Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Trends Biotechnol ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637243

ABSTRACT

Microbial infections are major human health issues, and, recently, the mortality rate owing to bacterial and fungal infections has been increasing. In addition to intrinsic and extrinsic antimicrobial resistance mechanisms, biofilm formation is a key adaptive resistance mechanism. Several bioactive compounds from marine organisms have been identified for use in biofilm therapy owing to their structural complexity, biocompatibility, and economic viability. In this review, we discuss recent trends in the application of marine natural compounds, marine-bioinspired nanomaterials, and marine polymer conjugates as possible therapeutic agents for controlling biofilms and virulence factors. We also comprehensively discuss the mechanisms underlying biofilm formation and inhibition of virulence factors by marine-derived materials and propose possible applications of novel and effective antibiofilm and antivirulence agents.

2.
Mar Drugs ; 22(2)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38393054

ABSTRACT

PLK1 is found to be highly expressed in various types of cancers, but the development of inhibitors for it has been slow. Most inhibitors are still in clinical stages, and many lack the necessary selectivity and anti-tumor effects. This study aimed to create new inhibitors for the PLK1-PBD by focusing on the PBD binding domain, which has the potential for greater selectivity. A 3D QSAR model was developed using a dataset of 112 compounds to evaluate 500 molecules. ADMET prediction was then used to select three molecules with strong drug-like characteristics. Scaffold hopping was employed to reconstruct 98 new compounds with improved drug-like properties and increased activity. Molecular docking was used to compare the efficient compound abbapolin, confirming the high-activity status of [(14S)-14-hydroxy-14-(pyridin-2-yl)tetradecyl]ammonium,[(14S)-15-(2-furyl)-14-hydroxypentadecyl]ammonium and [(14S)-14-hydroxy-14-phenyltetradecyl]ammonium. Molecular dynamics simulations and MMPBSA were conducted to evaluate the stability of the compounds in the presence of proteins. An in-depth analysis of [(14S)-15-(2-furyl)-14-hydroxypentadecyl]ammonium and [(14S)-14-hydroxy-14-phenyltetradecyl]ammonium identified them as potential candidates for PLK1 inhibitors.


Subject(s)
Ammonium Compounds , Biological Products , Molecular Docking Simulation , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Pharmacophore , Biological Products/pharmacology
3.
Cell Mol Life Sci ; 81(1): 11, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38117357

ABSTRACT

Metabolic bone disorders and associated fragility fractures are major causes of disability and mortality worldwide and place an important financial burden on the global health systems. These disorders result from an unbalance between bone anabolic and resorptive processes and are characterized by different pathophysiological mechanisms. Drugs are available to treat bone metabolic pathologies, but they are either poorly effective or associated with undesired side effects that limit their use. The molecular mechanism underlying the most common metabolic bone disorders, and the availability, efficacy, and limitations of therapeutic options currently available are discussed here. A source for the unmet need of novel drugs to treat metabolic bone disorders is marine organisms, which produce natural osteoactive compounds of high pharmaceutical potential. In this review, we have inventoried the marine osteoactive compounds (MOCs) currently identified and spotted the groups of marine organisms with potential for MOC production. Finally, we briefly examine the availability of in vivo screening and validation tools for the study of MOCs.


Subject(s)
Biological Products , Bone Diseases, Metabolic , Humans , Biological Products/pharmacology
4.
Mol Pharm ; 20(10): 4994-5005, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37733943

ABSTRACT

Rhizochalinin (Rhiz) is a recently discovered cytotoxic sphingolipid synthesized from the marine natural compound rhizochalin. Previously, Rhiz demonstrated high in vitro and in vivo efficacy in various cancer models. Here, we report Rhiz to be highly active in human glioblastoma cell lines as well as in patient-derived glioma-stem like neurosphere models. Rhiz counteracted glioblastoma cell proliferation by inducing apoptosis, G2/M-phase cell cycle arrest, and inhibition of autophagy. Proteomic profiling followed by bioinformatic analysis suggested suppression of the Akt pathway as one of the major biological effects of Rhiz. Suppression of Akt as well as IGF-1R and MEK1/2 kinase was confirmed in Rhiz-treated GBM cells. In addition, Rhiz pretreatment resulted in a more pronounced inhibitory effect of γ-irradiation on the growth of patient-derived glioma-spheres, an effect to which the Akt inhibition may also contribute decisively. In contrast, EGFR upregulation, observed in all GBM neurospheres under Rhiz treatment, was postulated to be a possible sign of incipient resistance. In line with this, combinational therapy with EGFR-targeted tyrosine kinase inhibitors synergistically increased the efficacy of Rhiz resulting in dramatic inhibition of GBM cell viability as well as a significant reduction of neurosphere size in the case of combination with lapatinib. Preliminary in vitro data generated using a parallel artificial membrane permeability (PAMPA) assay suggested that Rhiz cannot cross the blood brain barrier and therefore alternative drug delivery methods should be used in the further in vivo studies. In conclusion, Rhiz is a promising new candidate for the treatment of human glioblastoma, which should be further developed in combination with EGFR inhibitors.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Proteomics , Apoptosis , Cell Proliferation , ErbB Receptors , Cell Line, Tumor , Brain Neoplasms/drug therapy
5.
J Biomol Struct Dyn ; 41(22): 13180-13197, 2023.
Article in English | MEDLINE | ID: mdl-36856049

ABSTRACT

Over the past few decades, various inhibitors of PRMT5 have been developed because of its involvement in a variety of tumor development processes. As of now, no drugs targeting PRMT5 have been approved, and multiple drugs entering clinical trials have proven to have side effects. In this study, PRMT5 was used to perform virtual screening of 52119 marine natural compounds by combining various methods. We constructed 20 pharmacophore models based on multiple ligands. The best pharmacophore model AARR_2 was selected by analyzing the statistical parameters of the pharmacophore model and the binding characteristics of the ligand active site, and then 3552 compounds were screened out. Compared with the positive compound, 46 compounds were selected based on the molecular docking fraction and docking mode analysis. Then, 3D-QSAR was used to analyze the relationship between structure and activity of the compounds. Then, in addition to marine compounds 36404, 36405 and 14436, we selected compound 46 (the positive control compound) and used the CLC-Pred online Web server to predict their cytotoxicity to human cell lines, making cell experiments possible. Finally, we conducted the prediction of ADMET in order to better promote clinical trials. After comprehensive judgment, we screened out the marine natural compounds 36404 and 36405 as candidates for PRMT5 substrate competitive inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
Biological Products , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , Protein-Arginine N-Methyltransferases , Pharmacophore , Biological Products/pharmacology , Enzyme Inhibitors/chemistry , Quantitative Structure-Activity Relationship , Ligands
6.
Mar Drugs ; 22(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38276639

ABSTRACT

USP7 is highly expressed in a variety of tumors and is thought to play a major role in cancer development. However, there are no drugs available to target USP7, so there is a need to develop new USP7 inhibitors. In this study, AutoQSAR, multiple linear regression, and Naive Bayesian models were constructed using 543 compounds and used to analyze marine compounds. After selecting 240 small molecules for molecular docking with Maestro, MOE, and GOLD, better small molecules than the positive compound P217564 were screened. The molecular structure of "1, 2-dibromobenzene" was optimized to improve the binding effect of the protein, and 10 optimized compounds in ADMET performed well during the screening process. To study the dynamic combination of protein-ligand effect consistency with static molecular docking, 100ns molecular dynamics simulations of candidate compound 1008-1, reference compound P217564, and negative-positive GNE2917 were conducted. The results of molecular docking and molecular dynamics simulation analysis showed that compound 1008-1 maintained a stable conformation with the target protein. Thus, the comprehensive analysis suggests that compound 1008-1 could provide new possibilities for USP7 covalent inhibitor candidates.


Subject(s)
Neoplasms , Quantitative Structure-Activity Relationship , Humans , Molecular Docking Simulation , Ubiquitin-Specific Peptidase 7 , Bayes Theorem , Molecular Dynamics Simulation
7.
Nat Prod Bioprospect ; 12(1): 12, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35357593

ABSTRACT

The development of highly facile synthetic procedures for the expedient synthesis of complex natural molecules is always in demand. As this aspect, the Diels-Alder reaction (DAR) has a versatile approach to the synthesis of complex natural compounds and highly regio-/stereoselcetive heterocyclic scaffolds. Additionally, α-pyrone and terpenoquinone are two versatile key intermediates that are prevalent in various bioactive natural compounds for instance, (±)-crinine, (±)-joubertinamine, (±)-pancratistatin, (-)-cyclozonarone, and 8-ephipuupehedione, etc. Hence, the current review summarizes the Diels-Alder reaction application of α-pyrone and terpenoquinone to the constructive synthesis of various natural products over the past two decades (2001-2021). Equally, it serves as a stencil for the invention and development of new synthetic strategies for high-complex molecular structured natural and heterocyclic molecules.

8.
Fish Shellfish Immunol ; 109: 51-61, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33276094

ABSTRACT

Sea urchins live in a challenging environment that requires rapid and efficient responses against pathogens and invaders. This response may be also important in reproductive processes once males and females release their gametes into water. In addition, the gonads are organs with dual function: reproductive organ and nutrient reserve, therefore it needs efficient protective mechanisms to preserve the nutrients as well as the reproductive cells. The aim of this study was to evaluate the presence and characterize antimicrobial molecules in the male and female gonads of the sea urchin Lytechinus variegatus. Through HPLC purification, antimicrobial activity test and mass spectrometry several antimicrobial molecules were found in the gonads of both gender. Computational in silico analyses showed that they are fragments of a glycoprotein called toposome, also known as major yolk protein (MYP) which is one of the major proteins found in the gonads. Although different functions have been reported for this protein, this is the first description of a direct antimicrobial activity in Lytechinus variegatus. The results indicate that when undergoing proteolysis the toposome generates different fragments with antimicrobial activity which may indicate the importance of a rapid defense response strategy against invading microorganisms in the gonads used by both males and females sea urchins.


Subject(s)
Anti-Infective Agents/immunology , Glycoproteins/genetics , Glycoproteins/immunology , Immunity, Innate/genetics , Lytechinus/genetics , Lytechinus/immunology , Amino Acid Sequence , Animals , Female , Gene Expression Profiling , Glycoproteins/chemistry , Male , Ovary/immunology , Ovary/metabolism , Sequence Alignment , Testis/immunology , Testis/metabolism
9.
Fish Shellfish Immunol, v. 109, p. 51-61, fev. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3379

ABSTRACT

Sea urchins live in a challenging environment that requires rapid and efficient responses against pathogens and invaders. This response may be also important in reproductive processes once males and females release their gametes into water. In addition, the gonads are organs with dual function: reproductive organ and nutrient reserve, therefore it needs efficient protective mechanisms to preserve the nutrients as well as the reproductive cells. The aim of this study was to evaluate the presence and characterize antimicrobial molecules in the male and female gonads of the sea urchin Lytechinus variegatus. Through HPLC purification, antimicrobial activity test and mass spectrometry several antimicrobial molecules were found in the gonads of both gender. Computational in silico analyses showed that they are fragments of a glycoprotein called toposome, also known as major yolk protein (MYP) which is one of the major proteins found in the gonads. Although different functions have been reported for this protein, this is the first description of a direct antimicrobial activity in Lytechinus variegatus. The results indicate that when undergoing proteolysis the toposome generates different fragments with antimicrobial activity which may indicate the importance of a rapid defense response strategy against invading microorganisms in the gonads used by both males and females sea urchins.

10.
Mar Drugs ; 18(9)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967369

ABSTRACT

Autophagy is an elegant and complex biological process that has recently attracted much attention from the scientific community. The compounds which are capable of control and modulation of this process have a promising potential as therapeutics for a number of pathological conditions, including cancer and neurodegenerative disorders. At the same time, due to the relatively young age of the field, there are still some pitfalls in the autophagy monitoring assays and interpretation of the experimental data. This critical review provides an overview of the marine natural compounds, which have been reported to affect autophagy. The time period from the beginning of 2016 to the middle of 2020 is covered. Additionally, the published data and conclusions based on the experimental results are re-analyzed with regard to the guidelines developed by Klionsky and colleagues (Autophagy. 2016; 12(1): 1-222), which are widely accepted by the autophagy research community. Remarkably and surprisingly, more than half of the compounds reported to be autophagy activators or inhibitors could not ultimately be assigned to either category. The experimental data reported for those substances could indicate both autophagy activation and inhibition, requiring further investigation. Thus, the reviewed molecules were divided into two groups: having validated and non-validated autophagy modulatory effects. This review gives an analysis of the recent updates in the field and raises an important problem of standardization in the experimental design and data interpretation.


Subject(s)
Aquatic Organisms/metabolism , Autophagy/drug effects , Biological Products/pharmacology , Animals , Biological Products/isolation & purification , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/physiopathology
11.
Mol Cell Biochem ; 473(1-2): 229-238, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32656679

ABSTRACT

Neurodegenerative diseases, such as Parkinson's disease, represent a biggest challenge for medicine, imposing high social and economic impacts. As a result, it is of utmost importance to develop new therapeutic strategies. The present work evaluated the neuroprotective potential of seaweeds extracts on an in vitro dopamine (DA)-induced neurotoxicity cellular model. The neuroprotective effects on SH-SY5Y cells' viability were estimated by the MTT assay. Changes in mitochondrial membrane potential (MMP), caspase-3 activity, and hydrogen peroxide (H2O2) production were determined. DA (30-3000 µM; 24 h) treatment decreased SH-SY5Y cells' viability in concentration and time-dependent manner, increasing the H2O2 production, MMP depolarization, and caspase-3 activity. On the other hand, DA (1000 µM; 24 h) toxicity was reduced (10-15%) with Sargassum muticum and Codium tomentosum extracts (1000 µg/mL; 24 h). The highest neuroprotective activity was exhibited by a methanolic extract obtained from Saccorhiza polyschides, which completely blunted DA effects. Results show that the marine seaweed S. polyschides contain substances with high neuroprotective potential against the toxicity induced by DA, exhibiting anti-apoptotic effects associated with both mitochondrial protection and caspase-3 inhibition. S. polyschides reveals, therefore, to be an excellent source of bioactive molecules, for new drugs development aiming PD therapeutics.


Subject(s)
Complex Mixtures , Neuroprotective Agents , Oxidative Stress/drug effects , Parkinson Disease , Sargassum/chemistry , Seaweed/chemistry , Cell Line, Tumor , Complex Mixtures/chemistry , Complex Mixtures/pharmacology , Humans , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology
12.
Mar Drugs ; 18(3)2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32121638

ABSTRACT

Alkaloids are nitrogenous compounds with various biological activities. Alkaloids with anti-inflammatory activity are commonly found in terrestrial plants, but there are few records of the identification and characterization of the activity of these compounds in marine organisms such as fungi, bacteria, sponges, ascidians, and cnidarians. Seaweed are a source of several already elucidated bioactive compounds, but few studies have described and characterized the activity of seaweed alkaloids with anti-inflammatory properties. In this review, we have gathered the current knowledge about marine alkaloids with anti-inflammatory activity and suggest future perspectives for the study and bioprospecting of these compounds.


Subject(s)
Alkaloids/chemistry , Anti-Inflammatory Agents/chemistry , Aquatic Organisms , Animals
13.
Biotechnol J ; 14(11): e1800607, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31297982

ABSTRACT

Marine organisms and micro-organisms are a source of natural compounds with unique chemical features. These chemical properties are useful for the discovery of new functions and applications of marine natural products (MNPs). To extensively exploit the potential implementations of MNPs, they are gathered in chemical databases that allow their study and screening for applications of biotechnological interest. However, the classification of MNPs is currently poor in generic chemical databases. The present availability of free-access-focused MNP databases is scarce and the molecular diversity of these databases is still very low when compared to the paid-access ones. In this review paper, the current scenario of free-access MNP databases is presented as well as the hindrances involved in their development, mainly compound dereplication. Examples and opportunities for using freely accessible MNP databases in several important areas of biotechnology are also assessed. The scope of this paper is, as well, to notify the latent potential of these information sources for the discovery and development of new MNPs in biotechnology, and push future efforts to develop a public domain MNP database freely available for the scientific community.


Subject(s)
Aquatic Organisms/chemistry , Bioengineering , Biological Products/chemistry , Biological Products/classification , Biotechnology , Databases, Chemical , Agriculture , Cosmetics , Food Industry , Marine Biology , Oceans and Seas , Water Microbiology
14.
Toxins (Basel) ; 10(7)2018 07 18.
Article in English | MEDLINE | ID: mdl-30021957

ABSTRACT

Marine sponges and cyanobacteria have a long history of co-evolution, with documented genome adaptations in cyanobionts. Both organisms are known to produce a wide variety of natural compounds, with only scarce information about novel natural compounds produced by cyanobionts. In the present study, we aimed to address their toxicological potential, isolating cyanobacteria (n = 12) from different sponge species from the coast of Portugal (mainland, Azores, and Madeira Islands). After large-scale growth, we obtained both organic and aqueous extracts to perform a series of ecologically-relevant bioassays. In the acute toxicity assay, using nauplii of Artemia salina, only organic extracts showed lethality, especially in picocyanobacterial strains. In the bioassay with Paracentrotus lividus, both organic and aqueous extracts produced embryogenic toxicity (respectively 58% and 36%), pointing to the presence of compounds that interfere with growth factors on cells. No development of pluteus larvae was observed for the organic extract of the strain Chroococcales 6MA13ti, indicating the presence of compounds that affect skeleton formation. In the hemolytic assay, none of the extracts induced red blood cells lysis. Organic extracts, especially from picoplanktonic strains, proved to be the most promising for future bioassay-guided fractionation and compounds isolation. This approach allows us to classify the compounds extracted from the cyanobacteria into effect categories and bioactivity profiles.


Subject(s)
Artemia/physiology , Cyanobacteria , Paracentrotus/physiology , Animals , Cyanobacteria/isolation & purification , Porifera/microbiology , Toxicity Tests, Acute
15.
Mar Drugs ; 15(11)2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29125578

ABSTRACT

Sargassum muticum is a brown seaweed with strong potential to be used as a functional food ingredient, mainly due to its antioxidant properties. It is widely used in traditional oriental medicine for the treatment of numerous diseases. Nevertheless, few studies have been conducted to add scientific evidence on its effects as well as on the mechanisms of action involved. In this work, the human cell line MCF-7 was used as an in vitro cellular model to evaluate the capability of Sargassum muticum enriched fractions to protect cells on an oxidative stress condition. The concentration of the bioactive compounds was obtained by vacuum liquid chromatography applied on methanol (M) and 1:1 methanol:dichloromethane (MD) crude extracts, resulting in seven enriched fractions from the M extraction (MF2-MF8), and eight fractions from the MD extraction (MDF1-MDF8). All fractions were tested for cytotoxic properties on MCF-7 cells and the nontoxic ones were tested for their capacity to blunt the damaging effects of hydrogen peroxide-induced oxidative stress. The nontoxic effects were also confirmed in 3T3 fibroblast cells as a nontumor cell line. The antioxidant potential of each fraction, as well as changes in the cell's real-time hydrogen peroxide production, in the mitochondrial membrane potential, and in Caspase-9 activity were evaluated. The results suggest that the protective effects evidenced by S. muticum can be related with the inhibition of hydrogen peroxide production and the inhibition of Caspase-9 activity.


Subject(s)
Biological Products/pharmacology , Oxidative Stress/drug effects , Sargassum/chemistry , Sargassum/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Biological Products/chemistry , Caspase 9 , Cell Survival/drug effects , Humans , Hydrogen Peroxide , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects
16.
BMC Cancer ; 17(1): 93, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28143426

ABSTRACT

BACKGROUND: Advanced urothelial carcinomas represent a considerable clinical challenge as they are difficult to treat. Platinum-based combination regimens obtain response rates ranging from 40 to 70% in first-line therapy of advanced urothelial carcinoma. In the majority of cases, however, the duration of these responses is limited, and when progression occurs, the outcome is generally poor. Therefore, novel therapeutic strategies are urgently needed. The purpose of the current research is to investigate the anticancer effects and the mode of action of the marine triterpene glycoside frondoside A in p53-wild type and p53-deficient human urothelial carcinoma cells. METHODS: Activity of frondoside A was examined in the human urothelial carcinoma cell lines RT112, RT4, HT-1197, TCC-SUP, T-24, and 486p. Effects of frondoside A on cell viability, either alone or in combination with standard cytotoxic agents were investigated, and synergistic effects were analyzed. Pro-apoptotic activity was assessed by Western blotting and FACS, alone and in combination with a caspases-inhibitor. The impact of functional p53 was investigated by siRNA gene silencing and the p53 inhibitor pifithrin-α. Effects on autophagy were studied using LC3B-I/II and SQSTM/p62 as markers. The unpaired Student's t-test was used for comparison of the data sets. RESULTS: Frondoside A shows high cytotoxicity in urothelial carcinoma cells with IC50s ranging from 0.55 to 2.33 µM while higher concentrations of cisplatin are required for comparable effects (IC50 = 2.03 ~ 5.88 µM). Induction of apoptosis by frondoside A was associated with the regulation of several pro-apoptotic factors, like caspase-3, -8, and -9, PARP, Bax, p21, DNA fragmentation, and externalization of phosphatidylserine. Remarkably, inhibition of p53 by gene silencing or pifithrin-α pretreatment, as well as caspase inhibition, did not suppress apoptotic activity of frondoside A, while cisplatin activity, in contrast, was significantly decreased. Frondoside A inhibited pro-survival autophagy, a known mechanism of drug resistance in urothelial carcinoma and showed synergistic activity with cisplatin and gemcitabine. CONCLUSIONS: A unique combination of properties makes marine compound frondoside A a promising candidate for the treatment of human urothelial carcinomas.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Glycosides/pharmacology , Triterpenes/pharmacology , Animals , Carcinoma, Transitional Cell/drug therapy , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Drug Screening Assays, Antitumor , Drug Synergism , Humans , Sea Cucumbers/chemistry , Tumor Suppressor Protein p53/metabolism , Urinary Bladder Neoplasms/drug therapy , Gemcitabine
17.
Curr Med Chem ; 24(42): 4779-4799, 2017.
Article in English | MEDLINE | ID: mdl-27903218

ABSTRACT

This review addresses in-depth recent structure-activity relationship (SAR) studies published in 2015 on new marine compounds and their synthetic analogues with potential or established anticancer activity. Priority was given to papers on in vitro screening methods of marine-derived bioactive compounds, usually performed using panels of human cancer cell lines, as a first step of the anticancer drugs discovery process. Our review describes compounds belonging to different classes of substances, namely terpenoids, glycosides, alkaloids, steroids, as well as other small molecular compounds. We believe that our review will not only help chemists in the design and synthesis of novel anticancer compounds possessing specific cytotoxic or cytostatic activity in human cancer cells, but will also extend the existing databases comprising data on bioactivity of marine natural compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Cell Proliferation/drug effects , Humans , Neoplasms/pathology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...