Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters











Publication year range
1.
Animals (Basel) ; 14(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39272316

ABSTRACT

Freshwater mussels (order: Unionida) are highly imperiled globally and are increasingly the focus of captive propagation efforts to protect and restore wild populations. The Upper Tennessee River Basin (UTRB) in Virginia is a freshwater biodiversity hotspot hosting at least 45 of North America's ~300 species of freshwater mussels, including 21 threatened and endangered species listed under the U.S. Endangered Species Act. Recent studies have documented that viruses and other microbes have contributed to freshwater mussel population declines in the UTRB. We conducted a multi-year longitudinal study of captive-reared hatchery mussels released to restoration sites throughout the UTRB to evaluate their viromes and compare them to captive hatchery environments. We documented 681 viruses from 27 families. The hatchery mussels had significantly less viruses than those deployed to wild sites, with only 20 viruses unique to the hatchery mussels. After the hatchery mussels were released into the wild, their number of viruses initially spiked and then increased steadily over time, with 451 viruses in total unique to the mussels in the wild. We found Clinch densovirus 1 (CDNV-1), a virus previously associated with mass mortality events in the Clinch River, in all samples, but the wild site mussels consistently had significantly higher CDNV-1 levels than those held in the hatchery. Our data document substantial differences between the viruses in the mussels in the hatchery and wild environments and rapid virome shifts after the mussels are released to the wild sites. These findings indicate that mussel release programs might benefit from acclimatization periods or other measures to mitigate the potential negative effects of rapid exposure to infectious agents found in natural environments.

2.
Mar Environ Res ; 202: 106738, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39265327

ABSTRACT

Seismic activity, erosion, sedimentation, and extreme temperatures can cause compounding large-scale disturbances to marine organisms, like large intertidal foundational seaweeds. In November 2016, a 7.8 Mw earthquake uplifted 130 km of coastline by 0.5-6 m near Kaikoura, New Zealand and thereby increased intertidal desiccation, aerial temperatures, reef erosion, and water turbidity. Furthermore, stress on uplifted intertidal species was compounded by unprecedented marine heatwaves over the summer of 2017/18. Here we documented altered dominances of large foundational seaweed and possible flow-on effects on seaweed-associated flora and fauna, following the uplift and heatwaves. These compounding disturbances caused instant high canopy loss of the dominant primary foundation species - the large perennial canopy-forming southern bull kelp Durvillaea antarctica - and no post-disturbance recovery, suggesting a maintenance threshold has been exceeded. After canopy loss of the primary foundation species, alternative foundation species - i.e., subordinate competitors under pre-disturbance conditions (the perennial canopy-forming fucoids Carpophyllum maschalocarpum, Cystophora scalaris, and Hormosira banksii) increased in abundance. Furthermore, field observations of attachment interaction networks demonstrated that the primary and alternative foundation species facilitated different sessile and mobile taxa. For example, the smaller and more morphologically complex C. maschalocarpum, H. banksii, and C. scalaris, supported more novel attachment associations, whereas the larger Durvillaea supported longer attachment chains. Overall, our results highlight abrupt and potentially long-lasting ecological changes after compounding disturbances, which altered dominance hierarchies. Alternative foundation species are now more common than the pre-disturbance primary foundation species, with flow-on effects on wider communities that depend on biogenic habitats.

3.
Sci Rep ; 14(1): 20088, 2024 08 29.
Article in English | MEDLINE | ID: mdl-39209898

ABSTRACT

Maternal investment theory is the study of how breeding females allocate resources between offspring size and brood size to achieve reproductive success. In classical trade-off models, r/K-selection and bet-hedging selection, the primary predictors of maternal investments in offspring are population density and resource stability. In crowded, stable environments, K-selected females invest in large offspring at an equivalent cost in brood size. In uncrowded, unstable environments, r-selected females invest in large broods at an equivalent cost in offspring size. In unpredictable resource environments, bet-hedging females invest moderately in brood size and offspring size. The maternal risk-management model represents a profound departure from classical trade-off models. Maternal investments in offspring size, brood size, and brood number are shaped independently by autonomous risk factors: the duration of gaps in resources during seasonal cycles, rates of predation, and unpredictable catastrophic events. To date, no single model has risen to a position of preeminence. Here in sharks, we show that maternal investments within and across species do not agree with the predictions of trade-off models and instead agree with the predictions of the maternal risk-management model. Within and across shark species, offspring size and brood size were independent maternal investment strategies. The risk of starvation favored investments in larger offspring. The risk of predation favored investments in larger broods. If empirical studies continue to confirm its predictions, maternal-risk management may yet emerge as a unifying model of diverse reproductive adaptations by means of natural selection.


Subject(s)
Reproduction , Selection, Genetic , Sharks , Animals , Sharks/physiology , Female , Reproduction/physiology , Biological Evolution , Adaptation, Physiological , Risk Management , Clutch Size
4.
J Anim Ecol ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850096

ABSTRACT

Marine heatwaves (MHWs) can cause thermal stress in marine organisms, experienced as extreme 'pulses' against the gradual trend of anthropogenic warming. When thermal stress exceeds organismal capacity to maintain homeostasis, organism survival becomes time-limited and can result in mass mortality events. Current methods of detecting and categorizing MHWs rely on statistical analysis of historic climatology and do not consider biological effects as a basis of MHW severity. The re-emergence of ectotherm thermal tolerance landscape models provides a physiological framework for assessing the lethal effects of MHWs by accounting for both the magnitude and duration of extreme heat events. Here, we used a simulation approach to understand the effects of a suite of MHW profiles on organism survival probability across (1) three thermal tolerance adaptive strategies, (2) interannual temperature variation and (3) seasonal timing of MHWs. We identified survival isoclines across MHW magnitude and duration where acute (short duration-high magnitude) and chronic (long duration-low magnitude) events had equivalent lethal effects on marine organisms. While most research attention has focused on chronic MHW events, we show similar lethal effects can be experienced by more common but neglected acute marine heat spikes. Critically, a statistical definition of MHWs does not accurately categorize biological mortality. By letting organism responses define the extremeness of a MHW event, we can build a mechanistic understanding of MHW effects from a physiological basis. Organism responses can then be transferred across scales of ecological organization and better predict marine ecosystem shifts to MHWs.

6.
Fish Shellfish Immunol ; 151: 109664, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844186

ABSTRACT

Mass Mortality Events (MMEs) affecting the noble pen shell Pinna nobilis have been reported since 2016. In this work, we used an in vitro flow cytometric assay to evaluate phagocytosis, coupled with cytology and Electron Microscopy (TEM), to define animal immunocompetence following infection by P. nobilis Picornavirus (PnPV). The study was performed on 27 animals in July 2021 and May 2022 on two natural population from the Ebro Delta (Catalonia, Spain) and animals maintained in captivity at facilities in Valencia and Murcia Aquarium. Hemolymph was collected in the field and in captivity as a non-destructive sampling method. Based on dimension and internal complexity, flow cytometry identified three haemocyte types, distinguished in granulocytes, hyalinocytes and a third type, biggest in size and with high internal complexity and granularity. Those cells corresponded at ultrastructure to hemocytes with advanced phases of PnPV infection and related to cytopathic effect of the replicating virus displaying numerous Double Membrane Vesicles (DMVs) and cells corpse fusion. The results showed that pen shell in captivity had significantly lower Total Hemocyte Count (THC) compared with natural population of Alfacs Bay (mean number of 7-9 x 104 vs 2-5 x 105 cells/mL, respectively). FACS (Fluorescence-activated cell sorting) based phagocytosis analysis demonstrate that animals in captivity at IMEDMAR-UCV and Murcia Aquarium, had scarce or absent ability to phagocyte the two stimuli (Staphylococcus aureus and Zymosan A) (10,2 % ± 1,7 of positives) if compared with the natural population in Alfacs Bay (28,5 % ± 5,6 of positive). Ultrastructure images showed that PnPV itself can lead to an alteration of the hemocyte cytoskeleton, impairing the capabilities to perform an active phagocytosis and an efficient phagolysosome fusion.


Subject(s)
Hemocytes , Picornaviridae , Animals , Picornaviridae/immunology , Hemocytes/immunology , Hemocytes/ultrastructure , Immunocompetence , Bivalvia/immunology , Bivalvia/virology , Phagocytosis , Spain , Flow Cytometry/veterinary , Microscopy, Electron, Transmission/veterinary , Picornaviridae Infections/veterinary , Picornaviridae Infections/immunology , Picornaviridae Infections/virology
7.
PeerJ ; 12: e17321, 2024.
Article in English | MEDLINE | ID: mdl-38708355

ABSTRACT

The Akoya pearl oyster (Pinctada fucata (Gould)) is the most important species for pearl cultivation in Japan. Mass mortality of 0-year-old juvenile oysters and anomalies in adults, known as summer atrophy, have been observed in major pearl farming areas during the season when seawater temperatures exceed about 20 °C since 2019. In this study, we identified a novel birnavirus as the pathogen of summer atrophy and named it Pinctada birnavirus (PiBV). PiBV was first presumed to be the causative agent when it was detected specifically and frequently in the infected oysters in a comparative metatranscriptomics of experimentally infected and healthy pearl oysters. Subsequently, the symptoms of summer atrophy were reproduced by infection tests using purified PiBV. Infection of juvenile oysters with PiBV resulted in an increase in the PiBV genome followed by the atrophy of soft body and subsequent mortality. Immunostaining with a mouse antiserum against a recombinant PiBV protein showed that the virus antigen was localized mainly in the epithelial cells on the outer surface of the mantle. Although the phylogenetic analysis using maximum likelihood method placed PiBV at the root of the genus Entomobirnavirus, the identity of the bi-segmented, genomic RNA to that of known birnaviruses at the full-length amino acid level was low, suggesting that PiBV forms a new genus. The discovery of PiBV will be the basis for research to control this emerging disease.


Subject(s)
Birnaviridae , Pinctada , Animals , Pinctada/virology , Pinctada/genetics , Birnaviridae/genetics , Birnaviridae/isolation & purification , Phylogeny , Japan , Seasons , Genome, Viral/genetics , Atrophy/virology
8.
Prev Vet Med ; 227: 106206, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696942

ABSTRACT

The highly pathogenic Avian Influenza virus (HPAIV) H5N1 has caused a global outbreak affecting both wild and domestic animals, predominantly avian species. To date, cases of the HPAIV H5 Clade 2.3.4.4b in penguins have exclusively been reported in African Penguins. In Chile, the virus was confirmed in pelicans in December 2022 and subsequently spread across the country, affecting several species, including Humboldt penguins. This study aims to provide an overview of the incidents involving stranded and deceased Humboldt penguins and establish a connection between these events and HPAIV H5N1. Historical data about strandings between 2009 and 2023 was collected, and samples from suspected cases in 2023 were obtained to confirm the presence of HPAIV H5N1. Between January and August 2023, 2,788 cases of stranded and deceased penguins were recorded. Out of these, a total of 2,712 penguins deceased, evidencing a significative increase in mortality starting in early 2023 coinciding with the introduction and spreading of HPAIV H5N1 in the country. Thirty-seven events were categorized as mass mortality events, with the number of deceased penguins varying from 11 to 98. Most cases (97 %) were observed in the North of Chile. One hundred and eighty-one specimens were subjected to HPAIV diagnosis, four of which tested positive for HPAIV H5N1. Spatial analysis validates the correlation between mass mortality events and outbreaks of HPAIV in Chile. However, the limited rate of HPAIV H5N1 detection, which can be attributed to the type and quality of the samples, requiring further exploration.


Subject(s)
Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Spheniscidae , Animals , Spheniscidae/virology , Chile/epidemiology , Disease Outbreaks/veterinary , Influenza in Birds/epidemiology , Influenza in Birds/virology , Influenza in Birds/mortality
9.
J Invertebr Pathol ; 205: 108128, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735430

ABSTRACT

The crayfish plague pathogen Aphanomyces astaci has been implicated in a number of mass mortalities and irreversible population declines of native crayfish across Europe. At present, the reservoirs of the pathogen in Europe are mainly populations of invasive North American crayfish species. In southwestern Europe, including France, a particularly widespread invader is the red swamp crayfish Procambarus clarkii. Recent distribution data confirm that P. clarkii is present in at least 75 French departments, i.e. more than 78% of those in metropolitan France. We analysed the prevalence and pathogen load of A. astaci in 42 populations of this species in western France (Nouvelle Aquitaine region), where the species is most densely distributed, particularly in a wide range of environments around the Gironde estuary. The pathogen was detected by two different quantitative PCR assays in more than three quarters of the populations studied (34 out of 42); 163 out of 480 analysed crayfish individuals tested positive for the presence of A. astaci. In most cases, individual infection levels were very low, detectable with quantitative PCR but not sufficient for pathogen genotyping. In seven P. clarkii individuals from four populations, however, we were able to assess A. astaci variation by microsatellite markers and sequencing of mitochondrial markers. All these host specimens carried A. astaci genotype group D, haplotype d1, which has caused the majority of crayfish plague outbreaks in neighbouring Spain. In contrast, the French outbreaks genotyped to date (including eight newly analysed in this study) were mostly caused by strains of genotype group B, specific to the signal crayfish Pacifastacus leniusculus. Haplotype d1 found in P. clarkii was involved in one of the newly characterised outbreaks. Our study confirms that P. clarkii is a potentially important reservoir of the crayfish plague pathogen in France, but not the main source of the pathogen in mass mortalities of A. pallipes, probably due to different ecological requirements of the different invasive host crayfish. However, as P. clarkii continues to spread, the threat posed by this species to native crayfish is likely to increase.


Subject(s)
Aphanomyces , Astacoidea , Animals , Aphanomyces/genetics , Aphanomyces/physiology , Astacoidea/microbiology , France/epidemiology , Introduced Species , Prevalence
10.
Curr Biol ; 34(12): 2693-2701.e4, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38788707

ABSTRACT

Sea urchins are primary herbivores on coral reefs, regulating algal biomass and facilitating coral settlement and growth.1,2,3,4,5,6,7,8,9,10,11,12 Recurring mass mortality events (MMEs) of Diadema species Gray, 1825 have been recorded globally,13,14,15,16,17,18,19,20,21,22,23 the most notorious and ecologically significant of which occurred in the Caribbean in 1983,14,17,19,20 contributing to the shift from coral to algal-dominated ecosystems.17,24,25 Recently, first evidence of Diadema setosum mass mortality was reported from the eastern Mediterranean Sea.23 Here, we report extensive mass mortalities of several diadematoid species inhabiting the Red Sea and Western Indian Ocean (WIO)26,27,28 including first evidence of mortalities in the genus Echinothrix Peters, 1853. Mortalities initiated in the Gulf of Aqaba on December 2022 and span the Red Sea, the Gulf of Oman, and the Western Indian Ocean (Réunion Island), with population declines reaching 100% at some sites. Infected individuals are characterized by spine loss and tissue necrosis, resulting in exposed skeletons (i.e., tests) and mortality. Molecular diagnostics of the 18S rRNA gene confirm the presence of a waterborne scuticociliate protozoan most closely related to Philaster apodigitiformis in infected specimens-identical to the pathogen found in the 2022 Caribbean mass mortality of Diadema antillarum.13,15,18 Collapse of these key benthic grazers in the Red Sea and Western Indian Ocean may lead to algal dominance over corals, threatening the stability of coral reefs on a regional scale.29,30,31,32 We issue a warning regarding the further expansion of mortalities and call for immediate monitoring and conservation efforts for these key ecological species.


Subject(s)
Sea Urchins , Animals , Indian Ocean , Sea Urchins/parasitology , Sea Urchins/physiology , Coral Reefs
11.
Mar Environ Res ; 197: 106428, 2024 May.
Article in English | MEDLINE | ID: mdl-38492503

ABSTRACT

The critically endangered endemic bivalve Pinna nobilis from the Mediterranean Sea suffered a sudden population decline after a mass mortality event in early autumn 2016. Conservation efforts aimed at preventing extinction included safeguarding resistant individuals and implementing a breeding plan to contribute to the repopulation of the species. This study utilized a model combining Lagrangian dispersion and connectivity analyses to pinpoint optimal restocking sites in the Western Mediterranean. Our approach allowed to identify locations capable of sustaining and generating larvae for broader repopulation in key areas of the Western Mediterranean Sea prior to the mass mortality event. Six important repopulation locations from Murcia, Valencia and Balearic Islands were selected for reintroduction efforts. The results obtained in this study show how the network could be self-sufficient and able to self-replenish itself of recruits. Overall, our work can be used to direct the reintroduction of resistant animals in the Western Mediterranean Sea.


Subject(s)
Bivalvia , Humans , Animals , Mediterranean Sea , Spain
12.
Dis Aquat Organ ; 157: 107-112, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38546194

ABSTRACT

In the 1980s, a mass die-off of the long-spined sea urchin Diadema antillarum occurred on Florida and Caribbean coral reefs. D. antillarum populations largely did not recover, and in 2022, remaining populations experienced another mass mortality event. A ciliate most similar to Philaster apodigitiformis was identified as the causative agent of the 2022 event, which was named D. antillarum scuticociliatosis (DaSc). Here, we investigated possible treatments for this pathogen. We tested the efficacy of 10 compounds at final concentrations of 100, 50, 25, 12.5, 6.25, and 3.13 µM, or a 10-fold serial dilution series, against ciliates cultured from an infected D. antillarum specimen. Of the tested compounds, 8 induced 100% ciliate mortality at some dose after 24 h. The most effective (defined as those requiring the lowest dose to induce 100% ciliate mortality) were quinacrine and tomatine (both effective at 12.5 µM), followed by furaltadone and plumbagin (25 µM), bithionol sulfoxide and 2'4' dihydroxychalcone (50 µM), and oxyclozanide and carnidazole (100 µM). Toltrazuril and a commercially available anticiliate product containing naphthoquinones were not effective at any dose tested. Shortened (15 min) time trials were performed using ciliate cultures reared in natural seawater to better reflect natural environmental conditions, and revealed that 2 of the compounds (quinacrine and tomatine) induced 100% ciliate mortality at 100 µM, with tomatine also effective at 50 µM. This study identified several treatments effective against the causative agent of DaSc in vitro, but their toxicity and utility in vivo remain unknown.


Subject(s)
Ciliophora , Tomatine , Animals , Sea Urchins , Coral Reefs , Quinacrine
13.
Microorganisms ; 12(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38543507

ABSTRACT

Bioinvasions constitute both a direct and an indirect threat to ecosystems. Direct threats include pressures on local trophic chains, while indirect threats might take the form of an invasion of a microorganism alongside its host. The marine dinoflagellate Hematodinium perezi, parasitizing blue crabs (Callinectes sapidus), has a worldwide distribution alongside its host. In Greece, fluctuations in the blue crab population are attributed to overexploitation and the effects of climate change. The hypothesis of the present study was that blue crab population reductions cannot only be due to these factors, and that particular pathogens may also be responsible for the fluctuations. To investigate this hypothesis, both lethargic and healthy blue crab specimens were collected from three different fishing sites in order to assess the health status of this important species. Together with the lethargic responses, the hemolymph of the infested crabs presented a milky hue, indicating the first signs of parasitic infestation with H. perezi. The histopathological results and molecular identification demonstrated the effect of the presence of H. perezi in the internal organs and their important role in the mortality of blue crabs. Specifically, H. perezi, in three different tissues examined (heart, gills, hepatopancreas), affected the hemocytes of the species, resulting in alterations in tissue structure. Apart from this dinoflagellate parasite, the epibiotic peritrich ciliate Epistylis sp. was also identified, infecting the gills. This study represents the first detection of H. perezi in the eastern Mediterranean, demonstrating that this is the main causative agent of blue crab mortality on Greek coastlines.

14.
Glob Chang Biol ; 30(3): e17251, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38519869

ABSTRACT

Over the last decades, mass mortality events have become increasingly common across taxa with sometimes devastating effects on population biomass. In the aquatic environment, fish are sensitive to mass mortality events, particularly at the early life stages that are crucial for population dynamics. However, it has recently been shown for fish, that a single mass mortality event in early life typically does not lead to population collapse. Moreover, the frequency and intensity of extreme events that can cause mass mortality, such as marine heatwaves, are increasing. Here, we show that increasing frequency and intensity of mass mortality events may lead to population collapse. Since the drivers of mass mortality events are diverse, and often linked to climate change, it is challenging to predict the frequency and severity of future mass mortality events. As an alternative, we quantify the probability of population collapse depending on the frequency and intensity as well as the duration of mass mortality events. Based on 39 fish species, we show that the probability of collapse typically increases with increasing frequency, intensity, and duration of the mortality events. In addition, we show that the collapse depends on key traits such as natural mortality, recruitment variation, and density dependence. The presented framework provides quantitative estimates of the sensitivity of fish species to these increasingly common extreme events, which paves the way for potential mitigation actions to alleviate adverse impacts on harvested fish populations across the globe.


Subject(s)
Climate Change , Fishes , Animals , Population Dynamics , Biomass , Probability
15.
J Eukaryot Microbiol ; 71(3): e13021, 2024.
Article in English | MEDLINE | ID: mdl-38480471

ABSTRACT

Freshwater bivalves play key ecological roles in lakes and rivers, largely contributing to healthy ecosystems. The freshwater pearl mussel, Margaritifera margaritifera, is found in Europe and on the East coast of North America. Once common in oxygenated streams, M. margaritifera is rapidly declining and consequently assessed as a threatened species worldwide. Deterioration of water quality has been considered the main factor for the mass mortality events affecting this species. Yet, the role of parasitic infections has not been investigated. Here, we report the discovery of three novel protist lineages found in Swedish populations of M. margaritifera belonging to one of the terrestrial groups of gregarines (Eugregarinorida, Apicomplexa). These lineages are closely related-but clearly separated-from the tadpole parasite Nematopsis temporariae. In one lineage, which is specifically associated with mortality events of M. margaritifera, we found cysts containing single vermiform zoites in the gills and other organs of diseased individuals using microscopy and in situ hybridization. This represents the first report of a parasitic infection in M. margaritifera that may be linked to the decline of this mussel species. We propose a tentative life cycle with the distribution of different developmental stages and potential exit from the host into the environment.


Subject(s)
Bivalvia , Fresh Water , Phylogeny , Animals , Sweden , Fresh Water/parasitology , Bivalvia/parasitology , Apicomplexa/classification , Apicomplexa/isolation & purification , Apicomplexa/genetics , Apicomplexa/physiology , Gills/parasitology
16.
MethodsX ; 12: 102567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38287964

ABSTRACT

This study introduces a comprehensive method for quantifying mass mortality events in freshwater wildlife, exemplified by the ecological disaster in the Odra River in 2022. Our approach integrates field observations, statistical analysis, and ecological assessment to measure the impact of such events on various aquatic species. Key steps include systematic counting of deceased organisms, assessing population declines, and evaluating the ecological repercussions of invasive species. Utilizing the R programming language, we developed a framework that is adaptable to similar ecological crises in different aquatic environments. This methodology facilitates a detailed understanding of the scale and implications of mass mortality events, thereby contributing to effective environmental management and conservation efforts. •The analysis and modeling methods of the disaster are presented in the R programming language.•Exclusively open-source software was used for the analysis.•The analysis includes detailed data on the disaster's impact on various species.

17.
J Fish Dis ; 47(1): e13868, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37795684

ABSTRACT

In 2011 and 2015, four mass mortalities of Prussian carp (Carassius gibelio) were observed in a recreational freshwater lake and open freshwater in the western part of the Netherlands. Cyprinid herpesvirus 2 (CyHV-2) infection was suspected in these cases, based on presumptive gross diagnosis. To elucidate the cause of the mass mortalities diagnostic PCR assays were performed for CyHV-2, based on the helicase gene. Furthermore, the viral isolates were genotyped by sequencing the enlarged marker A and marker B sequences. Diagnostic PCR revealed that three of four samples were positive for CyHV-2, indicating these three mass mortalities were associated with CyHV-2 infection. The marker A sequence from one of the isolates found in this study was identical to those from different locations such as Asia and Middle East, suggesting a link among the isolates. This is the first detailed report on mass mortalities of Prussian carp associated with CyHV-2 infection in natural aquatic environments in the Netherlands. Since 2015, additionally, in total three CyHV-2 associated outbreaks of Dutch Prussian carp were seen in 2016 and 2020. These outbreaks in Prussian carp from lakes and open water suggest that the virus has been spreading in natural freshwaters in the Netherlands.


Subject(s)
Fish Diseases , Herpesviridae Infections , Herpesviridae , Animals , Herpesviridae Infections/epidemiology , Herpesviridae Infections/veterinary , Goldfish , Netherlands/epidemiology , Herpesviridae/genetics , Molecular Biology
18.
PeerJ ; 11: e16561, 2023.
Article in English | MEDLINE | ID: mdl-38107566

ABSTRACT

Marine sponges are prominent organisms of the benthic coral reef fauna, providing important ecosystem services. While there have been increasing reports that sponges are becoming one of the dominant benthic organisms in some locations and ecoregions (e.g. Caribbean), they can be impacted by changing environmental conditions. This study presents the first documentation of a mass mortality event of the barrel sponge Xestospongia sp. in the lower Gulf of Thailand and its consequences on population dynamics and size distribution. Two anthropogenic impacted reefs (Haad Khom and Mae Haad) of the island Koh Phangan and two anthropogenic non-impacted reefs of the islands Koh Yippon and Hin Yippon within the Mu Ko Ang Thong Marine National Park were surveyed in the years 2015 and 2016. The results showed a strong shift in population densities at Koh Phangan. Fatal "bleaching" ending up in mass mortality was observed for these reefs in 2015. Xestospongia sp. abundance decreased from 2015 to 2016 by 80.6% at Haad Khom and by 98.4% at Mae Haad. Sponges of all sizes were affected, and mortality occurred regardless of the survey depth (4 and 6 m). However, Xestospongia population densities in the Marine Park were at a constant level during the surveys. The abundances in 2015 were 65% higher at the Marine Park than at Koh Phangan and 92% higher in 2016. The most likely causes of the mass mortality event was a local harmful algal bloom event, pathogens, undetected local higher water temperatures, or a combination of these factors, whereas sea surface temperature analyses showed no marine heatwave during the observed mass mortality event in 2015. Considering the ecological importance of sponges such as Xestospongia sp., long-term monitoring of reefs and their environmental parameters should be implemented to prevent such mass die-offs.


Subject(s)
Porifera , Xestospongia , Animals , Ecosystem , Thailand/epidemiology , Population Dynamics
19.
PeerJ ; 11: e16675, 2023.
Article in English | MEDLINE | ID: mdl-38144189

ABSTRACT

Pervasive epizootic events have had a significant impact on marine invertebrates throughout the Caribbean, leading to severe population declines and consequential ecological implications. One such event was the regional collapse of herbivory, partly caused by the Diadema antillarum mortality event in 1983-84, resulting in a trophic cascade and altering the structure of reef communities. Consequently, there was a notable decrease in coral recruitment and an increase in the coverage of macroalgae. Nearly four decades later, in early 2022, the Caribbean basin experienced another widespread mass mortality event, further reducing the populations of D. antillarum. To assess the effects of this recent mortality event on the current demographics of D. antillarum, we surveyed eight populations along the eastern, northeastern, northern, and northwestern coast of Puerto Rico from May to July 2022, estimating their population density, size distribution, and disease prevalence. Additionally, the study compared these population parameters with data from four sites previously surveyed in 2012 and 2017 to understand the impact of the recent mortality event. The survey conducted in 2022 showed varying population densities at the surveyed reefs. Some populations exhibited mean densities of nearly one individual per square meter, while others had extremely low or no living individuals per square meter. The four populations with the highest density showed no evidence of disease, whereas the four populations with the lowest D. antillarum densities exhibited moderate to high disease prevalence. However, when considering all sites, the estimated disease prevalence remained below 5%. Nevertheless, the comparison with data from 2012 and 2017 indicated that the recent mortality event had a negative impact on D. antillarum demographics at multiple sites, as the densities in 2022 were reduced by 60.19% compared to those from the previous years. However, it is still too early to determine the severity of this new mortality event compared to the 1983-84 mortality event. Therefore, it is imperative to continue monitoring these populations.


Subject(s)
Anthozoa , Sea Urchins , Animals , Disease Outbreaks , Population Density , Puerto Rico/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL