Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Eur J Protistol ; 95: 126108, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39111267

ABSTRACT

Protists can endure challenging environments sustaining key ecosystem processes of the microbial food webs even under aridic or hypersaline conditions. We studied the diversity of protists at different latitudes of the Atacama Desert by massive sequencing of the hypervariable region V9 of the 18S rRNA gene from soils and microbial mats collected in the Andes. The main protist groups in soils detected in active stage through cDNA were cercozoans, ciliates, and kinetoplastids, while the diversity of protists was higher including diatoms and amoebae in the microbial mat detected solely through DNA. Co-occurrence networks from soils indicated similar assemblages dominated by amplicon sequence variants (ASVs) identified as Rhogostoma, Euplotes, and Neobodo. Microbial mat networks, on the other hand, were structured by ASVs classified as raphid-pennate diatoms and amoebae from the genera Hartmannella and Vannella, mostly negatively correlated to flagellates and microalgae. Additionally, our phylogenetic inferences of ASVs classified as Euplotes, Neobodo, and Rhogostoma were supported by sequence data of strains isolated during this study. Our results represent the first snapshot of the diversity patterns of culturable and unculturable protists and putative keystone taxa detected at remote habitats from the Atacama Desert.

2.
Diagnostics (Basel) ; 14(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337829

ABSTRACT

The Kondo-Fu type of spondyloepiphyseal dysplasia (SEDKF) is a rare skeletal dysplasia caused by homozygous or compound heterozygous mutations in the MBTPS1 gene. The MBTPS1 gene encodes a protein that is involved in the regulation of cholesterol and fatty acid metabolism. Mutations in MBTPS1 can lead to reduced levels of these lipids, which can have a number of effects on development, including skeletal anomalies, growth retardation, and elevated levels of blood lysosomal enzymes. This work reports the case of a 5-year-old girl with SEDKF. The patient had a severely short stature and a number of skeletal anomalies, including kyphosis, pectus carinatum, and reduced bone mineral density. She also had early onset cataracts and inguinal hernias. Genetic testing revealed two novel compound heterozygous variants in the MBTPS1 gene. These variants are predicted to disrupt the function of the MBTPS1 protein, which is consistent with the patient's clinical presentation. This case report adds to the growing body of evidence that mutations in the MBTPS1 gene are causal of SEDKF. We summarized the features of previous reported cases (with age ranges from 4 to 24 years) and identified that 80% had low stature, 70% low weight, 80% had bilateral cataracts and 70% showed Spondyloepiphyseal dysplasia on X-rays. The findings of this study suggest that SEDKF is a clinically heterogeneous disorder that can present with a variety of features. Further studies are needed to better understand the underlying mechanisms of SEDKF and to develop more effective treatments.

3.
Front Plant Sci ; 14: 1247814, 2023.
Article in English | MEDLINE | ID: mdl-37860235

ABSTRACT

The bacterial component of plant holobiont maintains valuable interactions that contribute to plants' growth, adaptation, stress tolerance, and antagonism to some phytopathogens. Teosinte is the grass plant recognized as the progenitor of modern maize, domesticated by pre-Hispanic civilizations around 9,000 years ago. Three teosinte species are recognized: Zea diploperennis, Zea perennis, and Zea mays. In this work, the bacterial diversity of three species of Mexican teosinte seeds was explored by massive sequencing of 16S rRNA amplicons. Streptomyces, Acinetobacter, Olivibacter, Erwinia, Bacillus, Pseudomonas, Cellvibrio, Achromobacter, Devosia, Lysobacter, Sphingopyxis, Stenotrophomonas, Ochrobactrum, Delftia, Lactobacillus, among others, were the bacterial genera mainly represented. The bacterial alpha diversity in the seeds of Z. diploperennis was the highest, while the alpha diversity in Z. mays subsp. mexicana race was the lowest observed among the species and races. The Mexican teosintes analyzed had a core bacteriome of 38 bacterial genera, including several recognized plant growth promoters or fungal biocontrol agents such as Agrobacterium, Burkholderia, Erwinia, Lactobacillus, Ochrobactrum, Paenibacillus, Pseudomonas, Sphingomonas, Streptomyces, among other. Metabolic inference analysis by PICRUSt2 of bacterial genera showed several pathways related to plant growth promotion (PGP), biological control, and environmental adaptation. The implications of these findings are far-reaching, as they highlight the existence of an exceptional bacterial germplasm reservoir teeming with potential plant growth promotion bacteria (PGPB). This reserve holds the key to cultivating innovative bioinoculants and formidable fungal antagonistic strains, thereby paving the way for a more sustainable and eco-friendly approach to agriculture. Embracing these novel NGS-based techniques and understanding the profound impact of the vertical transference of microorganisms from seeds could revolutionize the future of agriculture and develop a new era of symbiotic harmony between plants and microbes.

4.
Arch. bronconeumol. (Ed. impr.) ; 57(3): 186-194, Mar. 2021. ilus, tab
Article in English, Spanish | IBECS | ID: ibc-208394

ABSTRACT

Introduction: Primary ciliary dyskinesia (PCD) is characterized by an alteration in the ciliary structure causing difficulty in the clearance of respiratory secretions. Diagnosis is complex and based on a combination of techniques. The objective of this study was to design a gene panel including all known causative genes, and to corroborate their diagnostic utility in a cohort of Spanish patients.Methods: This was a multicenter cross-sectional study of patients with a high suspicion of PCD according to European Respiratory Society criteria. We designed a gene panel for massive sequencing using SeqCap EZ capture technology that included 44 genes associated with PCD.Results: We included 79 patients, 53 of whom had a diagnosis of confirmed or highly probable PCD. The sensitivity of the gene panel was 81.1%, with a specificity of 100%. Candidate variants were found in some of the genes of the panel in 43 patients with PCD, 51.2% (22/43) of whom were homozygotes and 48.8% (21/43) compound heterozygotes. The most common causative genes were DNAH5 and CCDC39. We found 52 different variants, 36 of which were not previously described in the literature.Conclusions: The design and implementation of a tailored gene panel produces a high yield in the genetic diagnosis of PCD. This panel provides a better understanding of the causative factors involved in these patients and lays down the groundwork for future therapeutic approaches. (AU)


Introducción: La discinesia ciliar primaria (DCP) es una enfermedad caracterizada por una alteración en la estructura ciliar que impide el correcto aclaramiento de las secreciones respiratorias. Su diagnóstico es complejo y se basa en una combinación de técnicas. El objetivo de este estudio fue diseñar un panel de genes incluyendo todos los genes causantes conocidos y comprobar su utilidad diagnóstica en una cohorte de pacientes españoles.Métodos: Estudio transversal multicéntrico de pacientes con sospecha elevada de DCP, aplicando los criterios de la European Respiratory Society. Diseño de un panel de genes para secuenciación masiva con la tecnología de captura SeqCap EZ technology, incluyendo 44 genes relacionados con la DCP.Resultados: Se incluyó a 79 pacientes de los que 53 presentaron un diagnóstico de DCP confirmado o muy probable. La sensibilidad del panel de genes fue del 81,1% con una especificidad del 100%. Se encontraron variantes candidatas en alguno de los genes del panel en 43 de los pacientes con DCP, siendo 51,2% (22/43) homocigotos y 48,8% (21/43) heterocigotos compuestos. Los genes causales más frecuentes fueron DNAH5 y CCDC39. Encontramos 52 variantes distintas, 36 no descritas previamente en la literatura.Conclusiones: El diseño y la implementación de un panel de genes a medida tiene un alto rendimiento diagnóstico genético de la DCP, lo que permite conocer mejor la afectación causal de estos pacientes y sentar las bases para futuros abordajes terapéuticos. (AU)


Subject(s)
Humans , Ciliary Motility Disorders/diagnostic imaging , Ciliary Motility Disorders/diagnosis , Ciliary Motility Disorders/genetics , Spain , Cross-Sectional Studies
5.
Arch Bronconeumol (Engl Ed) ; 57(3): 186-194, 2021 Mar.
Article in English, Spanish | MEDLINE | ID: mdl-32253119

ABSTRACT

INTRODUCTION: Primary ciliary dyskinesia (PCD) is characterized by an alteration in the ciliary structure causing difficulty in the clearance of respiratory secretions. Diagnosis is complex and based on a combination of techniques. The objective of this study was to design a gene panel including all known causative genes, and to corroborate their diagnostic utility in a cohort of Spanish patients. METHODS: This was a multicenter cross-sectional study of patients with a high suspicion of PCD, according to European Respiratory Society criteria, designed around a gene panel for massive sequencing using SeqCap EZ capture technology that included 44 genes associated with PCD. RESULTS: We included 79 patients, 53 of whom had a diagnosis of confirmed or highly probable PCD. The sensitivity of the gene panel was 81.1%, with a specificity of 100%. Candidate variants were found in some of the genes of the panel in 43 patients with PCD, 51.2% (22/43) of whom were homozygotes and 48.8% (21/43) compound heterozygotes. The most common causative genes were DNAH5 and CCDC39. We found 52 different variants, 36 of which were not previously described in the literature. CONCLUSIONS: The design and implementation of a tailored gene panel produces a high yield in the genetic diagnosis of PCD. This panel provides a better understanding of the causative factors involved in these patients and lays down the groundwork for future therapeutic approaches.


Subject(s)
Kartagener Syndrome , Cross-Sectional Studies , Homozygote , Humans , Kartagener Syndrome/diagnosis , Mutation
6.
Clin Chem Lab Med ; 58(12): 2017-2024, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32589593

ABSTRACT

Objectives Gaucher disease (GD) is the most common inherited lysosomal storage disease, caused by mutations in acid ß-glucosidase (GBA) gene. This study aimed to identify mutations in Andalusia patients with GD and their genotype-phenotype correlation. Methods Descriptive observational study. University Hospital Virgen del Rocio patients diagnosed from GD from 1999 to 2019 were included. Demographic and clinical data, ß-glucocerebrosidase activity, variants pathogenic in GBA gene and biomarkers for monitoring treatment were collected from digital medical record. Results Twenty-six patients with aged between 1 day and 52 years were studied. A total of six mutations described as pathogenic and one mutation not described above [c.937T>C (p.Tyr313His)] were identified in the GBA gene, four patients were homozygotes and 22 compound heterozygotes. Twenty-four patients were diagnosed in non-neuropathic form (type 1) and two cases presented neurological involvement (type 2 or 3). The most common variant was c.1226A>G (p.Asn409Ser), which was detected in 24 patients, followed by c.1448T>C (p.Leu483Pro) variant, identified in 13 patients. The c.1448T>C (p.Leu483Pro) mutation has been presented in the most severe phenotypes with neurological involvement associated with type 2 and 3 GD, while c.1226A>G (p.Asn409Ser) mutation has not been associated with neurological alterations. Splenomegaly and bone disease were the most frequent clinical manifestations, and thrombocytopenia was the most common hematological disorder. Conclusions The c.1226A>G (p.Asn409Ser) and c.1448T>C (p.Leu483Pro) mutations were the most common. The c.937T>C (p.Tyr313His) was identified as a novel mutation. The c.1448T>C (p.Leu483Pro) mutation was associated with neurological alterations and c.1226A>G (p.Asn409Ser) mutation has not been associated it.


Subject(s)
Gaucher Disease/genetics , Glucosylceramidase/genetics , beta-Glucosidase/genetics , Adolescent , Adult , Alleles , Child , Child, Preschool , Female , Gene Frequency/genetics , Genetic Association Studies/methods , Genotype , Glucosylceramidase/metabolism , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mutation , Phenotype , Spain/epidemiology , beta-Glucosidase/metabolism
7.
Toxicon ; 179: 8-20, 2020 May.
Article in English | MEDLINE | ID: mdl-32142716

ABSTRACT

Artificial urban lakes commonly have physicochemical conditions that contribute to rapid anthropogenic eutrophication and development of cyanobacterial blooms. Microcystis is the dominat genus in most freshwater bodies and is one of the main producter of microcystins. Using 454-pyrosequencing we characterized the bacterial community, with special emphasis on Microcystis, in three recreational urban lakes from Mexico City in both wet and dry seasons. We also evaluated some physicochemical parameters that might influence the presence of Microcystis blooms, and we associated the relative abundance of heterotrophic and autotrophic bacterial communities with their possible metabolic capacities. A total of 14 phyla, 18 classes, 39 orders, 53 families and 48 bacterial genera were identified in both seasons in the three urban lakes. Cyanobacteria had the highest relative abundance followed by Proteobacteria and Actinobacteria. Microcystis was the dominant taxon followed by Arthrospira, Planktothrix and Synechococcus. We also found heterotrophic bacteria associated with the blooms, such as Rhodobacter, Pseudomonas, Sphingomonas and, Porphyrobacter. The highest richness, diversity and dominance were registered in the bacterial community of the Virgilio Uribe Olympic Rowing-Canoeing Track in both seasons, and the lowest values were found in the Chapultepec Lake. The canonical correspondence analysis showed that dissolved oxygen and NO3-N concentrations might explain the presence of Microcystis blooms. The metabolic prediction indicated that these communities are involved in photosynthesis, oxidative phosphorylation, methane metabolism, carbon fixation, and nitrogen and sulfur metabolism. The lakes studied had a high prevalence of Microcystis, but average values of microcystins did not exceed the maximum permissible level established by the United States Environmental Protection Agency for recreational and cultural activities. The presence of cyanobacteria and microcystins at low to moderate concentrations in the three lakes could result in ecosystem disruption and increase animal and human health risks.


Subject(s)
Environmental Monitoring , Microcystis/growth & development , Ecosystem , Eutrophication , Lakes/microbiology , Mexico , Seasons
8.
Adv Exp Med Biol ; 1185: 215-219, 2019.
Article in English | MEDLINE | ID: mdl-31884614

ABSTRACT

During the last 20 years, our group has focused on identifying the genes and mutations causative of inherited retinal dystrophies (IRDs). By applying massive sequencing approaches (NGS) in more than 500 familial and sporadic cases, we attained high diagnostic efficiency (85%) with a custom target gene panel and over 75% using whole exome sequencing (WES). Close to 40% of pathogenic alleles are novel mutations, which demand specific in silico tests and in vitro assays. Notably, missense variants are by far the most common type of mutation identified (around 40%), with small in-frame indels being less frequent (2%). To fill the gap of unsolved cases, when no candidate gene or only a single pathogenic allele has been identified, additional scientific and technical issues remain to be addressed. Reliable detection of genomic rearrangements and copy number variants (partial or complete), deep intronic mutations, variants that cause aberrant splicing events in retina-specific transcripts, functional assessment of hypomorphic missense alleles, mutations in regulatory sequences, the contribution of modifier genes to the IRD phenotype, and detection of low heteroplasmy mtDNA mutations are among the new challenges to be met.


Subject(s)
Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics , Alleles , DNA Copy Number Variations , DNA, Mitochondrial/genetics , Humans , Introns , Mutation, Missense , Phenotype
9.
Microorganisms ; 7(12)2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31835464

ABSTRACT

We used barcoded sequencing to analyze the eukaryotic population in the grape berries at different ripening states in four Australian vineyards. Furthermore, we used an innovative compositional data analysis for assessing the diversity of microbiome communities. The novelty was the introduction of log-ratio balances between the detected genera. Altogether, our results suggest that fungal communities were more impacted by the geographical origin of the Australian vineyards than grape variety and harvest time. Even if the most abundant genera were Aureobasidium and Mycosphaerella, they were ubiquitous to all samples and were not discriminative. In fact, the balances and the fungal community structure seemed to be greatly affected by changes of the genera Penicillium, Colletotrichum, Aspergillus, Rhodotorula, and Botrytis. These results were not evident from the comparison of relative abundance based on OTU counts alone, remarking the importance of the balance analysis for microbiome studies.

10.
Front Microbiol ; 10: 531, 2019.
Article in English | MEDLINE | ID: mdl-30967846

ABSTRACT

Palm wine is obtained by fermentation of palm tree sap. In the Pacific coast of Mexico, palm wine is called Tuba and it is consumed as a traditional fermented beverage. Tuba has empirical applications such as an auxiliary in gastrointestinal diseases and a good source of nutrients. In the present study, a next-generation sequencing of the V3-V4 regions of the 16S rRNA gene was employed to analyze bacterial diversity and population dynamics during the fermentation process of Tuba, both in laboratory controlled conditions and in commercial samples from local vendors. Taxonomic identification showed that Fructobacillus was the main genus in all the samples, following by Leuconostoc, Gluconacetobacter, Sphingomonas, and Vibrio. Alpha diversity analysis demonstrated variability between all the samples. Beta diversity clustered the bacterial population according to the collection origin of the sample. Metabolic functional profile inference showed that the members of the bacterial communities may present the vitamin, antibiotic and antioxidant biosynthesis genes. Additionally, we further investigated the correlation between the predominant genera and some composition parameters of this beverage. This study provides the basis of the bacterial community composition and functionality of the fermented beverage.

11.
Rev. colomb. cardiol ; 25(4): 264-276, jul.-ago. 2018. tab, graf
Article in Spanish | LILACS, COLNAL | ID: biblio-985469

ABSTRACT

Resumen Las cardiopatías familiares son un grupo de enfermedades con alta heterogeneidad clínica y genética. Debido a que pueden heredarse y a su asociación con la muerte súbita, se recomienda efectuar un estudio clínico y genético del individuo afectado y su familia a través de una unidad especializada. Con la implementación de la secuenciación masiva se ha facilitado el acceso a los estudios genéticos en la práctica clínica de forma más rutinaria. Sin embargo, dada la gran cantidad de información obtenida se hacen necesarios el análisis y la interpretación adecuada de los resultados para garantizar un diagnóstico correcto. Este nuevo modelo de medicina amplía nuestra comprensión sobre estas patologías, gracias a que optimiza el diagnóstico, da una mejor aproximación pronóstica de los pacientes e identifica individuos asintomáticos en riesgo. Este artículo pretende realizar una revisión de la arquitectura genética de las enfermedades cardíacas hereditarias y proporcionar un enfoque práctico acerca de la utilidad de la Medicina genómica en el diagnóstico, la estratificación del riesgo y el estudio familiar en pacientes con este tipo de patologías.


Abstract The familial heart diseases are a group of diseases with high clinical and genomic heterogeneity. As they can be inherited and are associated with sudden death, it is recommended to perform a clinical and genetic study of the individual affected, as well as the family, in a specialised unit. The implementation of massive sequencing has meant that access to genetic studies is available in the most routine clinical practice. However, due to the large amount of information obtained, the results have to analysed and interpreted to ensure a correct diagnosis. This new medicine model widens the understanding of these diseases, as due to the diagnosis being optimised, it provides a more accurate prognosis for the patients, and identifies asymptomatic individuals at risk. A review is presented on the genetic architecture of heritable heart disease and provides a practical approach on the usefulness of Genomic Medicine in the diagnosis, risk stratification, and the familial study in patients with these types of heart diseases.


Subject(s)
Humans , Death, Sudden, Cardiac , Cardiomyopathies , Phenotype , Whole Genome Sequencing , Genotype
12.
Int J Food Microbiol ; 281: 36-46, 2018 09 20.
Article in English | MEDLINE | ID: mdl-29807290

ABSTRACT

The main losses in viticulture around the world are normally associated with rotten grapes affecting both the chemical composition and the grape microbiota that later might affect the alcoholic fermentation. We analyzed the population in musts obtained from sour rotten, botrytized and healthy Macabeo grapes and the population dynamics during the spontaneous alcoholic fermentation by culture dependent and various culture independent methods including, for the first time, qPCR and massive sequencing. Grape health state affected the fermentation kinetics and also the microbial diversity and composition. Unexpectedly, the fermentation proceeded the fastest in the rotten must followed by the healthy and the botrytized grapes. As in previous studies, plate cell counts and qPCR results confirmed the increase in the number of both bacteria and fungi in the musts from damaged grapes. Massive sequencing detected higher biodiversity than the other techniques at each stage, with Saccharomyces and Oenococcus found already in the grape must. Hanseniaspora osmophila replaced to Hanseniaspora uvarum as the predominant yeast during the mid-fermentation stage for both damaged grapes. Furthermore, musts and beginning of fermentation from rotten and botrytized grapes consistently had a higher presence of the fungi Zygosaccharomyces, Penicillium and Aspergillus while high abundance of Botrytis were observed just for botrytized grapes. As expected, the acetic acid bacteria number increased in musts from rotten and botrytized grapes, mostly due to changes in proportion of the genus Gluconoacetobacter which remained more abundant during damaged grapes fermentation than during healthy ones. Interestingly, the presence of Oenococcus oeni at the end of the alcoholic fermentation was strongly affected by the health status of the grapes.


Subject(s)
Botrytis/physiology , Food Microbiology , Microbiota/physiology , Vitis/microbiology , Biodiversity , Fermentation , Wine/microbiology , Yeasts/classification , Yeasts/physiology
13.
Curr Genet ; 63(5): 819-829, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28401295

ABSTRACT

Metagenomics is the technique, or set of techniques, whose main objective is to determine the microbial population that can be found in a determined environment, studied in the context of its community. For this, it uses the techniques of massive sequencing, or next generation sequencing, due to the difficulties presented by traditional techniques when trying to transfer all the microorganisms present in a given environment to the laboratory. Metagenomics is a newly created technique, which was born at the beginning of the twenty-first century, and since then the interest of the world scientific community in fields as diverse as medicine, biotechnology, agriculture or genetics has not left to grow. In this article, the authors make a historical review of the metagenomics, analyze and evaluate the different massive sequencing platforms used for metagenomic assays, review the current literature on this subject and advance future problems with which researchers who decide to go deeper in this field could find. In this way, the prior knowledge of the researcher will facilitate the approach of his research.


Subject(s)
Metagenomics , Research , Evolution, Molecular , High-Throughput Nucleotide Sequencing , Humans , Metagenome , Metagenomics/methods , Phylogeny , Publications/statistics & numerical data , RNA, Ribosomal, 16S/genetics
14.
J Alzheimers Dis ; 58(1): 55-67, 2017.
Article in English | MEDLINE | ID: mdl-28387676

ABSTRACT

The possibility that patients diagnosed with Alzheimer's disease (AD) have disseminated fungal infection has been recently advanced by the demonstration of fungal proteins and DNA in nervous tissue from AD patients. In the present study, next-generation sequencing (NGS) was used to identify fungal species present in the central nervous system (CNS) of AD patients. Initially, DNA was extracted from frozen tissue from four different CNS regions of one AD patient and the fungi in each region were identified by NGS. Notably, whereas a great variety of species were identified using the Illumina platform, Botrytis cinerea and Cryptococcus curvatus were common to all four CNS regions analyzed. Further analysis of entorhinal/cortex hippocampus samples from an additional eight AD patients revealed a variety of fungal species, although some were more prominent than others. Five genera were common to all nine patients: Alternaria, Botrytis, Candida, Cladosporium, and Malassezia. These observations could be used to guide targeted antifungal therapy for AD patients. Moreover, the differences found between the fungal species in each patient may constitute a basis to understand the evolution and severity of clinical symptoms in AD.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Fungi/pathogenicity , DNA, Fungal/metabolism , Female , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/classification , Humans , Male , Principal Component Analysis , RNA, Messenger/metabolism
15.
Int J Cancer ; 140(7): 1551-1563, 2017 04 01.
Article in English | MEDLINE | ID: mdl-27997699

ABSTRACT

In developed countries, endometrial carcinoma is the most common cancer that affects the female genital tract. Endometrial carcinoma is divided into two main histological types, type I or endometrioid and type II or non-endometrioid, each of which have characteristic, although not exclusive, molecular alterations and mutational profiles. Nevertheless, information about the implication and relevance of some of these genes in this disease is lacking. We sought here to identify new recurrently mutated genes in endometrioid cancers that play a role in tumourigenesis and that influence the clinical outcome. We focused on low-grade, non-ultramutated tumours as these tumours have a worse prognosis than the ultramutated POLE-positive endometrioid endometrial carcinomas (EECs). We performed exome-sequencing of 11 EECs with matched normal tissue and subsequently validated 15 candidate genes in 76 samples. For the first time, we show that mutations in chromatin remodelling-related genes (KMT2D, KMT2C, SETD1B and BCOR) and in DNA-repair-related genes (BRCA1, BRCA2, RAD50 and CHD4) are frequent in this subtype of endometrial cancer. The alterations to these genes occurred with frequencies ranging from 35.5% for KMT2D to 10.5% for BRCA1 and BCOR, with some showing a tendency toward co-occurrence (RAD50-KMT2D and RAD50-SETD1B). All these genes harboured specific mutational hotspots. In addition, the mutational status of KMT2C, KMT2D and SETD1B helps to predict the degree of myometrial invasion, a critical prognostic feature. These results highlight the possible implication of these genes in this disease, creating opportunities for new therapeutic approaches.


Subject(s)
Carcinoma, Endometrioid/pathology , Chromatin Assembly and Disassembly , Chromatin/chemistry , DNA Repair , Endometrial Neoplasms/pathology , Mutation , Carcinoma, Endometrioid/genetics , Cell Line, Tumor , Computational Biology , DNA Mutational Analysis , Endometrial Neoplasms/genetics , Exome , Female , Genetic Predisposition to Disease , Humans , Immunohistochemistry , Microsatellite Instability , Mutation, Missense , Myometrium/metabolism , Myometrium/pathology , Prognosis
16.
Front Microbiol ; 7: 338, 2016.
Article in English | MEDLINE | ID: mdl-27014252

ABSTRACT

Interest in the use of non-Saccharomyces yeasts in winemaking has been increasing due to their positive contributions to wine quality. The non-Saccharomyces yeast Hanseniaspora vineae is an apiculate yeast that has been associated with the production of wine with good aromatic properties. However, little is known about the fermentation dynamics of H. vineae in natural must and its interaction with autochthonous yeasts. In the present study, we performed semi industrial fermentations of Macabeo and Merlot musts inoculated with either H. vineae or S. cerevisiae. The yeast population dynamics were monitored by plate culturing, PCR-DGGE and massive sequencing techniques. The results obtained with these techniques show that H. vineae was able dominate the autochthonous microbiota in Macabeo must but not in Merlot must, which exhibited a larger, more diverse yeast population. The presence of H. vineae throughout most of the Macabeo fermentation resulted in more fruity and flowery wine, as indicated by the chemical analysis of the final wines, which demonstrated a strong presence of phenyl ethyl acetate at concentrations higher than the threshold of perception and approximately 50 times more than that produced in wines fermented with S. cerevisiae. This compound is associated with fruity, floral and honey aromas.

17.
Rev Esp Cardiol (Engl Ed) ; 69(1): 61-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26654849

ABSTRACT

Massive DNA sequencing, also known as next-generation sequencing, has revolutionized genetic diagnosis. This technology has reduced the effort and cost needed to analyze several genes simultaneously and has made genetic evaluation available to a larger number of patients. In hypertrophic cardiomyopathy, genetic analysis has increased from the 3 main genes implicated in the disease (MYH7, MYBPC3, TNNT2) to sequencing of more than 20 related genes. Despite the advantages of acquiring this additional information, many patients show variants of uncertain significance (mainly amino acid changes), which may also be present in at least 1 healthy control undergoing genome sequencing. This will be a dead-end situation unless the variant can be demonstrated to be associated with the disease in the patient's family. In the absence of clear evidence that these variants are truly pathogenic, they cannot be used for reliable genetic counselling in family members. Massive sequencing also enables identification of new candidate genes, but again, the problem of variants of uncertain significance limits the success of these assessments.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Carrier Proteins/genetics , DNA/genetics , Genetic Testing/methods , Mutation , Cardiomyopathy, Hypertrophic/diagnosis , DNA Mutational Analysis , Humans , Pedigree , Phenotype
18.
Microb Ecol ; 70(4): 936-47, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26045157

ABSTRACT

The exposure of fresh sulfide-rich lithologies by the retracement of the Nevado Pastoruri glacier (Central Andes, Perú) is increasing the presence of heavy metals in the water as well as decreasing the pH, producing an acid rock drainage (ARD) process in the area. We describe the microbial communities of an extreme ARD site in Huascarán National Park as well as their correlation with the water physicochemistry. Microbial biodiversity was analyzed by FLX 454 sequencing of the 16S rRNA gene. The suggested geomicrobiological model of the area distinguishes three different zones. The proglacial zone is located in the upper part of the valley, where the ARD process is not evident yet. Most of the OTUs detected in this area were related to sequences associated with cold environments (i.e., psychrotolerant species of Cyanobacteria or Bacteroidetes). After the proglacial area, an ARD-influenced zone appeared, characterized by the presence of phylotypes related to acidophiles (Acidiphilium) as well as other species related to acidic and cold environments (i.e., acidophilic species of Chloroflexi, Clostridium and Verrumicrobia). Sulfur- and iron-oxidizing acidophilic bacteria (Acidithiobacillus) were also identified. The post-ARD area was characterized by the presence of OTUs related to microorganisms detected in soils, permafrost, high mountain environments, and deglaciation areas (Sphingomonadales, Caulobacter or Comamonadaceae).


Subject(s)
Bacteria/genetics , Biodiversity , Ice Cover/microbiology , RNA, Ribosomal, 16S/genetics , Water Microbiology , Bacteria/classification , Bacteria/metabolism , Cold Temperature , Ecosystem , Hydrogen-Ion Concentration , Iron/metabolism , Parks, Recreational , Peru , Phylogeny , Soil , Sulfides/metabolism , Sulfur/metabolism , Water/analysis , Water/chemistry
19.
Gastroenterol Hepatol ; 38(7): 445-66, 2015.
Article in Spanish | MEDLINE | ID: mdl-25769877

ABSTRACT

The gastrointestinal tract harbors trillions of microorganisms that are indispensable for health. The gastrointestinal microbiota can be studied using culture and molecular methods. The applications of massive sequencing are constantly increasing, due to their high yield, increasingly accessible costs, and the availability of free software for data analysis. The present article provides a detailed review of a large number of studies on the gastrointestinal microbiota and its influence on human health; particular emphasis is placed on the evidence suggesting a relationship between the gastrointestinal microbial ecosystem and diverse physiological and immune/inflammatory processes. Discussion of the articles analyzed combines a medical approach and current concepts of microbial molecular ecology. The present revision aims to be useful to those interested in the gastrointestinal microbiota and its possible alteration to maintain, re-establish and enhance health in the human host.


Subject(s)
Gastrointestinal Microbiome , Bacterial Typing Techniques , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Health Promotion , Homeostasis , Humans , Infections/microbiology , Inflammation/microbiology , Intestinal Diseases, Parasitic/microbiology , Microbiological Techniques , Models, Biological , Overweight/microbiology , Prebiotics , Probiotics , Silicates/therapeutic use
20.
Rev. chil. pediatr ; 85(4): 448-454, jul. 2014. ilus, tab
Article in Spanish | LILACS | ID: lil-724844

ABSTRACT

Introduction: Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations of the CFTR gene, in which over 1,900 different mutations have been identified. In Chile, the diagnosis panel with the 36 most common mutations detects approximately 50% of all alleles, while for Caucasians, it is nearly 90%. The objective of this study is to expand the capacity of mutational screening in Chilean patients and look for recurrent mutations at the national level. Method: The detection of unknown pathogenic alleles was assessed by CFTR gene sequencing in a selected group of patients from the National Cystic Fibrosis Foundation (NCFF). 39 patients, who met the CF diagnostic criteria and had only one allele identified according to the mutational panel, were studied. Massive sequencing was performed throughout the investigation and the main CFTR databases were used for analysis. Results: The second pathogenic allele was identified in 16 of 39 patients of this study (41%), finding eleven different mutations that had not been reported in our population. We believe that the reason is that one of the variants had not been previously described. Conclusions: Mutations that had been described mainly in Hispanic and/or Mediterranean populations were identified. We found a variation that had not been previously reported, but not enough recurrent mutations that could explain the low rate of detection were found. Knowledge about mutations can provide appropriate genetic counseling and will be critical to evaluate the potential use of new targeted therapies for treating them.


Introducción: La fibrosis quística (FQ) es un trastorno autosómico recesivo causado por mutaciones en el gen CFTR, en el cual se han identificado más de 1.900 mutaciones diferentes. En Chile, el panel diagnóstico con las 36 mutaciones más comunes permite una tasa de detección cercana al 50% de los alelos, mientras que en caucásicos la tasa es casi de 90%. El objetivo fue ampliar la capacidad de detección mutacional en los pacientes chilenos y buscar mutaciones que pudieran ser recurrentes a nivel local. Pacientes y Método: Se evaluó la detección de alelos patogénicos desconocidos mediante la secuenciación del gen CFTR en un grupo seleccionado de pacientes del Programa Nacional de FQ (PNFQ). Se analizaron 39 pacientes, que cumplían los criterios diagnósticos de FQ y que tenían sólo un alelo identificado con el panel mutacional. Se realizó secuenciación masiva y para el análisis se utilizaron las principales bases de datos de CFTR. Resultados: En este grupo seleccionado de pacientes se identificó el segundo alelo patogénico en 16 de los 39 pacientes (41%), encontrándose once diferentes mutaciones que no se habían reportado en nuestra población. Según nuestro conocimiento, una de las variantes no había sido descrita previamente. Conclusiones: Se identificaron mutaciones que habían sido descritas principalmente en poblaciones hispánicas y/o mediterráneas. Encontramos una variante no reportada, aunque no encontramos mutaciones lo suficientemente recurrentes que pudieran explicar la baja tasa de detección. El conocimiento de las mutaciones permite otorgar un adecuado asesoramiento genético y será fundamental para evaluar el potencial uso de nuevas terapias específicas para las mutaciones.


Subject(s)
Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Genetic Variation , Alleles , Chile , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...