Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
J Neurosci Res ; 102(7): e25361, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39034899

ABSTRACT

Central and peripheral nervous system (CNS/PNS) proteoglycans (PGs) have diverse functional roles, this study examined how these control cellular behavior and tissue function. The CNS/PNS extracellular matrix (ECM) is a dynamic, responsive, highly interactive, space-filling, cell supportive, stabilizing structure maintaining tissue compartments, ionic microenvironments, and microgradients that regulate neuronal activity and maintain the neuron in an optimal ionic microenvironment. The CNS/PNS contains a high glycosaminoglycan content (60% hyaluronan, HA) and a diverse range of stabilizing PGs. Immobilization of HA in brain tissues by HA interactive hyalectan PGs preserves tissue hydration and neuronal activity, a paucity of HA in brain tissues results in a pro-convulsant epileptic phenotype. Diverse CS, KS, and HSPGs stabilize the blood-brain barrier and neurovascular unit, provide smart gel neurotransmitter neuron vesicle storage and delivery, organize the neuromuscular junction basement membrane, and provide motor neuron synaptic plasticity, and photoreceptor and neuron synaptic functions. PG-HA networks maintain ionic fluxes and microgradients and tissue compartments that contribute to membrane polarization dynamics essential to neuronal activation and neurotransduction. Hyalectans form neuroprotective perineuronal nets contributing to synaptic plasticity, memory, and cognitive learning. Sialoglycoprotein associated with cones and rods (SPACRCAN), an HA binding CSPG, stabilizes the inter-photoreceptor ECM. HSPGs pikachurin and eyes shut stabilize the photoreceptor synapse aiding in phototransduction and neurotransduction with retinal bipolar neurons crucial to visual acuity. This is achieved through Laminin G motifs in pikachurin, eyes shut, and neurexins that interact with the dystroglycan-cytoskeleton-ECM-stabilizing synaptic interconnections, neuronal interactive specificity, and co-ordination of regulatory action potentials in neural networks.


Subject(s)
Astrocytes , Neurons , Proteoglycans , Animals , Proteoglycans/metabolism , Neurons/metabolism , Astrocytes/metabolism , Extracellular Matrix/metabolism , Humans , Cellular Microenvironment/physiology , Central Nervous System/metabolism , Neuronal Plasticity/physiology
2.
Article in English | MEDLINE | ID: mdl-37453387

ABSTRACT

The extracellular cellular matrix (ECM) maintains tissue structure and regulates signaling functions by continuous degradation and remodeling. Inflammation or other disease conditions activate proteases including matrix metalloproteinases (MMPs) that degrade ECM proteins and in particular generate fragments of collagen and elastin, some of which are biologically active ECM peptides or matrikines. Stepwise degradation of collagen by MMP 8, 9 and prolyl endopeptidase release the matrikine proline-glycine-proline (PGP) and its product acetyl-PGP (AcPGP). These peptides are considered as potential biomarkers and therapeutic targets for many disease conditions such as chronic lung disease, heart disease, and cancer. However, there is no published, validated method for the measurement of PGP and AcPGP in plasma and therefore, we developed a sensitive, selective and reliable, isotope dilution LC-multiple reaction monitoring MS method for their determination in human plasma. The chromatographic separation of PGP and AcPGP was achieved in 3 min using Jupiter column with a gradient consisting of acidified acetonitrile and water at a flow rate of 0.5 ml/min. The limit of detection (LOD) for PGP and AcPGP was 0.01 ng/ml and the limit of quantification (LOQ) was 0.05 ng/ml and 0.1 ng/ml, respectively. Precision and accuracy values for all analytes were within 20 % except for the lowest QC of 0.01 ng/ml. The mean extraction recoveries of these analytes were > 90 % using a Phenomenex Phree cartridge and the matrix effect was < 15 % for all the QCs for PGP and AcPGP except the lowest QC. The stability of PGP and AcPGP was > 90 % in several tested conditions including autosampler use, storage at -80 °C, and after 6 times freeze-thaw cycles. Using this method, we successfully extracted and determined PGP levels in human plasma from healthy and COPD subjects. Therefore, this method is suitable for quantification of these peptides in the clinical setting.


Subject(s)
Glycine , Proline , Humans , Chromatography, Liquid , Tandem Mass Spectrometry , Peptides , Collagen
3.
Front Immunol ; 14: 1188079, 2023.
Article in English | MEDLINE | ID: mdl-37283766

ABSTRACT

Background: Immune cell recruitment, endothelial cell barrier disruption, and platelet activation are hallmarks of lung injuries caused by COVID-19 or other insults which can result in acute respiratory distress syndrome (ARDS). Basement membrane (BM) disruption is commonly observed in ARDS, however, the role of newly generated bioactive BM fragments is mostly unknown. Here, we investigate the role of endostatin, a fragment of the BM protein collagen XVIIIα1, on ARDS associated cellular functions such as neutrophil recruitment, endothelial cell barrier integrity, and platelet aggregation in vitro. Methods: In our study we analyzed endostatin in plasma and post-mortem lung specimens of patients with COVID-19 and non-COVID-19 ARDS. Functionally, we investigated the effect of endostatin on neutrophil activation and migration, platelet aggregation, and endothelial barrier function in vitro. Additionally, we performed correlation analysis for endostatin and other critical plasma parameters. Results: We observed increased plasma levels of endostatin in our COVID-19 and non-COVID-19 ARDS cohort. Immunohistochemical staining of ARDS lung sections depicted BM disruption, alongside immunoreactivity for endostatin in proximity to immune cells, endothelial cells, and fibrinous clots. Functionally, endostatin enhanced the activity of neutrophils, and platelets, and the thrombin-induced microvascular barrier disruption. Finally, we showed a positive correlation of endostatin with soluble disease markers VE-Cadherin, c-reactive protein (CRP), fibrinogen, and interleukin (IL)-6 in our COVID-19 cohort. Conclusion: The cumulative effects of endostatin on propagating neutrophil chemotaxis, platelet aggregation, and endothelial cell barrier disruption may suggest endostatin as a link between those cellular events in ARDS pathology.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Endostatins/adverse effects , Endostatins/metabolism , Capillary Permeability , Endothelial Cells/metabolism , COVID-19/metabolism , Respiratory Distress Syndrome/pathology , Inflammation/metabolism
4.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298452

ABSTRACT

Matrikines (MKs) can be a rich source of functional nutrition components and additional therapy, thereby contributing to human health care and reducing the risk of developing serious diseases, including cancer. Currently, functionally active MKs as products of enzymatic transformation by matrix metalloproteinases (MMPs) are used for various biomedical purposes. Due to the absence of toxic side effects, low species specificity, relatively small size, and presence of various targets at the cell membranes, MKs often exhibit antitumor properties and, therefore, are promising agents for antitumor combination therapy. This review summarizes and analyzes the current data on the antitumor activity of MKs of different origins, discusses the problems and prospects for their therapeutic use, and evaluates the experimental results of studying the antitumor properties of MKs from different echinoderm species generated with the help of a complex of proteolytic enzymes from red king crab Paralithodes camtschatica. Special attention is paid to the analysis of possible mechanisms of the antitumor action of various functionally active MKs, products of the enzymatic activity of various MMPs, and the existing problems for their use in antitumor therapy.


Subject(s)
Matrix Metalloproteinases , Neoplasms , Humans , Matrix Metalloproteinases/metabolism , Neoplasms/drug therapy
5.
Tissue Eng Regen Med ; 20(5): 661-670, 2023 08.
Article in English | MEDLINE | ID: mdl-37160567

ABSTRACT

Extracellular matrix (ECM) components confer biomechanical properties, maintain cell phenotype and mediate tissue homeostasis. ECM remodeling is complex and plays a key role in both physiological and pathological processes. Matrix metalloproteinases (MMPs) are a group of enzymes responsible for ECM degradation and have been accepted as a key regulator in ECM remodeling. In this mini-review, we summarize MMPs categories, functions and the targeted substrates. We then discuss current understanding of the role of MMPs-mediated events, including inflammation reaction, angiogenesis, cellular activities, etc., in ECM remodeling in the context of regenerative medicine.


Subject(s)
Matrix Metalloproteinases , Regenerative Medicine , Humans , Matrix Metalloproteinases/chemistry , Matrix Metalloproteinases/metabolism , Extracellular Matrix/metabolism , Inflammation/metabolism
6.
Am J Physiol Cell Physiol ; 324(2): C377-C394, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36571440

ABSTRACT

Osteoarthritis (OA) is among the most frequent diseases of the musculoskeletal system. Degradation of cartilage extracellular matrix (ECM) is a hallmark of OA. During the degradation process, intact/full-length proteins and proteolytic fragments are released which then might induce different downstream responses via diverse receptors, therefore leading to different biological consequences. Collagen type II and the proteoglycan aggrecan are the most abundant components of the cartilage ECM. However, over the last decades, a large number of minor components have been identified and for some of those, a role in the manifold processes associated with OA has already been demonstrated. To date, there is still no therapy able to halt or cure OA. A better understanding of the matrikine landscape occurring with or even preceding obvious degenerative changes in joint tissues is needed and might help to identify molecules that could serve as biomarkers, druggable targets, or even be blueprints for disease modifying drug OA drugs. For this narrative review, we screened PubMed for relevant literature in the English language and summarized the current knowledge regarding the function of selected ECM molecules and the derived matrikines in the context of cartilage and OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Cartilage, Articular/metabolism , Osteoarthritis/metabolism , Extracellular Matrix/metabolism , Aggrecans/metabolism , Aggrecans/therapeutic use , Extracellular Matrix Proteins/metabolism , Chondrocytes/metabolism
7.
Cell Tissue Res ; 390(2): 131-140, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36074173

ABSTRACT

Tendinopathy is a common tendon disorder that causes pain, loss of strength and function, and local inflammation mainly characterized by hypoxia, collagen degradation, and extracellular matrix (ECM) disorganization. Generally, ECM degradation and remodeling is tightly regulated; however, hyperactivation of matrix metalloproteases (MMPs) contributes to excessive collagenolysis under pathologic conditions resulting in tendon ECM degradation. This review article focuses on the production, function, and signaling of matrikines for tendon regeneration following injury with insights into the expression, tissue compliance, and cell proliferation exhibited by various matrikines. Furthermore, the regenerative properties suggest translational significance of matrikines to improve the outcomes post-injury by assisting with tendon healing.


Subject(s)
Extracellular Matrix , Tendons , Extracellular Matrix/metabolism , Tendons/metabolism , Wound Healing/physiology , Proteomics , Protein Processing, Post-Translational
8.
Adv Drug Deliv Rev ; 185: 114240, 2022 06.
Article in English | MEDLINE | ID: mdl-35378216

ABSTRACT

Extracellular matrix (ECM) proteins confer biomechanical properties, maintain cell phenotype and mediate tissue repair (via release of sequestered cytokines and proteases). In contrast to intracellular proteomes, where proteins are monitored and replaced over short time periods, many ECM proteins function for years (decades in humans) without replacement. The longevity of abundant ECM proteins, such as collagen I and elastin, leaves them vulnerable to damage accumulation and their host organs prone to chronic, age-related diseases. However, ECM protein fragmentation can potentially produce peptide cytokines (matrikines) which may exacerbate and/or ameliorate age- and disease-related ECM remodelling. In this review, we discuss ECM composition, function and degradation and highlight examples of endogenous matrikines. We then critically and comprehensively analyse published studies of matrix-derived peptides used as topical skin treatments, before considering the potential for improvements in the discovery and delivery of novel matrix-derived peptides to skin and internal organs. From this, we conclude that while the translational impact of matrix-derived peptide therapeutics is evident, the mechanisms of action of these peptides are poorly defined. Further, well-designed, multimodal studies are required.


Subject(s)
Collagen , Wound Healing , Collagen/chemistry , Cytokines/metabolism , Extracellular Matrix/metabolism , Humans , Peptides/metabolism , Skin/metabolism
9.
Int J Cancer ; 151(6): 833-842, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35322886

ABSTRACT

Collagens are the main components of extracellular matrix in the tumor microenvironment. Both fibrillar and nonfibrillar collagens are involved in tumor progression. The nonfibrillar network-forming collagens such as type IV and type VIII collagens are frequently overexpressed in various types of human cancers, which promotes tumor cell proliferation, adhesion, invasion, metastasis and angiogenesis. Studies on the roles of these collagens have shed light on the mechanisms underpinning the effects of this protein family. Future research has to explicit the role of network-forming collagens with respect to cancer progression and treatment. Herein, we review the regulation of network-forming collagens expression in cancer; the roles of network-forming collagens in tumor invasion, metastasis and angiogenesis; and the clinical significance of network-forming collagens expression in cancer patients.


Subject(s)
Collagen , Neoplasms , Collagen/metabolism , Extracellular Matrix/metabolism , Humans , Non-Fibrillar Collagens , Tumor Microenvironment
10.
Cancers (Basel) ; 14(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35008401

ABSTRACT

The extracellular matrix (ECM) is highly dynamic as it is constantly deposited, remodeled and degraded to maintain tissue homeostasis. ECM is a major structural component of the tumor microenvironment, and cancer development and progression require its extensive reorganization. Cancerized ECM is biochemically different in its composition and is stiffer compared to normal ECM. The abnormal ECM affects cancer progression by directly promoting cell proliferation, survival, migration and differentiation. The restructured extracellular matrix and its degradation fragments (matrikines) also modulate the signaling cascades mediated by the interaction with cell-surface receptors, deregulate the stromal cell behavior and lead to emergence of an oncogenic microenvironment. Here, we summarize the current state of understanding how the composition and structure of ECM changes during cancer progression. We also describe the functional role of key proteins, especially tenascin C and fibronectin, and signaling molecules involved in the formation of the tumor microenvironment, as well as the signaling pathways that they activate in cancer cells.

11.
Matrix Biol ; 105: 31-52, 2022 01.
Article in English | MEDLINE | ID: mdl-34839001

ABSTRACT

The basement membrane (BM) is a specialized layer of extracellular matrix components that plays a central role in maintaining lung and kidney functions. Although the composition of the BM is usually tissue specific, the lung and the kidney preferentially use similar BM components. Unsurprisingly, diseases with BM defects often have severe pulmonary or renal manifestations, sometimes both. Excessive remodeling of the BM, which is a hallmark of both inflammatory and fibrosing diseases in the lung and the kidney, can lead to the release of BM-derived matrikines, proteolytic fragments with distinct biological functions. These matrikines can then influence disease activity at the site of liberation. However, they are also released to the circulation, where they can directly affect the vascular endothelium or target other organs, leading to extrapulmonary or extrarenal manifestations. In this review, we will summarize the current knowledge of the composition and function of the BM and its matrikines in health and disease, both in the lung and in the kidney. By comparison, we will highlight, why the BM and its matrikines may be central in establishing a renal-pulmonary interaction axis.


Subject(s)
Kidney , Lung , Basement Membrane , Endothelium, Vascular
12.
J Cardiovasc Transl Res ; 14(4): 647-660, 2021 08.
Article in English | MEDLINE | ID: mdl-33420681

ABSTRACT

Cardiovascular disease continues to grow as a massive global health burden, with coronary artery disease being one of its most lethal varieties. The pathogenesis of atherosclerosis induces changes in the blood vessel and its extracellular matrix (ECM) in each vascular layer. The alteration of the ECM homeostasis has significant modulatory effects on the inflammatory response, the proliferation and migration of vascular smooth muscle cells, neointimal formation, and vascular fibrosis seen in atherosclerosis. In this literature review, the role of the ECM, the multitude of components, and alterations to these components in the pathogenesis of atherosclerosis are discussed with a focus on versatile cellular phenotypes in the structure of blood vessel. An understanding of the various effects of ECM alterations opens up a plethora of therapeutic options that would mitigate the substantial health toll of atherosclerosis on the global population.


Subject(s)
Coronary Artery Disease/pathology , Coronary Vessels/pathology , Extracellular Matrix/pathology , Vascular Remodeling , Animals , Coronary Artery Disease/drug therapy , Coronary Artery Disease/metabolism , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Fibrosis , Humans , Molecular Targeted Therapy , Neointima , Phenotype , Plaque, Atherosclerotic
13.
Int J Mol Sci ; 22(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379400

ABSTRACT

The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs.


Subject(s)
Cell-Matrix Junctions/metabolism , Integrins/metabolism , Tumor Microenvironment , Animals , Extracellular Matrix/metabolism , Humans , Matrix Metalloproteinases/metabolism , Neoplasms/metabolism , Neoplasms/pathology
14.
Cells ; 9(9)2020 09 03.
Article in English | MEDLINE | ID: mdl-32899187

ABSTRACT

Pulmonary arterial hypertension (PAH) is a vascular disease that is characterized by elevated pulmonary arterial pressure (PAP) due to progressive vascular remodeling. Extracellular matrix (ECM) deposition in pulmonary arteries (PA) is one of the key features of vascular remodeling. Emerging evidence indicates that the basement membrane (BM), a specialized cluster of ECM proteins underlying the endothelium, may be actively involved in the progression of vascular remodeling. The BM and its steady turnover are pivotal for maintaining appropriate vascular functions. However, the pathologically elevated turnover of BM components leads to an increased release of biologically active short fragments, which are called matrikines. Both BM components and their matrikines can interfere with pivotal biological processes, such as survival, proliferation, adhesion, and migration and thus may actively contribute to endothelial dysfunction. Therefore, in this review, we summarize the emerging role of the BM and its matrikines on the vascular endothelium and further discuss its implications on lung vascular remodeling in pulmonary hypertension.


Subject(s)
Basement Membrane/pathology , Extracellular Matrix/pathology , Hypertension, Pulmonary/physiopathology , Humans
15.
J Histochem Cytochem ; 68(12): 871-885, 2020 12.
Article in English | MEDLINE | ID: mdl-32623942

ABSTRACT

Versican is an extracellular matrix proteoglycan with key roles in multiple facets of cancer development, ranging from proliferative signaling, evasion of growth-suppressor pathways, regulation of cell death, promotion of neoangiogenesis, and tissue invasion and metastasis. Multiple lines of evidence implicate versican and its bioactive proteolytic fragments (matrikines) in the regulation of cancer inflammation and antitumor immune responses. The understanding of the dynamics of versican deposition/accumulation and its proteolytic turnover holds potential for the development of novel immune biomarkers as well as approaches to reset the immune thermostat of tumors, thus promoting efficacy of modern immunotherapies. This article summarizes work from several laboratories, including ours, on the role of this central matrix proteoglycan in tumor progression as well as tumor-immune cell cross-talk.


Subject(s)
Disease Progression , Extracellular Matrix Proteins/immunology , Immunity/immunology , Inflammation/immunology , Neoplasms/immunology , Extracellular Matrix/immunology , Extracellular Matrix/pathology , Humans , Neoplasms/pathology
16.
Front Oncol ; 10: 397, 2020.
Article in English | MEDLINE | ID: mdl-32351878

ABSTRACT

The tumor microenvironment (TME) is composed of various cell types embedded in an altered extracellular matrix (ECM). ECM not only serves as a support for tumor cell but also regulates cell-cell or cell-matrix cross-talks. Alterations in ECM may be induced by hypoxia and acidosis, by oxygen free radicals generated by infiltrating inflammatory cells or by tumor- or stromal cell-secreted proteases. A poorer diagnosis for patients is often associated with ECM alterations. Tumor ECM proteome, also named cancer matrisome, is strongly altered, and different ECM protein signatures may be defined to serve as prognostic biomarkers. Collagen network reorganization facilitates tumor cell invasion. Proteoglycan expression and location are modified in the TME and affect cell invasion and metastatic dissemination. ECM macromolecule degradation by proteases may induce the release of angiogenic growth factors but also the release of proteoglycan-derived or ECM protein fragments, named matrikines or matricryptins. This review will focus on current knowledge and new insights in ECM alterations, degradation, and reticulation through cross-linking enzymes and on the role of ECM fragments in the control of cancer progression and their potential use as biomarkers in cancer diagnosis and prognosis.

17.
Int J Mol Sci ; 20(21)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683627

ABSTRACT

Muscular dystrophies (MD) are a group of genetic diseases that lead to skeletal muscle wasting and may affect many organs (multisystem). Unfortunately, no curative therapies are available at present for MD patients, and current treatments mainly address the symptoms. Thus, stem-cell-based therapies may present hope for improvement of life quality and expectancy. Different stem cell types lead to skeletal muscle regeneration and they have potential to be used for cellular therapies, although with several limitations. In this review, we propose a combination of genetic, biochemical, and cell culture treatments to correct pathogenic genetic alterations and to increase proliferation, dispersion, fusion, and differentiation into new or hybrid myotubes. These boosted stem cells can also be injected into pretreate recipient muscles to improve engraftment. We believe that this combination of treatments targeting the limitations of stem-cell-based therapies may result in safer and more efficient therapies for MD patients. Matricryptins have also discussed.


Subject(s)
Muscular Dystrophies/therapy , Stem Cell Transplantation/methods , Stem Cells/cytology , Animals , Cell Culture Techniques/methods , Cell Differentiation , Humans , Muscular Dystrophies/physiopathology , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/transplantation , Regeneration , Tissue Engineering/methods
18.
Biofactors ; 45(6): 857-866, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31430415

ABSTRACT

The family of regulatory proline-containing peptides (PCPs), also known as glyprolines, exhibit significant biological activity. The group of glyprolines includes Gly-Pro (GP), Pro-Gly-Pro (PGP), cyclic Gly-Pro (cGP), as well as PGP derivatives, for example, N-acetylated PGP (N-a-PGP) and N-methylated PGP (N-m-PGP). PCPs are engaged in various biological processes including the proinflammatory neutrophil chemoattraction in lung diseases, inflammatory bowel diseases or ischemic stroke. Glyprolines have been also postulated to play an important role as atheroprotective and anticoagulant agents, exhibit neuroprotective effects in Parkinson's disease, as well as regulate insulin-like growth factor (IGF) homeostasis. It was also noticed that PCPs inhibit proliferation and migration of keratinocytes in wound healing, protection of the gastric mucosa and stimulation of its regeneration. The regulatory glyprolines are derived from endogenous and exogenous sources. Most PCPs are derived from collagen or diet protein degradation. Recently, great interest is concentrated on short proline-rich oligopeptides derived from IGF-1 degradation. The mechanism of PCPs biological activity is not fully explained. It involves receptor-mediated mechanisms, for example, N-a-PGP acts as CXCR1/2 receptor ligand, whereas cGP regulates IGF-1 bioavailability by modifying the IGF-1 binding to the IGF-1 binding protein-3. PGP has been observed to interact with collagen-specific receptors. The data suggest a promising role of PGP as a target of various diseases therapy. This review is focused on the effect of PCPs on metabolic processes in different tissues and the molecular mechanism of their action as an approach to pharmacotherapy of PCPs-dependent diseases.


Subject(s)
Dipeptides/genetics , Peptides, Cyclic/genetics , Peptides/genetics , Proline/genetics , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Humans , Inflammatory Bowel Diseases/genetics , Neutrophils/metabolism , Neutrophils/pathology , Oligopeptides/genetics , Proline/analogs & derivatives , Signal Transduction/genetics , Stroke/genetics , Wound Healing/genetics
19.
J Oral Maxillofac Pathol ; 23(1): 10-16, 2019.
Article in English | MEDLINE | ID: mdl-31110410

ABSTRACT

Oral squamous cell carcinoma is a common cancer in developing countries with highly invasive and metastasis credentials. The Lymphnode metastasis in oral squamous cell carcinoma is regarded as the factor that decides on disease survival of patients. Steps have been made towards research in the field of Oral squamous cell carcinoma for better understanding of the molecular events involved in invasion and metastasis. Recently, the role of Extracellular matrix (ECM) of oral squamous cell carcinoma in invasion and metastasis has gained interest, as ECM is known to actively contribute in events that regulate transcriptional controls and cell signalling mechanisms involved in invasion and metastasis. Understanding such contributing role of ECM may pave way for newer methodologies in early detection, prevention and therapeutic strategies for oral squamous cell carcinoma.

20.
Matrix Biol ; 75-76: 170-189, 2019 01.
Article in English | MEDLINE | ID: mdl-29133183

ABSTRACT

The remodeling of the extracellular matrix (ECM) by several protease families releases a number of bioactive fragments, which regulate numerous biological processes such as autophagy, angiogenesis, adipogenesis, fibrosis, tumor growth, metastasis and wound healing. We review here the proteases which generate bioactive ECM fragments, their ECM substrates, the major bioactive ECM fragments, together with their biological properties and their receptors. The translation of ECM fragments into drugs is challenging and would take advantage of an integrative approach to optimize the design of pre-clinical and clinical studies. This could be done by building the contextualized interaction network of the ECM fragment repertoire including their parent proteins, remodeling proteinases, and their receptors, and by using mathematical disease models.


Subject(s)
Extracellular Matrix/genetics , Models, Theoretical , Neovascularization, Pathologic/genetics , Peptide Hydrolases/genetics , Adipogenesis/genetics , Autophagy/genetics , Extracellular Matrix/metabolism , Fibrosis/genetics , Fibrosis/pathology , Humans , Neoplasm Metastasis , Neovascularization, Pathologic/pathology , Wound Healing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL