Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.708
Filter
1.
Article in English | MEDLINE | ID: mdl-38990404

ABSTRACT

PURPOSE OF THE REVIEW: With increased access and decriminalization of cannabis use, cases of IgE-dependent cannabis allergy (CA) and cross-reactivity syndromes have been increasingly reported. However, the exact prevalence of cannabis allergy and associated cross-reactive food syndromes (CAFS) remains unknown and is likely to be underestimated due to a lack of awareness and insufficient knowledge of the subject among health care professionals. Therefore, this practical roadmap aims to familiarize the reader with the early recognition and correct management of IgE-dependent cannabis-related allergies. In order to understand the mechanisms underlying these cross-reactivity syndromes and to enable personalized diagnosis and management, special attention is given to the molecular diagnosis of cannabis-related allergies. RECENT FINDINGS: The predominant signs and symptoms of CA are rhinoconjunctivitis and contact urticaria/angioedema. However, CA can also present as a life-threatening condition. In addition, many patients with CA also have distinct cross-reactivity syndromes, mainly involving fruits, vegetables, nuts and cereals. At present, five allergenic components of Cannabis sativa (Can s); Can s 2 (profilin), Can s 3 (a non-specific lipid protein), Can s 4 (oxygen-evolving enhancer protein 2 oxygen), Can s 5 (the Bet v 1 homologue) and Can s 7 (thaumatin-like protein) have been characterized and indexed in the WHO International Union of Immunological Sciences (IUIS) allergen database. However, neither of them is currently readily available for diagnosis, which generally starts by testing crude extracts of native allergens. The road to a clear understanding of CA and the associated cross-reactive food syndromes (CAFS) is still long and winding, but well worth further exploration.

2.
Neurourol Urodyn ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979835

ABSTRACT

AIMS: This study aimed to determine the preventive effects of emodin on cyclophosphamide (CYP)-induced cystitis and to explore the molecular mechanism. METHODS: In vivo, mice were modeled by CYP. Before a half hour of CYP treatment, Jumonji domain-containing protein-3 (JMJD3) inhibitors (GSK-J4) and emodin were used to treat CYP model mice. Bladder samples were stained for hematoxylin-eosin and toluidine blue. Next, JMJD3 was quantified by immunofluorescence staining, RT-PCR, and Western blot. CXCR3 was quantified by Western blot and ELISA. In vitro, before stimulated by lipopolysaccharide (LPS), human bladder smooth muscle cells (hBSMCs) were transfected with pcDNA3.1-JMJD3 plasmids, shRNA-JMJD3 plasmids or pretreated with emodin. Collected cells to detect JMJD3 and CXCR3 ligands again; collected supernatant of culture for Transwell assay. Finally, as the JAK2 inhibitor, AG490 was used to pretreat LPS-induced hBSMCs. Western blot was performed to quantify proteins. RESULTS: Emodin inhibited mast cell migration and suppressed the expression of JMJD3, CXCR3, and CXCR3 ligands, not only in vivo but also in vitro. The pharmacological effects of emodin were similar to GSK-J4 or JMJD3 inhibition. In addition, emodin significantly downregulated the phosphorylation of JAK2 and STAT3, and inhibited JMJD3/CXCR3 axis transduction like AG490. CONCLUSION: Emodin has a preventive effect on cystitis by inhibiting mast cell migration through inhibition of the JAK2/STAT3/JMJD3/CXCR3 signaling pathway.

3.
Front Aging Neurosci ; 16: 1376756, 2024.
Article in English | MEDLINE | ID: mdl-38979113

ABSTRACT

This research investigates the peripheral mechanisms of acupuncture in treating Parkinson's disease (PD), a progressive neurodegenerative disorder marked by motor impairments. While the central mechanisms of acupuncture have been extensively studied, our focus lies in the peripheral mechanisms at the acupoints, the sites of acupuncture signal initiation. Employing a PD model, we analyzed the local responses to acupuncture stimulation at these points. Our key finding was a significant elevation in both the number and activity of mast cells (MCs) in the peripheral tissues following acupuncture. Intriguingly, pre-treatment with an MC stabilizer diminished the acupuncture's therapeutic effects on PD symptoms. Similarly, local anesthesia with lidocaine at the acupoints attenuated the symptom improvement typically observed with acupuncture. Meanwhile, the augmentation of MC activity induced by acupuncture was significantly impeded by cromolyn, an MC stabilizer, but remained unaffected by lidocaine. This finding suggests that MC activity is a more upstream regulator of acupuncture effects compared to nerve conduction. This study provides groundbreaking insights into the initiation and transmission of acupuncture signals, highlighting the significant role of peripheral MC modulation in PD treatment.

4.
World J Clin Pediatr ; 13(2): 92813, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38948000

ABSTRACT

Mast cells are a subtype of white blood cells and are involved in the immune system. These cells contain many chemical substances called mediators, which are involved in the allergic response. The fact that mast cells play a role in many events that require urgent intervention, especially anaphylaxis, has led to a more detailed study of these cells. The diseases also caused by dysfunctions of mast cells have been examined in many circumstances. For instance, mast cell activation syndrome is known as an augmented number of cells due to decreased cell death, resulting in clinical symptoms affecting many systems. The main common symptoms include flushing, hypotension, urticaria, angioedema, headache, vomiting and diarrhea. Although the underlying mechanism is not yet clearly known, we aim to review the literature in a broad perspective and bring together the existing knowledge in the light of the literature due to the diversity of its involvement in the body and the fact that it is a little known syndrome.

5.
Front Immunol ; 15: 1369326, 2024.
Article in English | MEDLINE | ID: mdl-38953022

ABSTRACT

Objectives: Mast cell (MC) degranulation is a key process in allergic reactions and inflammatory responses. Aspartate aminotransferase 1 (AAT1)-derived endogenous sulfur dioxide (SO2) is an important regulator of MC function. However, the mechanism underlying its role in MC degranulation remains unclear. This study aimed to investigate the mechanism by which endogenous SO2 controlled MC degranulation. Methods: HMC-1 and Rat basophilic leukemia cell MC line (RBL-2H3) were used in the cell experiments. SO2 content was detected by in situ fluorescent probe. MC degranulation represented by the release rate of MC ß-hexosaminidase was determined using a colorimetric assay. Sulfenylation of galectin-9 (Gal-9) in MCs and purified protein was detected using a biotin switch assay. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the exact sulfenylation sites of Gal-9 by SO2. Animal models of passive cutaneous anaphylaxis (PCA) and hypoxia-driven pulmonary vascular remodeling were used to investigate the effect of SO2 on mast cell activation in vivo. Site-directed mutation of Gal-9 was conducted to confirm the exact site of SO2 and support the significance of SO2/Gal-9 signal axis in the regulation of MC degranulation. Results: Degranulation was increased in AAT1-knockdowned MCs, and SO2 supplementation reversed the increase in MC degranulation. Furthermore, deficiency of endogenous SO2 contributed to IgE-mediated degranulation in vitro. Besides, SO2 inhibited IgE-mediated and hypoxia-driven MC degranulation in vivo. Mechanistically, LC-MS/MS analysis and site-directed mutation results showed that SO2 sulfenylated Gal-9 at cysteine 74. Sulfenylation of the 74th cysteine of Gal-9 protein was required in the SO2-inhibited MC degranulation under both physiological and pathophysiological conditions. Conclusion: These findings elucidated that SO2 inhibited MC degranulation via sulfenylating Gal-9 under both physiological and pathophysiological conditions, which might provide a novel treatment approach for MC activation-related diseases.


Subject(s)
Cell Degranulation , Cysteine , Galectins , Mast Cells , Sulfur Dioxide , Animals , Cell Degranulation/drug effects , Mast Cells/metabolism , Mast Cells/immunology , Mast Cells/drug effects , Cysteine/metabolism , Rats , Sulfur Dioxide/pharmacology , Sulfur Dioxide/metabolism , Humans , Galectins/metabolism , Mice , Male , Passive Cutaneous Anaphylaxis , Cell Line
6.
mBio ; : e0153324, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953358

ABSTRACT

Emerging evidence indicates that gut dysbiosis is involved in the pathogenesis of visceral hypersensitivity (VH). However, how gut microbiota contributes to the development of VH is unknown. Here, we sought to examine the signal transduction pathways from gut to dorsal root ganglion (DRG) responsible for this. Therefore, abdominal withdrawal reflex (AWR) scores, fecal output, fecal water content, and total gastrointestinal transit time (TGITT) were assessed in Con rats, VH rats, rats treated with NaB, and VH rats treated with VSL#3. Fecal microbiota and its metabolite (short-chain fatty acids, SCFAs), mast cell degranulation in colon, lincRNA-01028, miR-143, and protease kinase C (PKC) and TRPV1 expression in DRGs were further detected. VH rats showed an increased fecal water content, a shortened TGITT, an increased abundance of Clostridium sensu stricto 1 and increased butyrate in fecal samples, an increased mast cell degranulation, an increased expression of lincRNA-01028, PKC, and TRPV1, and a decreased expression of miR-143 in DRGs compared with control rats, which could be restored by the application of probiotic VSL#3. The above-mentioned detection in rats treated with butyrate was similar to that of VH rats. We further confirm whether butyrate sensitized DRG neurons by a lincRNA-01028, miR-143, and PKC-dependent mechanism via mast cell in vitro. In co-cultures, MCs treated with butyrate elicited a higher TRPV1 current, a higher expression of lincRNA-01028, PKC, and a lower expression of miR-143 in DRG neurons, which could be inhibited by a lincRNA-01028 inhibitor. These findings indicate that butyrate promotes visceral hypersensitivity via mast cell-derived DRG neuron lincRNA-01028-PKC-TRPV1 pathway.IMPORTANCEIrritable bowel syndrome (IBS), characterized by visceral hypersensitivity, is a common gastrointestinal dysfunction syndrome. Although the gut microbiota plays a role in the pathogenesis and treatment of irritable bowel syndrome (IBS), the possible underlying mechanisms are unclear. Therefore, it is of critical importance to determine the signal transduction pathways from gut to DRG responsible for this in vitro and in vivo assay. This study demonstrated that butyrate sensitized TRPV1 in DRG neurons via mast cells in vivo and in vitro by a lincRNA-01028, miR-143, and PKC-dependent mechanism. VH rats similarly showed an increased abundance of Clostridium sensu stricto 1, an increased fecal butyrate, an increased mast cell degranulation, and increased expression of TRPV1 compared with control rats, which could be restored by the application of VSL#3. In conclusion, butyrate produced by the altered intestinal microbiota is associated with increased VH.

7.
J Gen Fam Med ; 25(4): 232-236, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966648

ABSTRACT

Morbihan's disease is a rare condition characterized by chronic facial edema. While its exact cause is unknown, it is thought to involve local cutaneous vascularization and lymphatic drainage imbalance. Traditional treatment options are often ineffective, and no established efficient treatment exists. We present a case study of a 17-year-old male with Morbihan's syndrome who showed resistance to traditional treatments but responded well to a combination of cromolyn sodium nasal spray and oral montelukast after histopathology revealed hyperplasia of plasma cells and mast cells. This combination has not been used before for Morbihan's syndrome. Our review of the literature also provides insight for clinicians seeking to manage this condition.

8.
J Dermatolog Treat ; 35(1): 2371545, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38972668

ABSTRACT

PURPOSE: The presence of wheals or hives has been viewed as a hallmark symptom of urticaria, a highly debilitating disease. This study explores our experience with omalizumab in patients with apparent mast-cell mediated pruritus in the absence of hives. MATERIALS AND METHODS: This is a retrospective case series examining all patients with mast cell-mediated pruritus in the absence of hives from April 2022 to May 2024 at a tertiary referral clinic at Icahn School of Medicine at Mount Sinai in New York. Peak pruritus-numerical rating scale (PP-NRS) itch score changes over time were recorded and analyzed. RESULTS: Six patients (67% women; mean [SD] age, 47.67 [13.52] years) were included in the analysis. The median [IQR] pruritus PP-NRS itch score before omalizumab injection was 9 [6 - 10] and the final median [IQR] PP-NRS itch score was 2.5 [0 - 5]. The mean [SD] reduction in the PP-NRS itch score was 6 [3.16]. CONCLUSIONS: This study suggests that patients with evidence of mast cell-mediated pruritus can be identified based on clinical features and may benefit from omalizumab therapy.


Subject(s)
Mast Cells , Omalizumab , Pruritus , Humans , Omalizumab/therapeutic use , Omalizumab/administration & dosage , Female , Pruritus/drug therapy , Pruritus/etiology , Male , Middle Aged , Retrospective Studies , Adult , Mast Cells/drug effects , Mast Cells/immunology , Anti-Allergic Agents/therapeutic use , Anti-Allergic Agents/administration & dosage , Treatment Outcome , Severity of Illness Index , Urticaria/drug therapy
9.
J Am Vet Med Assoc ; : 1-9, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906172

ABSTRACT

OBJECTIVE: To determine the myelosuppressive effects/hematological toxicities, other general toxicities, and when these occur during vinblastine/prednisolone chemotherapy in dogs bearing high-grade or metastatic cutaneous/subcutaneous mast cell tumors (MCTs). METHODS: Medical records were retrospectively reviewed between November 1, 2016, and March 1, 2023. Thirty client-owned dogs with histopathologically confirmed cutaneous high-grade MCTs/metastatic subcutaneous MCTs and that subsequently completed a 12-week vinblastine/prednisolone chemotherapy protocol were included. Hematology was assessed before commencing chemotherapy and before each vinblastine treatment. The effect of each treatment upon hematological values was evaluated. Measured outcomes included the type, frequency, and severity of hematological and other more general toxicities. RESULTS: 24 of 30 dogs experienced at least 1 hematological toxicity, 6 experienced gastrointestinal toxicity, and 4 experienced lethargy. The most common toxicity was anemia (15/30 [50%]), with 93.3% (14/15 dogs) classified as Veterinary Cooperative Oncology Group-Common Terminology Criteria for Adverse Events grade I and 6.6% (1/15) classified as grade II. The second most common toxicity was neutropenia (14/30 [46.6%]), with 71.4% (10/14) classified as grade I and 28.6% (4/14) as grade III. The least common hematological toxicity was thrombocytopenia (4/30 [13%]), all grade I. Neutropenia mainly occurred during weeks 2 and 3; however, there was no significant decrease in neutrophil count relative to baseline. Neutrophil count increased and Hct decreased during weeks 6 to 12 of treatment when compared to baseline. No change in platelet count was observed. CLINICAL RELEVANCE: Vinblastine/prednisolone chemotherapy leads to hematological toxicity; however, this was mostly low-grade and did not require major intervention. Vinblastine/prednisolone chemotherapy is well tolerated in dogs bearing high-grade or metastatic MCTs.

10.
Allergy ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38887787

ABSTRACT

BACKGROUND: Various biomarkers are used to define peanut allergy (PA). We aimed to observe changes in PA resolution and persistence over time comparing biomarkers in PA and peanut sensitised but tolerant (PS) children in a population-based cohort. METHODS: Participants were recruited from the EAT and EAT-On studies, conducted across England and Wales, and were exclusively breastfeed babies recruited at 3 months old and followed up until 7-12 years old. Clinical characteristics, skin prick test (SPT), sIgE to peanut and peanut components and mast cell activation tests (MAT) were assessed at 12 months, 36 months and 7-12 years. PA status was determined at the 7-12 year time point. RESULTS: The prevalence of PA was 2.1% at 7-12 years. Between 3 and 7-12 year, two children developed PA and one outgrew PA. PA children had larger SPT, higher peanut-sIgE, Ara h 2-sIgE and MAT (all p < .001) compared to PS children from 12 months onwards. SPT, peanut-sIgE, Ara h 2-sIgE and MAT between children with persistent PA, new PA, outgrown PA and PS were statistically significant from 12 months onwards (p < .001). Those with persistent PA had SPT, peanut-sIgE and Ara h 2-sIgE that increased over time and MAT which was highest at 36 months. New PA children had increased SPT and peanut-sIgE from 36 months to 7-12 years, but MAT remained low. PS children had low biomarkers across time. CONCLUSIONS: In this cohort, few children outgrow or develop new PA between 36 months and 7-12 years. Children with persistent PA have raised SPT, peanut-sIgE, Ara h 2-sIgE and MAT evident from infancy that consistently increase over time.

11.
Article in English | MEDLINE | ID: mdl-38851398

ABSTRACT

Mast cell activation syndrome (MCAS) is a term applied to several clinical entities which have gained increased attention from patients and medical providers. While several descriptive publications about MCAS exist, there are many gaps in knowledge resulting in confusion about this clinical syndrome. Whether MCAS is a primary syndrome or exists as a constellation of symptoms in the context of known inflammatory, allergic, or clonal disorders associated with systemic mast cell (MC) activation is not well understood. More importantly, the underlying mechanisms and pathways that lead to MC activation in MCAS patients remain to be elucidated. The purpose of this manuscript is to summarize the known literature, identify gaps in knowledge, and highlight research needs. Several topics are covered: 1) Contextualization of MCAS and MCAS-like endotypes and related diagnostic evaluations; 2) Mechanistic research; 3) Management of typical and refractory symptoms, and 4) MCAS-specific education for patients and healthcare providers.

12.
Int Immunopharmacol ; 136: 112316, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38823183

ABSTRACT

The objective of this study was to investigate the neuroimmune mechanisms implicated in the enhancement of gastrointestinal function through the administration of oral DHA. Mast cell-deficient mice (KitW-sh) and C57BL/6 mice were used to establish postoperative ileus (POI) models. To further validate our findings, we conducted noncontact coculture experiments involving dorsal root ganglion (DRG) cells, bone marrow-derived mast cells (BMMCs) and T84 cells. Furthermore, the results obtained from investigations conducted on animals and cells were subsequently validated through clinical trials. The administration of oral DHA had ameliorative effects on intestinal barrier injury and postoperative ileus. In a mechanistic manner, the anti-inflammatory effect of DHA was achieved through the activation of transient receptor potential ankyrin 1 (TRPA1) on DRG cells, resulting in the stabilization of mast cells and increasing interleukin 10 (IL-10) secretion in mast cells. Furthermore, the activation of the pro-repair WNT1-inducible signaling protein 1 (WISP-1) signaling pathways by mast cell-derived IL-10 resulted in an enhancement of the intestinal barrier integrity. The current study demonstrated that the neuroimmune interaction between mast cells and nerves played a crucial role in the process of oral DHA improving the intestinal barrier integrity of POI, which further triggered the activation of CREB/WISP-1 signaling in intestinal mucosal cells.


Subject(s)
Docosahexaenoic Acids , Ileus , Interleukin-10 , Intestinal Mucosa , Mast Cells , Mice, Inbred C57BL , Postoperative Complications , TRPA1 Cation Channel , Animals , Mast Cells/drug effects , Mast Cells/immunology , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , TRPA1 Cation Channel/metabolism , Mice , Ileus/drug therapy , Ileus/immunology , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Male , Interleukin-10/metabolism , Postoperative Complications/drug therapy , Postoperative Complications/immunology , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Disease Models, Animal , Coculture Techniques , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
13.
J Sci Food Agric ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856115

ABSTRACT

BACKGROUND: Stress-related diseases are on the rise and stress is one of the common factors that lead to ulcer. Stress-induced mucosal bleeding is a serious complication observed in many critically ill patients. Due to the harmful side effects of proton pump inhibitors, natural and active alternative treatment methods for peptic ulcer treatment that are safe in terms of side effects are an urgent need for human health. We aimed to investigate the dose-dependent protective effects of Lactobacillus rhamnosus GG (LGG) against stress ulcers induced by cold restraint stress in rats. This study was performed in a total of 42 rats, in control group (C), stress group (S), pantoprazol (20 mg kg-1 day-1) group (P), LGG (3 × 108 cfu mL-1 day-1) + stress group (M1), LGG (15 × 108 mL-1 day-1) + stress group (M5) and LGG (30 × 108 mL-1 day-1) + stress group (M10) (each n = 7). Ulceration areas (mm2) were determined quantitatively with ImageJ software. Glucocorticoid, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels were determined by ELISA and malondialdehyde levels were determined by spectrophotometric measurement. Histopathological examinations were performed in gastric tissue. RESULTS: Therapeutic dose of LGG increased CAT, SOD and GPx levels; prevented excessive activation of the hypothalamic-pituitary-adrenal axis; reduced ulceration and bleeding in the gastric mucosal layer; and provided stabilization of mast cells. CONCLUSIONS: We can suggest that LGG may be beneficial for reducing the negative effects of stress on the body, for protecting against ulcer disease and for reducing or preventing the risk of stress-induced gastrointestinal bleeding in patients staying in intensive care units. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

14.
Clin Exp Immunol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916413

ABSTRACT

The gut-skin axis has recently been widely recognized, and both the gut and skin have been found to affect each other through a bidirectional connection; however, the precise mechanisms remain to be elucidated. Therefore, we aimed to investigate the effects of chronic skin damage on mouse intestines. Following the chronic skin damage (CSD) model, 4 % sodium dodecyl sulfate (SDS) was applied to the back-shaved murine skin six times for 2 weeks after tape stripping. The small and large intestines were analyzed histologically and immunologically, respectively. Intestinal permeability was measured using fluorescein isothiocyanate-conjugated (FITC)-dextran. The role of IL-13 in the ileum was investigated using an anti-IL-13 antibody. Apoptotic intestinal cells were analyzed using TUNEL staining. Villus atrophy was observed in the small intestine in the CSD model, along with increased permeability. Mast cells, but not T cells, eosinophils, nor ILC-2, were increased in the intestinal mucosa. However, no significant changes were observed in the large intestine. mRNA expression of IL-13 was increased only in the ileum of the CSD model. Apoptotic intestinal epithelial cells were significantly increased in the ileum of the CSD model. Administration of an anti-IL-13 antibody ameliorated the intestinal damage caused by CSD, along with decreased apoptotic cells and mast cell infiltration. Skin damage causes morphological changes in the small intestine, accompanied by increased intestinal permeability, possibly through the IL-13-induced apoptosis of mast cells in the epithelium. Surfactant-mediated mechanical skin damage can cause a leaky gut.

15.
Int Immunopharmacol ; 137: 112490, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38897121

ABSTRACT

BACKGROUND: Vitamin K3 (VK3), a fat-soluble synthetic analog of the vitamin K family, has coagulant, anti-inflammatory, antibacterial, and anticancer properties. Pseudo allergy is a IgE-independent immune response associated with mast cells. This study investigated the role of VK3 in IgE-independent mast cell activation. METHODS: Substance P (SP) was used to induce LAD2-cell activation in order to analyze the effects of VK3 in vitro. Cutaneous allergy and systemic allergy mouse models were used to analyze the anti-pseudo-allergic effects of VK3. Proteome microarray assays were used to analyze VK3-binding protein. Biolayer interferometry and immunoprecipitation were used to verify interaction between VK3 and its key targets. RNA interference was used to determine the role of GAB1 in LAD2cell activation. RESULTS: VK3 inhibited SP-induced LAD2-cell activation, and resulted in the release of ß-hexosaminidase, histamine and cytokines; VK3 inhibited SP-induced pseudo allergic reactions in mice, and serum histamine and TNF-α levels decreased. Degranulation of skin mast cells was reduced; GAB1 in mast cells was stably bound to VK3. GAB1 participated in SP-induced LAD2-cell activation. GAB1 knockdown in LAD2 cells prevented SP-induced ß-hexosaminidase release, calcium mobilization and cell skeletal remodeling. VK3 directly binds to GAB1 and reduces its expression to inhibited SP-induced LAD2 cell activation. CONCLUSION: The anti-pseudo-allergic activity of VK3 was confirmed in vitro and in vivo. VK3 can inhibit SP-induced mast cell activation by directly targeting GAB1. This study provides new insights on the activity of VK3 and the mechanism of pseudoallergic reaction.


Subject(s)
Adaptor Proteins, Signal Transducing , Mast Cells , Mast Cells/immunology , Mast Cells/drug effects , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice , Humans , Substance P/metabolism , Cell Degranulation/drug effects , Mice, Inbred BALB C , Hypersensitivity/immunology , Hypersensitivity/drug therapy , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/therapeutic use , Female , Cell Line , beta-N-Acetylhexosaminidases/metabolism , Disease Models, Animal
16.
Immunol Allergy Clin North Am ; 44(3): 561-576, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38937016

ABSTRACT

Angioedema is characterized by transient movement of fluid from the vasculature into the interstitial space leading to subcutaneous or submucosal non-pitting edema. Current evidence suggests that most angioedema conditions can be grouped into 2 categories: mast cell-mediated (previously termed histaminergic) or bradykinin-mediated angioedema. Although effective therapies for mast cell-mediated angioedema have existed for decades, specific therapies for bradykinin-mediated angioedema have more recently been developed. In recent years, rigorous studies of these therapies in treating hereditary angioedema (HAE) have led to regulatory approvals of medication for HAE management thereby greatly expanding HAE treatment options.


Subject(s)
Angioedemas, Hereditary , Bradykinin , Humans , Angioedemas, Hereditary/diagnosis , Angioedemas, Hereditary/therapy , Angioedemas, Hereditary/drug therapy , Bradykinin/metabolism , Bradykinin/analogs & derivatives , Mast Cells/immunology , Mast Cells/metabolism , Complement C1 Inhibitor Protein/therapeutic use , Animals
17.
J Extracell Biol ; 3(1): e139, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38938682

ABSTRACT

The receptor tyrosine kinase (RTK) KIT and its ligand stem cell factor (SCF) are essential for human mast cell (huMC) survival and proliferation. HuMCs expressing oncogenic KIT variants secrete large numbers of extracellular vesicles (EVs). The role KIT plays in regulating EV secretion has not been examined. Here, we investigated the effects of stimulation or inhibition of KIT activity on the secretion of small EVs (sEVs). In huMCs expressing constitutively active KIT, the quantity and quality of secreted sEVs positively correlated with the activity status of KIT. SCF-mediated stimulation of KIT in huMCs or murine MCs, or of transiently expressed KIT in HeLa cells, enhanced the release of sEVs expressing exosome markers. In contrast, ligand-mediated stimulation of the RTK EGFR in HeLa cells did not affect sEV secretion. The release of sEVs induced by either constitutively active or ligand-activated KIT was remarkably decreased when cells were treated with KIT inhibitors, concomitant with reduced exosome markers in sEVs. Similarly, inhibition of oncogenic KIT signalling kinases like PI3K, and MAPK significantly reduced the secretion of sEVs. Thus, activation of KIT and its early signalling cascades stimulate the secretion of exosome-like sEVs in a regulated fashion, which may have implications for KIT-driven functions.

18.
J Leukoc Biol ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943612

ABSTRACT

Mast cells are hematopoietic-derived immune cells that possess numerous cytoplasmic granules containing immune mediators such as cytokines and histamine. Antigen stimulation triggers mast cell granule exocytosis, releasing granule contents in a process known as degranulation. We have shown that Rho GTPase signaling is an essential component of granule exocytosis, however the proteins that regulate Rho GTPases during this process are not well-defined. Here we examined the role of Rho guanine-nucleotide dissociation inhibitors (RhoGDIs) in regulating Rho GTPase signaling using RBL-2H3 cells as a mast cell model. We found that RBL-2H3 cells express two RhoGDI isoforms which are primarily localized to the cytosol. Knockdown of RhoGDI1 and RhoGDI2 greatly reduced the levels of all Rho GTPases tested: RhoA, RhoG, Rac1, Rac2 and Cdc42. The reduction in Rho GTPase levels was accompanied by an increase in their membrane-localized fraction and an elevation in the levels of active Rho GTPases. All RhoGDI knockdown strains had altered resting cell morphology, although each strain was activation competent when stimulated. Live cell imaging revealed that the RhoGDI1/2 double knockdown strain maintained its activated state for prolonged periods of time compared to the other strains. Only the RhoGDI1/2 double knockdown strain showed a significant increase in granule exocytosis. Conversely, RhoGDI overexpression in RBL-2H3 cells did not noticeably affect Rho GTPases or degranulation. Based on these results, RhoGDIs act as negative regulators of Rho GTPases during mast cell degranulation, and inhibit exocytosis by sequestering Rho GTPases in the cytosol.

19.
Article in English | MEDLINE | ID: mdl-38944199

ABSTRACT

This review will summarize new research developments and clinical practice recommendations for the diagnosis and management of anaphylaxis presented in the Joint Task Force on Practice Parameters' 2023 Anaphylaxis Practice Parameter Update. It is intended to serve as a high-level summary of the 2023 practice parameter, which makes clinically impactful recommendations based on new evidence that has emerged since the 2015 practice parameter. We invite clinicians to explore the full 2023 practice parameter to better understand the research methods and underlying evidence that have informed the recommendations summarized here. There are new and evolving diagnostic criteria for anaphylaxis, rules for defining elevated tryptase levels, and recognition of signs and symptoms particular to infants and toddlers. The administration of epinephrine should not be used as a surrogate to diagnose anaphylaxis. Risk factors for anaphylaxis should be assessed on a case-by-case basis. Patient counseling and shared decision making (SDM) are essential for supporting patients' treatment decisions and capacity to manage the risk of anaphylaxis at home and in other community settings. Activation of emergency medical services following home epinephrine administration may not be required in all cases, and patients should be engaged in SDM to determine when home management may be appropriate.

20.
Life (Basel) ; 14(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38929634

ABSTRACT

Allergic conjunctivitis is an allergen-induced immune response secondary to the binding of immunoglobulin-E (IgE) to sensitized mast cells. Approximately 40% of North Americans and 20% of the world's population are impacted by some form of allergy and it continues to increase in prevalence, especially among children. Specified IgE antibodies can be found in almost all cases of exposure to seasonal or perennial allergens. Activation and degranulation of mast cells lead to increased tear levels of histamine, tryptase, leukotrienes, cytokines, and prostaglandins. The release of these factors initiates the recruitment of inflammatory cells in the conjunctival mucosa, which causes the late-phase reaction. Signs and symptoms of ocular allergies include itching, tearing, chemosis, and hyperemia, which can lead to decreased productivity and poor quality of life. Many treatment options are available to improve symptoms, including, mast cell stabilizers, antihistamines, dual-acting agents, steroids, nonsteroidal anti-inflammatory drugs (NSAIDS), and other off-label treatment modalities. This review article provides an overview of different types of allergic conjunctivitis, its pathology and immunology, and recommended methods of treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...