquire, rather than synthesize, cofactors, CN25 encodes and expresses near-complete biosynthetic pathways for multiple vitamins. Metagenomic fragment recruitment indicated the presence of DNA sequences >90% identical to the CN25 genome throughout the oligotrophic ocean. We propose the provisional name "Candidatus Nitrosopelagicus brevis" str. CN25 for this minimalist marine thaumarchaeon and suggest it as a potential model system for understanding archaeal adaptation to the open ocean.


Subject(s)
Archaea , Archaeal Proteins , Gene Expression Regulation, Archaeal/physiology , Proteome , Proteomics , Water Microbiology , Amino Acid Sequence , Archaea/classification , Archaea/genetics , Archaea/metabolism , Archaeal Proteins/biosynthesis , Archaeal Proteins/genetics , Metagenomics , Molecular Sequence Data , Oceans and Seas , Proteome/biosynthesis , Proteome/genetics
9.
Virology ; 466-467: 129-37, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24947907

ABSTRACT

Despite the global oceanic distribution and recognised biogeochemical impact of coccolithoviruses (EhV), their diversity remains poorly understood. Here we employed a metagenomic approach to study the occurrence and progression of natural EhV community genomic variability. Analysis of EhV metagenomes from the early and late stages of an induced bloom led to three main discoveries. First, we observed resilient and specific genomic signatures in the EhV community associated with the Norwegian coast, which reinforce the existence of limitations to the capacity of dispersal and genomic exchange among EhV populations. Second, we identified a hyper-variable region (approximately 21kbp long) in the coccolithovirus genome. Third, we observed a clear trend for EhV relative amino-acid diversity to reduce from early to late stages of the bloom. This study validated two new methodological combinations, and proved very useful in the discovery of new genomic features associated with coccolithovirus natural communities.


Subject(s)
Genetic Variation , Genome, Viral/genetics , Metagenome , Metagenomics , Phycodnaviridae/genetics , Stramenopiles/virology , Base Sequence , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Phycodnaviridae/isolation & purification , Seawater/virology , Sequence Analysis, DNA , Species Specificity , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL