Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.994
Filter
1.
Allergy ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39021347

ABSTRACT

BACKGROUND: Galectin-9 (Gal-9) has been implicated in allergic and autoimmune diseases, but its role and relevance in chronic spontaneous urticaria (CSU) are unclear. OBJECTIVES: To characterize the role and relevance of Gal-9 in the pathogenesis of CSU. METHODS: We assessed 60 CSU patients for their expression of Gal-9 on circulating eosinophils and basophils as well as T cell expression of the Gal-9 receptor TIM-3, compared them with 26 healthy controls (HCs), and explored possible links with disease features including disease activity (urticaria activity score, UAS), total IgE, basophil activation test (BAT), and response to omalizumab treatment. We also investigated potential drivers of Gal-9 expression by eosinophils and basophils. RESULTS: Our CSU patients had markedly increased rates of circulating Gal-9+ eosinophils and basophils and high numbers of lesional Gal-9+ cells. High rates of blood Gal-9+ eosinophils/basophils were linked to high disease activity, IgE levels, and BAT negativity. Serum levels of TNF-α were positively correlated with circulating Gal-9+ eosinophils/basophils, and TNF-α markedly upregulated Gal-9 on eosinophils. CSU patients who responded to omalizumab treatment had more Gal-9+ eosinophils/basophils than non-responders, and omalizumab reduced blood levels of Gal-9+ eosinophils/basophils in responders. Gal-9+ eosinophils/basophils were negatively correlated with TIM-3+TH17 cells. CONCLUSION: Our findings demonstrate a previously unrecognized involvement of the Gal-9/TIM-3 pathway in the pathogenesis CSU and call for studies that explore its relevance.

2.
Front Neurosci ; 18: 1291554, 2024.
Article in English | MEDLINE | ID: mdl-39015376

ABSTRACT

Introduction: We previously showed enteric nerve activation after application of colonic mucosal biopsy supernatants from patients with irritable bowel syndrome (IBS). The question remains whether this is a region-specific or a generalized sensitization. We tested the nerve-activating properties of supernatants from large and small intestinal regions of IBS patients with diarrhea (IBS-D) in comparison to those from mastocytosis patients with diarrhea (MC-D) or non-IBS/non-MC patients with GI-complaints. MC-D patients were included to test samples from patients with an established, severe mast cell disorder, because mast cells are suggested to play a role in IBS. Methods: Voltage-sensitive dye imaging was used to record the effects of mucosal biopsy supernatants from IBS-D, MC-D, and non-IBS/non-MC on guinea pig submucous neurons. Mast cell density and histamine concentrations were measured in all samples. Results: The median neuroindex (spike frequency × % responding neurons in Hz × %) was significantly (all p < 0.001) increased for IBS-D (duodenum and colon, proximal and distal each, 49.3; 50.5; 63.7; 71.9, respectively) compared to non-IBS/non-MC (duodenum and colon, proximal and distal each, 8.7; 4.9; 6.9; 5.4, respectively) or MC-D supernatants (duodenum and colon, proximal and distal each, 9.4; 11.9; 0.0; 7.9, respectively). Nerve activation by MC-D and non-IBS/non-MC supernatants was comparable (p>0.05). Mast cell density or histamine concentrations were not different between IBS-D, MC-D, and non-IBS/non-MC samples. Discussion: Nerve activation by biopsy supernatants is an IBS hallmark that occurs throughout the gut, unrelated to mast cell density or histamine concentration. At least as important is our finding that GI complaints per se were not associated with biopsy supernatant-induced nerve activation, which further stresses the relevance of altered nerve behavior in IBS.

4.
Cell Rep ; 43(7): 114482, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38985670

ABSTRACT

Secretory granule (SG) fusion is an intermediate step in SG biogenesis. However, the precise mechanism of this process is not completely understood. We show that Golgi-derived mast cell (MC) SGs enlarge through a mechanism that is dependent on phosphoinositide (PI) remodeling and fusion with LC3+ late endosomes (amphisomes), which serve as hubs for the fusion of multiple individual SGs. Amphisome formation is regulated by the tyrosine phosphatase PTPN9, while the subsequent SG fusion event is additionally regulated by the tetraspanin protein CD63 and by PI4K. We also demonstrate that fusion with amphisomes imparts to SGs their capacity of regulated release of exosomes. Finally, we show that conversion of PI(3,4,5)P3 to PI(4,5)P2 and the subsequent recruitment of dynamin stimulate SG fission. Our data unveil a key role for lipid-regulated interactions with the endocytic and autophagic systems in controlling the size and number of SGs and their capacity to release exosomes.

5.
Cells ; 13(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38994933

ABSTRACT

IBD is an uncontrolled inflammatory condition of the gastrointestinal tract, which mainly manifests in two forms: ulcerative colitis (UC) and Crohn's disease (CD). The pathogenesis of IBD appears to be associated with an abnormal response of innate and adaptive immune cells. Innate immunity cells, such as macrophages, mast cells, and granulocytes, can produce proinflammatory (e.g., TNF-α) and oxidative stress (ROS) mediators promoting intestinal damage, and their abnormal responses can induce an imbalance in adaptive immunity, leading to the production of inflammatory cytokines that increase innate immune damage, abate intestinal barrier functions, and aggravate inflammation. Considering that Ca2+ signalling plays a key role in a plethora of cellular functions, this review has the purpose of deepening the potential Ca2+ involvement in IBD pathogenesis.


Subject(s)
Calcium , Immunity, Innate , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/immunology , Animals , Calcium/metabolism , Calcium Signaling
6.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000527

ABSTRACT

Mast cells are essential immune cells involved in the host's defence against gastrointestinal nematodes. To evade the immune response, parasitic nematodes produce a variety of molecules. Galectin 1, produced by Teladorsagia circumcincta (Tci-gal-1), reduces mast cell degranulation and selectively regulates mediator production and release in an IgE-dependent manner. To uncover the activity of Tci-gal-1, we have examined the effect of the protein on gene expression, protein production, and apoptosis in activated basophilic leukaemia RBL-2H3 cells. Rat RBL-2H3 cells were activated with anti-DNP IgE and DNP-HSA, and then treated with Tci-gal-1. Microarray analysis was used to examine gene expression. The levels of several apoptosis-related molecules and cytokines were determined using antibody arrays and ELISA. Early and late apoptosis was evaluated cytometrically. Degranulation of cells was determined by a ß-hexosaminidase release assay. Treatment of activated RBL-2H3 cells with Tci-gal-1 resulted in inhibited apoptosis and decreased degranulation, although we did not detect significant changes in gene expression. The production of pro-apoptotic molecules, receptor for advanced glycation end products (RAGE) and Fas ligand (FasL), and the cytokines IL-9, IL-10, IL-13, TNF-α, and IL-2 was strongly inhibited. Tci-gal-1 modulates apoptosis, degranulation, and production of cytokines by activated RBL-2H3 cells without detectable influence on gene transcription. This parasite protein is crucial for modulation of the protective immune response and the inhibition of chronic inflammation driven by mast cell activity.


Subject(s)
Apoptosis , Cell Degranulation , Immunoglobulin E , Leukemia, Basophilic, Acute , Animals , Rats , Immunoglobulin E/immunology , Cell Line, Tumor , Leukemia, Basophilic, Acute/metabolism , Leukemia, Basophilic, Acute/immunology , Leukemia, Basophilic, Acute/pathology , Mast Cells/immunology , Mast Cells/metabolism , Cytokines/metabolism , Galectins/metabolism , Helminth Proteins/pharmacology , Helminth Proteins/metabolism , Galectin 1/metabolism , Galectin 1/genetics
7.
Immunol Cell Biol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014534

ABSTRACT

Adipokines play essential roles in regulating a range of biological processes, but growing evidence indicates that they are also fundamental in immunological mechanisms and, primarily, inflammatory responses. Adipokines mediate their actions through specific receptors. However, although adipokine receptors are widely distributed in many cell and tissue types, limited data are available on their expression in mast cells (MCs) and, consequently, adipokine's significance in the modulation of MC activity within the tissues. In this study, we demonstrate that rat peritoneal MCs constitutively express the leptin receptor (i.e. LEPR), adiponectin receptors (i.e. ADIPOR1 and ADIPOR2) and the chemerin receptor (i.e. CMKLR1). We also found that LEPR, ADIPOR1, ADIPOR2 and CMKLR1 expression in MCs changes in response to stimulation by their specific ligands and some cytokines with potent proinflammatory properties. Furthermore, the involvement of intracellular signaling molecules in leptin-, adiponectin- and chemerin-induced MC response was analyzed. Overall, our findings suggest that adipokines leptin, adiponectin and chemerin can significantly affect the activity of MCs in various processes, especially during inflammation. These observations may contribute significantly to understanding the relationship between adipokines, immune mechanisms and diseases or conditions with an inflammatory component.

8.
Article in English | MEDLINE | ID: mdl-38971540

ABSTRACT

BACKGROUND: Mas-related G-protein coupled receptor X2 (MRGPRX2) is a promiscuous receptor on mast cells that mediates IgE-independent degranulation and has been implicated in multiple mast cell-mediated disorders, including chronic urticaria, atopic dermatitis, and pain disorders. Although it is a promising therapeutic target, few potent, selective, small molecule antagonists have been identified, and functional effects of human MRGPRX2 inhibition have not been evaluated in vivo. OBJECTIVE: We identified and characterized novel, potent, and selective orally active small molecule MRGPRX2 antagonists for potential treatment of mast cell-mediated disease. METHODS: Antagonists were identified using multiple functional assays in cell lines overexpressing human MRGPRX2, LAD2 mast cells, human peripheral stem cell-derived mast cells, and isolated skin mast cells. Skin mast cell degranulation was evaluated in Mrgprb2em(-/-) knockout (KO) and Mrgprb2em(MRGPRX2) transgenic human MRGPRX2 knock-in (KI) mice by assessment of agonist-induced skin vascular permeability. Ex vivo skin mast cell degranulation and associated histamine release was evaluated by microdialysis of human skin tissue samples. RESULTS: MRGPRX2 antagonists potently inhibited agonist-induced MRGPRX2 activation and mast cell degranulation in all mast cell types tested, in an IgE-independent manner. Orally administered MRGPRX2 antagonists also inhibited agonist-induced degranulation and resulting vascular permeability in MRGPRX2 KI mice. In addition, antagonist treatment dose dependently inhibited agonist-induced degranulation in ex vivo human skin. CONCLUSION: MRGPRX2 small molecule antagonists potently inhibited agonist-induced mast cell degranulation in vitro and in vivo as well as ex vivo in human skin, supporting potential therapeutic utility as a novel treatment for multiple human diseases involving clinically relevant mast cell activation.

9.
World J Gastroenterol ; 30(23): 2927-2930, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38946872

ABSTRACT

In this editorial, we focus specifically on the mechanisms by which pancreatic inflammation affects pancreatic cancer. Cancer of the pancreas remains one of the deadliest cancer types. The highest incidence and mortality rates of pancreatic cancer are found in developed countries. Trends of pancreatic cancer incidence and mortality vary considerably worldwide. A better understanding of the etiology and identification of the risk factors is essential for the primary prevention of this disease. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this editorial, we highlight the foundational studies that have driven our understanding of these processes. In our experimental center, we have carefully studied the mechanisms of that link pancreatic inflammation and pancreatic cancer. We focused on the role of mast cells (MCs). MCs contain pro-angiogenic factors, including tryptase, that are associated with increased angiogenesis in various tumors. In this editorial, we address the role of MCs in angiogenesis in both pancreatic ductal adenocarcinoma tissue and adjacent normal tissue. The assessment includes the density of c-Kit receptor-positive MCs, the density of tryptase-positive MCs, the area of tryptase-positive MCs, and angiogenesis in terms of microvascularization density.


Subject(s)
Mast Cells , Neovascularization, Pathologic , Pancreatic Neoplasms , Tumor Microenvironment , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/immunology , Mast Cells/metabolism , Mast Cells/immunology , Tumor Microenvironment/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Pancreas/pathology , Pancreas/immunology , Pancreas/metabolism , Animals , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/immunology , Risk Factors , Inflammation Mediators/metabolism , Tryptases/metabolism , Inflammation/metabolism
10.
Clin Exp Med ; 24(1): 151, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967728

ABSTRACT

Merkel cell carcinoma (MCC) is a rare, highly aggressive, primitive neuroendocrine carcinoma of the skin, the origin of which is not yet fully understood. Numerous independent prognostic factors have been investigated in an attempt to understand which are the most important parameters to indicate in the histological diagnostic report of MCC. Of these, mast cells have only been studied in one paper before this one. We present a retrospective descriptive study of 13 cases of MCC, received at the Department of Pathology over a 20-year period (2003-2023 inclusive) on which we performed a study using whole-slide (WSI) morphometric analysis scanning platform Aperio Scanscope CS for the detection and spatial distribution of mast cells, using monoclonal anti-tryptase antibody and anti-CD34 monoclonal antibody to study the density of microvessels. In addition, we analyzed MCPyV status with the antibody for MCPyV large T-antigen (Clone CM2B4). We found statistically significant correlation between mast cell density and local recurrence/distant metastasis/death-of-disease (p = 0.008). To our knowledge, we firstly reported that MCPyV ( -) MCC shows higher mast cells density compared to MCPyV ( +) MCC, the latter well known to be less aggressive. Besides, the median vascular density did not show no significant correlation with recurrence/metastasis/death-of-disease, (p = 0.18). Despite the small sample size, this paper prompts future studies investigating the role of mast cell density in MCC.


Subject(s)
Carcinoma, Merkel Cell , Mast Cells , Skin Neoplasms , Humans , Carcinoma, Merkel Cell/pathology , Mast Cells/pathology , Mast Cells/immunology , Male , Retrospective Studies , Female , Aged , Pilot Projects , Prognosis , Aged, 80 and over , Middle Aged , Skin Neoplasms/pathology , Merkel cell polyomavirus , Cell Count
11.
Eur J Immunol ; : e2451094, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980255

ABSTRACT

The antiallergic effects of gut microbiota have been attracting attention in recent years, but the underlying cellular and molecular mechanisms have not yet been fully understood. In this study, we aimed to investigate these mechanisms specifically focusing on mast cells. Mast cells retain intracellular granules containing various inflammatory mediators such as histamine, which are released outside the cells upon IgE and allergen stimulation. We previously reported that increased expression of the transcription factor, CCAAT/enhancer-binding protein α (C/EBPα), suppresses granule formation in mast cells and that Lacticaseibacillus casei JCM1134T (LC) upregulates C/EBPα levels. Here, granule formation in mouse bone marrow-derived mast cells was suppressed in a MyD88-dependent manner after LC treatment due to C/EBPα-dependent downregulation of the genes encoding serglycin (SRGN) and mast cell protease 4 (Mcpt4). Furthermore, C/EBPα expression was regulated by DNA methylation in the 5' region far upstream of the transcription start site. LC suppressed DNA methylation of specific CpG motifs in the 5' region of the C/EBPα gene. These results conclude that specific gut microbial components, such as those from LC, suppress granule formation in mast cells by inhibiting SRGN and Mcpt4 expression via reduced C/EBPα gene methylation.

12.
Inflammation ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958812

ABSTRACT

Despite intense efforts to develop efficient therapeutic regimes for asthma, there is a large demand for novel treatment strategies in this disease. Here we evaluated the impact of monensin, a drug with potent anti-mast cell effects, in a mouse model of asthma. Allergic airway inflammation was induced by sensitization of mice with house dust mite (HDM) antigen, and effects of monensin on airway hyperreactivity and inflammatory parameters were studied. Following intraperitoneal administration, monensin did not suppress airway hyperreactivity but was shown to have anti-inflammatory properties, as manifested by reduced eosinophil- and lymphocyte infiltration into the airway lumen, and by suppressed inflammation of the lung tissue. After intranasal instillation, monensin exhibited similar anti-inflammatory effects as seen after intraperitoneal administration. Moreover, intranasally administered monensin was demonstrated to suppress goblet cell hyperplasia, and to cause a reduction in the expression of genes coding for key inflammatory markers. Further, monensin blocked mast cell degranulation in the airways of allergen-sensitized mice. Together, this study reveals that monensin has the capacity to suppress key pathological events associated with allergic airway inflammation.

13.
Histochem Cell Biol ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031197

ABSTRACT

Mast cells (MCs) in rat airways have been classified into two subtypes: epithelial MCs and connective tissue MCs (CTMCs). However, the immunohistochemical characteristics, cellular morphology, and distribution of epithelial MCs in the upper airways remain unclear. The present study investigated the morphological characteristics and distribution of epithelial MCs using 5-hydroxytryptamine (5-HT) and other immunohistochemical markers in sectioned or whole-mount preparations of the rat larynx and trachea. A double immunofluorescence analysis revealed the colocalization of 5-HT immunoreactivity with c-kit, a stem cell factor receptor commonly used as a MC marker, in both epithelial MCs and CTMCs. Dopa decarboxylase, an enzyme involved in 5-HT synthesis, was detected in both subtypes, suggesting their ability to synthesize and release 5-HT. Tryptase and histidine decarboxylase (a biosynthetic enzyme of histamine), which are well-known mediators of MCs, were exclusive to CTMCs. Epithelial MCs were pleomorphic with long cytoplasmic processes, whereas CTMCs were round and lacked cytoplasmic processes. The density of epithelial MCs was significantly higher in the glottis and cranial part of the trachea than in the epiglottis and other parts of the trachea. The present results showed that the morphology and immunohistochemical characteristics of epithelial MCs were different from those of CTMCs in the rat larynx and trachea, and variform epithelial MCs were predominantly located at the entrance of the upper airways. Epithelial MCs may release 5-HT to regulate innate immune responses by modulating epithelial cell functions at the entrance gate of the upper airways.

14.
Toxicology ; 506: 153882, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971550

ABSTRACT

Diazinon is an organophosphorus (OP) insecticides used in agriculture, home gardening and indoor pest control in Japan. It can activate macrophages and induce pro-inflammatory responses and has been reported to cause airway hyper-reactivity, suggesting the possibility of asthma exacerbation from exposure to OP insecticides. Despite the correlation between insecticide use and the pathogenesis of allergic diseases, there have been no reports on the effects of diazinon on mast cell function. Therefore, in this study, we investigated the effects of diazinon on mast cell function in rat basophilic leukemia (RBL)-2H3 cells. Surprisingly, we found that diazinon inhibited mast cell activation, although the degree of inhibition varied with concentration. Diazinon induced reactive oxygen species (ROS) generation and HO-1 expression at a concentration of 150 µM without affecting cell viability. Diazinon inhibited A23187-mediated degranulation and Tnf and Il4 expression in RBL-2H3 cells but did not affect calcium influx. Suppression of degranulation by diazinon was reversed when the culture supernatant was removed. As a signaling event downstream of calcium influx, diazinon inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) induced by A23187, whereas the phosphorylation of p38 had little effect. IgE cross-linking-mediated degranulation as well as the induction of Tnf and IL4 expression was significantly inhibited by diazinon, while diazinon had little effect on calcium influx. In conclusion, diazinon inhibited mast cell activation, including degranulation and cytokine expression. When evaluating the in vivo effects of diazinon, its potential to inhibit mast cell activation should be considered in the pathophysiology and development of allergic diseases in terms of basic and clinical aspects, respectively, although the effect of diazinon varies depending on the cell type.

15.
Sisli Etfal Hastan Tip Bul ; 58(2): 226-232, 2024.
Article in English | MEDLINE | ID: mdl-39021685

ABSTRACT

Objectives: This study aimed to investigate the presence and severity of inferior turbinate hypertrophy (ITH) in patients with hypertrophic scars (HTS). Methods: This case-control study was conducted with patients diagnosed with HTS during dermatologic examination and a control group without HTS. An otolaryngologist evaluated the presence and severity of inferior turbinate hypertrophy by anterior rhinoscopy. Results: ITH was more common in patients with HTS compared to the control group (64%, and 34%, respectively) (p=0.014). In the HTS group, 48% of patients had grade 2, and 16% had grade 3 ITH; in the control group, 24% had grade 2, and 10% had grade 3 ITH (p=0.046). Also, ITH was higher in patients who complained of pruritus or pain (83%, and 80%, respectively) in the HTS than in asymptomatic HTS patients (p=0.020). Conclusion: A higher number of patients with HTS had ITH compared to the control group, especially those who reported pruritus or pain associated with scar. Given the limited understanding of the full pathogenesis and treatment of HTS and ITH, their association potentially provides new insights into these related conditions.

16.
J Leukoc Biol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916515

ABSTRACT

Effector CD4+ T lymphocytes (Teff) infiltrate sites of inflammation and orchestrate the immune response by instructing local leukocytes. Mast cells (MCs) are tissue sentinel cells strategically located near blood vessels and T cell rich areas. MC/Teff cells interactions shape Teff cell responses but in turn, Teff cell action on MC is still poorly understood. Here, we analyzed the human MC/Teff cells interplay through both the application of RNAseq and functional assays. We showed that activated Teff cells induce a specific transcriptomic program in MCs including production of both inflammatory cytokines and chemokines, prostaglandin, and a FcεRI-dependent degranulation facilitation thereby driving them toward an inflammatory phenotype. Moreover, Teff cells induce in MCs the capacity to interact with CD4+ T cell through a wide-range of dedicated soluble and membrane ligands and to play the role of antigen presenting cells (APCs).

17.
Immunobiology ; 229(5): 152831, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944891

ABSTRACT

The pro-tumorigenic or anti-tumorigenic role of tumor infiltrating mast cells (TIMs) in tumors depends not only on the type of cancer and the degree of tumor progression, but also on their location in the tumor bulk. In our investigation, we employed immunohistochemistry to reveal that the mast cells (MCs) in the tumor stroma are positively correlated with metastasis of ovarian cancer (OC), but not in the tumor parenchyma. To delve deeper into the influence of different culture matrix stiffness on MCs' biological functions within the tumor parenchymal and stromal regions, we conducted a transcriptome analysis of the mouse MC line (P815) cultured in two-dimensional (2D) or three-dimensional (3D) culture system. Further research has found that the softer 3D extracellular matrix stiffness could improve the mitochondrial activity of MCs to promote proliferation by increasing the expression levels of mitochondrial activity-related genes, namely Pet100, atp5md, and Cox7a2. Furthermore, employing LASSO regression analysis, we identified that Pet100 and Cox7a2 were closely associated with the prognosis of OC patients. These two genes were subsequently employed to construct a risk score model, which revealed that the high-risk group model as one of the prognostic factors for OC patients. Additionally, the XCell algorithm analysis showed that the high-risk group displayed a broader spectrum of immune cell infiltrations. Our research revealed that TIMs in the tumor stroma could promote the metastasis of OC, and mitochondrial activity-related proteins Pet100/Cox7a2 can serve as biomarkers for prognostic evaluation of OC.

18.
J Leukoc Biol ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941350

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is caused by the inhalation of noxious particles such as cigarette smoke. The pathophysiological features include airway inflammation, alveolar destruction and poorly reversible airflow obstruction. A sub-group of COPD patients have higher blood eosinophil counts (BECs), associated with an increased response to inhaled corticosteroids and increased biomarkers of pulmonary type 2 (T2) inflammation. Emerging evidence shows that COPD patients with increased pulmonary eosinophil counts have an altered airway microbiome. Higher BECs are also associated with increased lung function decline, implicating T2 inflammation in progressive pathophysiology in COPD. We provide a narrative review of the role of eosinophils and T2 inflammation in the pathophysiology of COPD, encompassing the lung microbiome, pharmacological targeting of T2 pathways in COPD, and the clinical use of BEC as a COPD biomarker.

19.
Cell Mol Immunol ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942797

ABSTRACT

Recent studies reveal a critical role of tumor cell-released extracellular vesicles (EVs) in pancreatic cancer (PC) progression. However, driver genes that direct EV function, the EV-recipient cells, and their cellular response to EV uptake remain to be identified. Therefore, we studied the role of Bcl-2-associated-anthanogene 6 (BAG6), a regulator of EV biogenesis for cancer progression. We used a Cre recombinase/LoxP-based reporter system in combination with single-cell RNA sequencing to monitor in vivo EV uptake and tumor microenvironment (TME) changes in mouse models for pancreatic ductal adenocarcinoma (PDAC) in a Bag6 pro- or deficient background. In vivo data were validated using mouse and human organoids and patient samples. Our data demonstrated that Bag6-deficient subcutaneous and orthotopic PDAC tumors accelerated tumor growth dependent on EV release. Mechanistically, this was attributed to mast cell (MC) activation via EV-associated IL33. Activated MCs promoted tumor cell proliferation and altered the composition of the TME affecting fibroblast polarization and immune cell infiltration. Tumor cell proliferation and fibroblast polarization were mediated via the MC secretome containing high levels of PDGF and CD73. Patients with high BAG6 gene expression and high protein plasma level have a longer overall survival indicating clinical relevance. The current study revealed a so far unknown tumor-suppressing activity of BAG6 in PDAC. Bag6-deficiency allowed the release of EV-associated IL33 which modulate the TME via MC activation promoting aggressive tumor growth. MC depletion using imatinib diminished tumor growth providing a scientific rationale to consider imatinib for patients stratified with low BAG6 expression and high MC infiltration. EVs derived from BAG6-deficient pancreatic cancer cells induce MC activation via IL33/Il1rl1. The secretome of activated MCs induces tumor proliferation and changes in the TME, particularly shifting fibroblasts into an inflammatory cancer-associated fibroblast (iCAF) phenotype. Blocking EVs or depleting MCs restricts tumor growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...