Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.388
Filter
1.
J Inflamm Res ; 17: 4151-4161, 2024.
Article in English | MEDLINE | ID: mdl-38952563

ABSTRACT

Purpose: The fibrinogen-to-albumin ratio (FAR) is a novel inflammation marker associated with various diseases. This study aimed to investigate the correlation between FAR and early neurological deterioration (END) after intravenous thrombolysis (IVT) in patients with acute ischemic stroke (AIS). Patients and Methods: From September 1, 2021, to March 31, 2023, continuously recruited AIS patients who received IVT within 4.5 hours were included in the study. Blood samples were collected in the emergency room before IVT. The National Institutes of Health Stroke Scale (NIHSS) score was assessed upon admission and after thrombolysis within the first 24 hours. END was defined as an increase in the NIHSS score by ≥ 4 points within 24 hours after thrombolysis. Multivariate logistic regression analysis was conducted to explore the relationship between FAR and END, and a receiver operating characteristic (ROC) curve was used to evaluate the predictive ability of FAR for END. Results: 343 participants were recruited, and 59 (17.2%) experienced END. Patients with END had higher FAR levels than those without END (P<0.001). Multivariate logistic regression analysis showed that FAR was independently associated with END, both as a continuous variable and as a tertile variable (P<0.005). After excluding patients with hemorrhagic transformation (HT), FAR remained independently associated with END (P<0.005). The area under the curve (AUC) of FAR for predicting END was 0.650 (95% CI=0.571-0.729, P<0.001), with an optimal cutoff of 72.367 mg/g, a sensitivity of 61.6%, and a specificity of 62.6%. Conclusion: FAR upon admission was independently associated with END after IVT and can be an effective predictor.

2.
J Appl Genet ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954397

ABSTRACT

Europe is highly dependent on soybean meal imports and anticipates an increase of domestic plant protein production. Ongoing climate change resulted in northward shift of plant hardiness zones, enabling spring-sowing of freezing-sensitive crops, including soybean. However, it requires efficient reselection of germplasm adapted to relatively short growing season and long-day photoperiod. In the present study, a PCR array has been implemented, targeting early maturity (E1-E4, E7, E9, and E10), pod shattering (qPHD1), and growth determination (Dt1) genes. This array was optimized for routine screening of soybean diversity panel (204 accessions), subjected to the 2018-2020 survey of phenology, morphology, and yield-related traits in a potential cultivation region in Poland. High broad-sense heritability (0.84-0.88) was observed for plant height, thousand grain weight, maturity date, and the first pod height. Significant positive correlations were identified between the number of seeds and pods per plant, between these two traits and seed yield per plant as well as between flowering, maturity, plant height, and first pod height. PCR array genotyping revealed high genetic diversity, yielding 98 allelic combinations. The most remarkable correlations were identified between flowering and E7 or E1, between maturity and E4 or E7 and between plant height and Dt1 or E4. The study demonstrated high applicability of this PCR array for molecular selection of soybean towards adaptation to Central Europe, designating recessive qPHD1 and dominant Dt1, E3, and E4 alleles as major targets to align soybean growth season requirements with the length of the frost-free period, improve plant performance, and increase yield.

3.
Eur J Radiol ; 177: 111557, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38954912

ABSTRACT

PURPOSE: When treating Lung Cancer, it is necessary to identify early treatment failure to enable timely therapeutic adjustments. The Aim of this study was to investigate whether changes in tumor diffusion during treatment with chemotherapy and bevacizumab could serve as a predictor of treatment failure. MATERIAL AND METHODS: A prospective single-arm, open-label, clinical trial was conducted between September 2014 and December 2020, enrolling patients with stage IV non-small cell lung cancer (NSCLC). The patients were treated with chemotherapy-antiangiogenic combination. Diffusion weighted magnetic resonance imaging (DW-MRI) was performed at baseline, two, four, and sixteen weeks after initiating treatment. The differences in apparent diffusion coefficient (ADC) values between pre- and post-treatment MRIs were recorded as Delta values (ΔADC). We assessed whether ΔADC could serve as a prognostic biomarker for overall survival (OS), with a five year follow up. RESULTS: 18 patients were included in the final analysis. Patients with a ΔADC value ≥ -3 demonstrated a significantly longer OS with an HR of 0.12 (95 % CI; 0.03- 0.61; p = 0.003) The median OS in patients with a ΔADC value ≥ -3 was 18 months, (95 % C.I; 7-46) compared to 7 months (95 % C.I; 5-9) in those with a ΔADC value < -3. CONCLUSION: Our findings suggest that early changes in tumor ADC values, may be indicative of a longer OS. Therefore, DW-MRI could serve as an early biomarker for assessing treatment response in patients receiving chemotherapy combined with antiangiogenic therapy.

4.
Physiol Plant ; 176(4): e14414, 2024.
Article in English | MEDLINE | ID: mdl-38956798

ABSTRACT

Clubroot disease caused by Plasmodiophora brassicae is becoming a serious threat to rapeseed (Brassica napus) production worldwide. Breeding resistant varieties using CR (clubroot resistance) loci is the most promising solution. Using marker-assisted selection and speed-breeding technologies, we generated Brassica napus materials in homozygous or heterozygous states using CRA3.7, CRA08.1, and CRA3.2 loci in the elite parental line of the Zhongshuang11 background. We developed three elite lines with two CR loci in different combinations and one line with three CR loci at the homozygous state. In our study, we used six different clubroot strains (Xinmin, Lincang, Yuxi, Chengdu, Chongqing, and Jixi) which are categorized into three groups based on our screening results. The newly pyramided lines with two or more CR loci displayed better disease resistance than the parental lines carrying single CR loci. There is an obvious gene dosage effect between CR loci and disease resistance levels. For example, pyramided lines with triple CR loci in the homozygous state showed superior resistance for all pathogens tested. Moreover, CR loci in the homozygous state are better on disease resistance than the heterozygous state. More importantly, no negative effect was observed on agronomic traits for the presence of multiple CR loci in the same background. Overall, these data suggest that the pyramiding of triple clubroot resistance loci conferred superior resistance with no negative effects on agronomic traits in Brassica napus.


Subject(s)
Brassica napus , Disease Resistance , Plant Diseases , Plasmodiophorida , Brassica napus/genetics , Brassica napus/parasitology , Disease Resistance/genetics , Plant Diseases/parasitology , Plant Diseases/genetics , Plant Diseases/immunology , Plasmodiophorida/physiology , Plasmodiophorida/pathogenicity , Plant Breeding/methods , Phenotype
5.
Front Neurol ; 15: 1361888, 2024.
Article in English | MEDLINE | ID: mdl-38962480

ABSTRACT

Background: Aneurysmal subarachnoid hemorrhage (aSAH) patients typically have poor prognoses. The anion gap (AG) has been proven to correlate with mortality in various critically ill patients. However, hypoalbuminemia can lead to underestimations of the true anion gap levels. This study was conducted to verify the prognostic value of single AG and albumin-corrected anion gap (ACAG) among aSAH patients. Methods: Significant factors in the univariate logistic regression analysis were included in the multivariate logistic regression analysis to explore the risk factors for mortality in aSAH patients and to confirm the independent relationship between ACAG and mortality. The restricted cubic spline (RCS) was used to visually show the relationship between ACAG level and mortality risk of aSAH patients. The predictive model for mortality was developed by incorporating significant factors into the multivariate logistic regression analysis. The prognostic value of ACAG and the developed model was evaluated by calculating the area under the receiver operating characteristics curve (AUC). Results: Among 710 aSAH patients, a 30-day mortality was observed in 20.3% of the cases. A positive relationship was demonstrated between the ACAG level and mortality in aSAH patients using the RCS curve. The multivariate logistic regression analysis helped discover that only six factors were finally and independently related to mortality of aSAH patients after adjusting for confounding effects, including the Hunt-Hess scale score (p = 0.006), surgical options (p < 0.001), white blood cell count (p < 0.001), serum chloride levels (p = 0.023), ACAG (p = 0.039), and delayed cerebral ischemia (p < 0.001). The AUC values for the AG, albumin, and ACAG in predicting mortality among aSAH patients were 0.606, 0.536, and 0.617, respectively. A logistic regression model, which includes the Hunt-Hess scale score, surgical options, white blood cell count, serum chloride levels, ACAG, and delayed cerebral ischemia, achieved an AUC of 0.911 for predicting mortality. Conclusion: The ACAG is an effective prognostic marker for aSAH patients. A prognostic model incorporating ACAG could help clinicians evaluate the risk of poor outcomes among aSAH patients, thereby facilitating the development of personalized therapeutic strategies.

6.
Cancer Diagn Progn ; 4(4): 482-488, 2024.
Article in English | MEDLINE | ID: mdl-38962547

ABSTRACT

Background/Aim: The Geriatric Nutritional Risk Index (GNRI) indicates nutritional status based on serum albumin concentration and ideal body weight. Pretreatment GNRI has been suggested as a prognostic factor for various malignancies. However, little is known about the clinical value of GNRI for small-cell lung cancer (SCLC), especially in elderly patients. Patients and Methods: We retrospectively analyzed 53 elderly (≥71) patients with extensive-disease (ED) SCLC treated with first-line platinum-doublet chemotherapy in relation to the pretreatment GNRI level in a real-world setting. Results: Thirty-six patients with a low GNRI (<92) had statistically poorer progression-free survival (PFS) and overall survival (OS) than 17 patients with a high GNRI (≥92) (median PFS=80 days vs. 133 days, respectively; p=0.002; median OS=123 days vs. 274 days, respectively; p=0.004). In a multivariate analysis, a low GNRI was also an independent poor prognostic factor for PFS [hazard ratio (HR)=0.396; 95% confidence interval (CI)=0.199-0.789; p=0.008] and OS (HR=0.295; 95%CI=0.143-0.608; p<0.001). Conclusion: The GNRI might be a predictive and prognostic marker in elderly patients with ED-SCLC treated with platinum-doublet chemotherapy.

7.
Biosens Bioelectron ; 262: 116543, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38963951

ABSTRACT

Early detection of cancer markers is critical for cancer diagnosis and cancer therapy since these markers may indicate cancer risk, incidence, and disease prognosis. Carcinoembryonic antigen (CEA) is a type of non-specific and broad-spectrum cancer biomarker commonly utilized for early cancer diagnosis. Moreover, it serves as an essential tool to assess the efficacy of cancer treatment and monitor tumor recurrence as well as metastasis, thus garnering significant attention for precise and sensitive CEA detection. In recent years, photoelectrochemical (PEC) techniques have emerged as prominent methods in CEA detection due to the advantages of PEC, such as simple equipment requirements, cost-effectiveness, high sensitivity, low interference from background signals, and easy of instrument miniaturization. Different signal amplification methods have been reported in PEC sensors for CEA analysis. Based on these, this article reviews PEC sensors based on various signal amplification strategies for detection of CEA during the last five years. The advantages and drawbacks of these sensors were discussed, as well as future challenges.

8.
Arch Med Res ; 55(5): 103034, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972195

ABSTRACT

BACKGROUND AND OBJECTIVE: Disturbed autonomic nervous system (ANS) may promote inflammatory, immune, and oxidative stress responses, which may increase the risk of acute coronary events. S100ß has been proposed as a biomarker of neuronal injury that would provide an insightful understanding of the crosstalk between the ANS, immune-inflammatory cells, and plaques that drive atherosclerosis. This study investigates the correlation between S100ß, and functional coronary stenosis as determined by quantitative flow ratio (QFR). METHODS: Patients with unstable angina pectoris (UAP) scheduled for coronary angiography and QFR were retrospectively enrolled. Serum S100ß levels were determined by enzyme-linked immunosorbent assay. The Gensini score was used to estimate the extent of atherosclerotic lesions and the cumulative sum of three-vessel QFR (3V-QFR) was calculated to estimate the total atherosclerotic burden. RESULTS: Two hundred thirty-three patients were included in this study. Receiver operator characteristic (ROC) curve indicated that S100ß>33.28 pg/mL predicted functional ischemia in patients with UAP. Multivariate logistic analyses showed that a higher level of S100ß was independently correlated with a functional ischemia-driven target vessel (QFR ≤0.8). This was also closely correlated with the severity of coronary lesions, as measured by the Gensini score (OR = 5.058, 95% CI: 2.912-8.793, p <0.001). According to 3V-QFR, S100ß is inversely associated with total atherosclerosis burden (B = -0.002, p <0.001). CONCLUSIONS: S100ß was elevated in the functional ischemia stages of UAP. It was independently associated with coronary lesion severity as assessed by Gensini score and total atherosclerosis burden as estimated by 3V-QFR in patients with UAP.

9.
Acta Biomater ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972624

ABSTRACT

The extracellular matrix (ECM) of cancer tissues is rich in dense collagen, contributing to the stiffening of these tissues. Increased stiffness has been reported to promote cancer cell proliferation, invasion, metastasis, and prevent drug delivery. Replicating the structure and mechanical properties of cancer tissue in vitro is essential for developing cancer treatment drugs that target these properties. In this study, we recreated specific characteristics of cancer tissue, such as collagen density and high elastic modulus, using a colorectal cancer cell line as a model. Using our original material, collagen microfibers (CMFs), and a constructed three-dimensional (3D) cancer-stromal tissue model, we successfully reproduced an ECM highly similar to in vivo conditions. Furthermore, our research demonstrated that cancer stem cell markers expressed in the 3D cancer-stromal tissue model more closely mimic in vivo conditions than traditional two-dimensional cell cultures. We also found that CMFs might affect an impact on how cancer cells express these markers. Our 3D CMF-based model holds promise for enhancing our understanding of colorectal cancer and advancing therapeutic approaches. STATEMENT OF SIGNIFICANCE: Reproducing the collagen content and stiffness of cancer tissue is crucial in comprehending the properties of cancer and advancing anticancer drug development. Nonetheless, the use of collagen as a scaffold material has posed challenges due to its poor solubility, hindering the replication of a cancer microenvironment. In this study, we have successfully recreated cancer tissue-specific characteristics such as collagen density, stiffness, and the expression of cancer stem cell markers in three-dimensional (3D) colorectal cancer stromal tissue, utilizing a proprietary material known as collagen microfiber (CMF). CMF proves to be an ideal scaffold material for replicating cancer stromal tissue, and these 3D tissues constructed with CMFs hold promise in contributing to our understanding of cancer and the development of therapeutic drugs.

10.
Anal Chim Acta ; 1316: 342827, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969404

ABSTRACT

BACKGROUND: In recent years, miRNAs have emerged as potentially valuable tumor markers, and their sensitive and accurate detection is crucial for early screening and diagnosis of tumors. However, the analysis of miRNAs faces significant challenges due to their short sequence, susceptibility to degradation, high similarity, low expression level in cells, and stringent requirements for in vitro research environments. Therefore, the development of sensitive and efficient new methods for the detection of tumor markers is crucial for the early intervention of related tumors. RESULTS: An ultrasensitive electrochemical/colorimetric dual-mode self-powered biosensor platform is established to detect microRNA-21 (miR-21) via a multi-signal amplification strategy. Gold nanoparticles (AuNPs) and VS4 nanosheets self-assembled 3D nanorods (VS4-Ns-Nrs) are prepared for constructing a superior performance enzyme biofuel cell (EBFC). The double-signal amplification strategy of Y-shaped DNA nanostructure and catalytic hairpin assembly (CHA) is adopted to further improve enhance the strength and specificity of the output signal. In addition, a capacitor is matched with EBFC to generate an instantaneous current that is amplified several times, and the output detection signal is improved once more. At the same time, electrochemical and colorimetric methods are used for dual-mode strategy to achieve the accuracy of detection. The linear range of detection is from 0.001 pg/mL to 1000 pg/mL, with a relatively low limit of detection (LOD) of 0.16 fg/mL (S/N = 3). SIGNIFICANCE: The established method enables accurate and sensitive detection of markers in patients with lung cancer, providing technical support and data reference for precise identification. It is anticipated to offer a sensitive and practical new technology and approach for early diagnosis, clinical treatment, and drug screening of cancer and other related major diseases.


Subject(s)
Biomarkers, Tumor , Biosensing Techniques , Colorimetry , Electrochemical Techniques , Gold , Lung Neoplasms , Metal Nanoparticles , MicroRNAs , Humans , Biosensing Techniques/methods , Lung Neoplasms/diagnosis , Electrochemical Techniques/methods , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood , Gold/chemistry , MicroRNAs/analysis , Metal Nanoparticles/chemistry , Limit of Detection
11.
Article in English | MEDLINE | ID: mdl-38969944

ABSTRACT

PURPOSE: We have previously reported that protracted Cyclooxygenase-2 (COX-2) activity in bone marrow-derived cells (BMDCs) infiltrating into biopsy wounds adjacent to the biopsy cavity of breast tumors in mice promotes M2-shift of macrophages and pro-metastatic changes in cancer cells, effects which were suppressed by oral administration of COX-2 inhibitors. Thus, local control of COX-2 activity in the biopsy wound may mitigate biopsy-induced pro-metastatic changes. METHODS: A combinatorial delivery system-thermosensitive biodegradable poly(lactic acid) hydrogel (PLA-gel) incorporating celecoxib-encapsulated poly(lactic-co-glycolic acid) nanoparticles (Cx-NP/PLA-gel)-was injected into the biopsy cavity of Py230 murine breast tumors to achieve local control of COX-2 activity in the wound stroma. RESULTS: A single intra-biopsy cavity injection of PLA-gel loaded with rhodamine-encapsulated nanoparticles (NPs) showed sustained local delivery of rhodamine preferentially to infiltrating BMDCs with minimal to no rhodamine uptake by the reticuloendothelial organs in mice. Moreover, significant reductions in M2-like macrophage density, cancer cell epithelial-to-mesenchymal transition, and blood vessel density were observed in response to a single intra-biopsy cavity injection of Cx-NP/PLA-gel compared to PLA-gel loaded with NPs containing no payload. Accordingly, intra-biopsy cavity injection of Cx-NP/PLA-gel led to significantly fewer metastatic cells in the lungs than control-treated mice. CONCLUSION: This study provides evidence for the feasibility of sustained, local delivery of payload preferential to BMDCs in the wound stroma adjacent to the biopsy cavity using a combinatorial delivery system to reduce localized inflammation and effectively mitigate breast cancer cell dissemination.

12.
J Ethnopharmacol ; 334: 118520, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964626

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Inflammation is directly related to disease progression and contributes significantly to the global burden of disease. Pothos chinensis (Raf.) Merr. (PCM) is commonly used in Yao medicine in China to treat tumors, and orthopedic illnesses such as knee osteoarthritis, and rheumatic bone discomfort. PCM was found to have significant anti-inflammatory properties in previous studies. AIM OF THE STUDY: To explore the active compounds of PCM and their anti-inflammatory pharmacological mechanisms through an integrated strategy of serum pharmacochemistry, network pharmacology, and serum metabolomics. MATERIALS AND METHODS: The qualitative and quantitative analyses of the chemical components of PCM were performed using UPLC-QTOF-MS/MS and UPLC, respectively, and the prototype components of PCM absorbed into the blood were analyzed. Based on the characterized absorbed into blood components, potential targets and signaling pathways of PCM anti-inflammatory were found using network pharmacology. Furthermore, metabolomics studies using UPLC-QTOF-MS/MS identified biomarkers and metabolic pathways related to the anti-inflammatory effects of PCM. Finally, the hypothesized mechanisms were verified by in vivo and in vitro experiments. RESULTS: Forty chemical components from PCM were identified for the first time, and seven of them were quantitatively analyzed, while five serum migratory prototype components were found. Network pharmacology KEGG enrichment analysis revealed that arachidonic acid metabolism, Tyrosine metabolism, TNF signaling pathway, NF-κB signaling pathway, and phenylalanine metabolism were the main signaling pathways of PCM anti-inflammatory. Pharmacodynamic results showed that PCM ameliorated liver injury and inflammatory cell infiltration and downregulated protein expression of IL-1ß, NF-κB p65, and MyD88 in the liver. Metabolomics studies identified 53 different serum metabolites, mainly related to purine and pyrimidine metabolism, phenylalanine metabolism, primary bile acid biosynthesis, and glycerophospholipid metabolism. The comprehensive results demonstrated that the anti-inflammatory modulatory network of PCM was related to 5 metabolites, 3 metabolic pathways, 7 targets, and 4 active components of PCM. In addition, molecular docking identified the binding ability between the active ingredients and the core targets, and the anti-inflammatory efficacy of the active ingredients was verified by in vitro experiments. CONCLUSION: Our study demonstrated the anti-inflammatory effect of PCM, and these findings provide new insights into the active ingredients and metabolic mechanisms of PCM in anti-inflammation.

13.
Sci Rep ; 14(1): 15037, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951569

ABSTRACT

The NK cell is an important component of the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC), also plays a significant role in PDAC development. This study aimed to explore the relationship between NK cell marker genes and prognosis, immune response of PDAC patients. By scRNA-seq data, we found the proportion of NK cells were significantly downregulated in PDAC and 373 NK cell marker genes were screened out. By TCGA database, we enrolled 7 NK cell marker genes to construct the signature for predicting prognosis in PDAC patients. Cox analysis identified the signature as an independent factor for pancreatic cancer. Subsequently, the predictive power of signature was validated by 6 GEO datasets and had an excellent evaluation. Our analysis of relationship between the signature and patients' immune status revealed that the signature has a strong correlation with immunocyte infiltration, inflammatory reaction, immune checkpoint inhibitors (ICIs) response. The NK cell marker genes are closely related to the prognosis and immune capacity of PDAC patients, and they have potential value as a therapeutic target.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Killer Cells, Natural , Pancreatic Neoplasms , Single-Cell Analysis , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/mortality , Killer Cells, Natural/immunology , Prognosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Biomarkers, Tumor/genetics , Single-Cell Analysis/methods , Female , Male , Gene Expression Regulation, Neoplastic , Sequence Analysis, RNA , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Middle Aged , Aged , Gene Expression Profiling
14.
Front Sports Act Living ; 6: 1424756, 2024.
Article in English | MEDLINE | ID: mdl-38957877

ABSTRACT

Previous research has demonstrated that stretching can enhance athletic performance and induce cardiovascular adaptations. This study aims to assess whether a 4-week preventative stretching routine can enhance heart rate variability and heart rate recovery, faster blood lactate clearance, and improve performance following submaximal strength exercises. Twenty-four healthy adults were recruited and randomly allocated to either the experimental group or the control group. Both groups engaged in submaximal strength exercises (5 sets to voluntary failure at 60% of 1RM) comprising bench press and back squat exercises under baseline conditions and after stretching protocol. The experimental group followed the Stretching Protocol, while the control group adhered to their regular training routine. ANOVA analysis revealed a significant pre-post interaction effect between groups in the variable of squat repetitions, although no notable pre- or post-differences were observed in heart rate variability, heart rate recovery, blood lactate concentration, or bench repetitions in either group. A 4-week preventative stretching program does not appear adequate to enhance lactate clearance and cardiovascular adaptation after submaximal strength exercises in resistance-trained individuals compared to the control group. However, it is plausible that such a stretching routine may mitigate muscle fatigue, though further investigation is warranted to substantiate this hypothesis.

15.
Talanta ; 278: 126498, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38959668

ABSTRACT

Lung cancer is the main cancer that endangers human life worldwide, with the highest mortality rate. The detection of lung tumor markers is of great significance for the early diagnosis and subsequent treatment of lung cancer. In this study, a vertical graphene field effect transistor (VGFET) immunosensor based on graphene/C60 heterojunction was created to offer quantitative detections for the lung tumor markers carcinoembryonic antigen (CEA), cytokeratin 19 fragment (Cyfra21-1), and neuron-specific enolase (NSE). The experimental results showed that the sensitive range for standard antigen is between 1 pg/ml to 100 ng/ml, with a limit of detection (LOD) of 5.6 amol/ml for CEA, 33.3 amol/ml for Cyfra 21-1 and 12.8 amol/ml for NSE (1 pg/ml for all). The detection accuracy for these tumor markers was compared with the clinically used method for clinical patients on serum samples. Results are highly consistent with clinically used immunoassay in its efficient diagnosis concentration range. Subsequently, the mesoporous silica nanospheres (MSNs) with an average size of 90 nm were surface modified with glutaraldehyde, and a second antibody was assembled on MSNs, which fixes nanospheres on the antigen and amplified the field effect. The LODs for three markers are 100 fg/ml (0.56 amol/ml for CEA) under optimal circumstances of detection. This result indicates that specific binding to MSNs enhances local field effects and can achieve higher sensing efficiency for tumor marker detection at extremely low concentrations, providing effective assistance for the early diagnosis of lung cancer.

16.
Article in English | MEDLINE | ID: mdl-38963643

ABSTRACT

BACKGROUND: The current understanding of the prognostic significance of B cells and their role in the tumor microenvironment (TME) in esophageal carcinoma (ESCA) is limited. METHODS: We conducted a screening for B-cell-related genes through the analysis of single-cell transcriptome data. Subsequently, we developed a B-cell-related gene signature (BRGrisk) using LASSO regression analysis. Patients from The Cancer Genome Atlas cohort were divided into a training cohort and a test cohort. Patients were categorized into high- and low-risk groups based on their median BRGrisk scores. The overall survival was assessed using the Kaplan-Meier method, and a nomogram based on BRGrisk was constructed. Immune infiltration profiles between the risk groups were also compared. RESULTS: The BRGrisk prognostic model indicated significantly worse outcomes for patients with high BRGrisk scores (p < 0.001). The BRGrisk-based nomogram exhibited good prognostic performance. Analysis of immune infiltration revealed that patients in the high-BRGrisk group had notably higher levels of immune cell infiltration and were more likely to be in an immunoresponsive state. Enrichment analysis showed a strong correlation between the prognostic gene signature and cancer-related pathways. IC50 results indicated that patients in the low-BRGrisk group were more responsive to common drugs compared to those in the high-BRGrisk group. CONCLUSIONS: This study presents a novel BRGrisk that can be used to stratify the prognosis of ESCA patients and may offer guidance for personalized treatment strategies aimed at improving prognosis.

17.
Sci Rep ; 14(1): 15173, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956143

ABSTRACT

Metastatic gastric cancer (GC) presents significant clinical challenges due to its poor prognosis and limited treatment options. To address this, we conducted a targeted protein biomarker discovery study to identify markers predictive of metastasis in advanced GC (AGC). Serum samples from 176 AGC patients (T stage 3 or higher) were analyzed using the Olink Proteomics Target panels. Patients were retrospectively categorized into nonmetastatic, metastatic, and recurrence groups, and differential protein expression was assessed. Machine learning and gene set enrichment analysis (GSEA) methods were applied to discover biomarkers and predict prognosis. Four proteins (MUC16, CAIX, 5'-NT, and CD8A) were significantly elevated in metastatic GC patients compared to the control group. Additionally, GSEA indicated that the response to interleukin-4 and hypoxia-related pathways were enriched in metastatic patients. Random forest classification and decision-tree modeling showed that MUC16 could be a predictive marker for metastasis in GC patients. Additionally, ELISA validation confirmed elevated MUC16 levels in metastatic patients. Notably, high MUC16 levels were independently associated with metastatic progression in T3 or higher GC. These findings suggest the potential of MUC16 as a clinically relevant biomarker for identifying GC patients at high risk of metastasis.


Subject(s)
Biomarkers, Tumor , CA-125 Antigen , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/blood , Male , Female , Biomarkers, Tumor/blood , Middle Aged , CA-125 Antigen/blood , Prognosis , Aged , Membrane Proteins/blood , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasm Metastasis , Retrospective Studies , Adult
18.
Mutat Res ; 829: 111874, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986233

ABSTRACT

The high mortality rate in cancer patients is always one of the main challenges of the health systems globally. Several factors are involved in the high rate of cancer related mortality, including late diagnosis and drug resistance. Cancer is mainly diagnosed in the advanced stages of tumor progression that causes the failure of therapeutic strategies and increases the death rate in these patients. Therefore, assessment of the molecular mechanisms associated with the occurrence of cancer can be effective to introduce early tumor diagnostic markers. MicroRNAs (miRNAs) as the stable non-coding RNAs in the biological body fluids are involved in regulation of cell proliferation, migration, and apoptosis. MiR-532 deregulation has been reported in different tumor types. Therefore, in the present review we discussed the role of miR-532 during tumor growth. It has been shown that miR-532 has mainly a tumor suppressor role through the regulation of transcription factors, chemokines, and signaling pathways such as NF-kB, MAPK, PI3K/AKT, and WNT. In addition to the independent role of miR-532 in regulation of cellular processes, it also functions as a mediator of lncRNAs and circRNAs. Therefore, miR-532 can be considered as a non-invasive diagnostic/prognostic marker as well as a therapeutic target in cancer patients.

19.
Ecotoxicol Environ Saf ; 282: 116676, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986336

ABSTRACT

The liver toxicity of alkylphenols (APs) has been demonstrated in animal studies. However, relevant epidemiological evidence is still lacking in humans, especially during pregnancy. We obtained the levels of biochemical indicators of liver function in early (<13 weeks, mean gestation=9.80±1.96 weeks) and late (≥32 weeks, mean gestation = 37.23±2.45 weeks) pregnancies from 219 pregnant women in the Guangxi Zhuang birth cohort from 2015-2017. We also examined the serum levels of APs in these pregnant women in early pregnancy. The present study aimed to investigate the correlations between the exposure of pregnant women to APs and their serum liver function indices. The results of the generalized linear model (GLM) in this study revealed that nonylphenol (NP) was positively correlated with total bilirubin (TBIL) (P=0.04) in early pregnancy, and 4-n-nonylphenol (4-N-NP) was negatively correlated with glutamyl transferase (GGT) (P=0.012). In late pregnancy, NP was positively associated with TBIL (P=0.002), and 4-tert-octylphenol (4-T-OP) was positively correlated with alanine aminotransferase (ALT) (P=0.02). Restricted cubic spline (RCS) results revealed doseresponse relationships between NP and TBIL (Poverall=0.011) and between 4-N-NP and GGT (Poverall=0.007) in early pregnancy. In late pregnancy, there were doseresponse relationships between NP and TBIL (Poverall=0.001) and between 4-T-OP and ALT (Poverall=0.033). There was also a doseresponse relationship between NP volume and GGT with an inverted 'U' shape (Poverall=0.041, Pnonlinear=0.012). Bayesian kernel machine regression modeling (BKMR) revealed that TBIL increased significantly (P<0.05) with increasing levels of coexposure to APs in both early and late pregnancy. Overall, exposure to APs during pregnancy affects maternal liver function to varying degrees. The present study provides new epidemiological evidence that exposure to alkylphenols in pregnant women interferes with liver function.

20.
BMC Oral Health ; 24(1): 780, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992585

ABSTRACT

BACKGROUND: This study delves into the intricate landscape of oral cancer, a global concern with a high incidence in Asian countries. We focus on oral squamous cell carcinoma (OSCC), primarily driven by the consumption of betel nut and its derivatives. OSCC often arises from premalignant lesions like oral submucous fibrosis (OSF). In Pakistan, OSCC is prevalent among men due to various addictive substances, including smokeless tobacco and chewing materials. Mutations in tumor suppressor genes, such as TP53 and p21, play crucial roles in this malignancy's development. We also explore the involvement of TUSC3 gene deletion in OSCC and OSF. METHODS: In this study we investigated demographics, TUSC3 gene expression, deletion analysis, and TP53 and p21 genetic alterations in OSCC and OSF patients (blood and tissue of 50 samples in each condition) who had tobacco derivates usage history. The association analysis was carried out mainly through PCR based genotyping. RESULTS: The study's patient cohort (OSCC and OSF) displayed a wide age range from 13 to 65 years (Mean = 32.96 years). Both conditions were more prevalent in males, with a male-female ratio of approximately 2.5:1. Chewing habits analysis revealed high frequencies of gutka use in both OSF and OSCC patients. TUSC3 expression analysis in OSCC cell lines indicated significant downregulation. Genotyping showed no TUSC3 deletion in OSF cases, but a deletion rate of over 22% in OSCC tissue samples. Analysis supported a significant association of TUSC3 deletion with OSCC development but not with OSF. Polymorphism in p53 exon 4 and p21 (rs1801270) were significantly associated with both OSCC and OSF, adding to their pathogenesis. Our findings further revealed a strong correlation between TUSC3 deletion and the excessive use of tobacco and related products, shedding light on the genetic underpinnings of OSCC development. CONCLUSIONS: Notably, our study provides a crucial insight into genetic aspects underlying OSCC and OSF in response of addictive consumption of areca nut, betel quid, and tobacco derivatives. A significant association between TUSC3 deletion and OSCC development, along with polymorphisms in TP53 and p21, underscores the importance of further research into the molecular mechanisms driving oral cancer progression for improved diagnosis and treatment outcomes.


Subject(s)
Carcinoma, Squamous Cell , Cyclin-Dependent Kinase Inhibitor p21 , Membrane Proteins , Mouth Neoplasms , Oral Submucous Fibrosis , Tobacco, Smokeless , Tumor Suppressor Protein p53 , Humans , Male , Oral Submucous Fibrosis/genetics , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Female , Adult , Middle Aged , Carcinoma, Squamous Cell/genetics , Pakistan , Aged , Tobacco, Smokeless/adverse effects , Young Adult , Cyclin-Dependent Kinase Inhibitor p21/genetics , Adolescent , Membrane Proteins/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , Areca/adverse effects , Gene Deletion , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...