Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.914
Filter
1.
Adv Healthc Mater ; : e2400941, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967294

ABSTRACT

Damage and repair are recurring processes in tissues, with fibroblasts playing key roles by remodeling extracellular matrices (ECM) through protein synthesis, proteolysis, and cell contractility. Dysregulation of fibroblasts can lead to fibrosis and tissue damage, as seen in idiopathic pulmonary fibrosis (IPF). In advanced IPF, tissue damage manifests as honeycombing, or voids in the lungs. This study explores how transforming growth factor-beta (TGF-ß), a crucial factor in IPF, induces lung fibroblast spheroids to create voids in reconstituted collagen through proteolysis and cell contractility, a process is termed as hole formation. These voids reduce when proteases are blocked. Spheroids mimic fibroblast foci observed in IPF. Results indicate that cell contractility mediates tissue opening by stretching fractures in the collagen meshwork. Matrix metalloproteinases (MMPs), including MMP1 and MT1-MMP, are essential for hole formation, with invadopodia playing a significant role. Blocking MMPs reduces hole size and promotes wound healing. This study shows how TGF-ß induces excessive tissue destruction and how blocking proteolysis can reverse damage, offering insights into IPF pathology and potential therapeutic interventions.

2.
J Conserv Dent Endod ; 27(6): 649-653, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38989489

ABSTRACT

Introduction: Pulpal and periradicular diseases stem from immune reactions to microbiota, causing inflammation. Limited blood supply hampers dental pulp self-healing. Managing inflammation involves eliminating bacteria and reducing pro-inflammatory mediators especially MMP-9, which has a significant correlation with pulpitis. s. Flavonoids like Hesperidin, Baicalein, Epigallocatechin gallate, Genistein, Icariin, and Quercetin show potential for pulp capping. Aim: This in-silico study compares various Flavonoids for their anti-inflammatory effects on MMP-9, with Chlorhexidine as a control, a known MMP-9 inhibitor. Materials and Methods: Protein and Ligand Preparation: The human MMP-9 catalytic domain (PDB ID: 4XCT) structure was retrieved, and necessary modifications were made. Flavonoids from PubChem database were prepared for docking using AutoDock Vina. A grid for docking was created, and molecular dynamics simulations were conducted using Gromacs-2019.4 with GROMOS96 force field. Trajectory analysis was performed, and MM-PBSA calculation determined binding free energies. Results: Analysis of MMP-9 and ligand interactions revealed Hesperidin's high binding affinity, forming numerous hydrogen bonds with specific amino acids. Molecular dynamics simulations confirmed stability, with RMSD, RMSF, Rg, and SASA indicating consistent complex behaviour over 100 ns. MM-PBSA calculation affirmed favourable energy contributions in MMP-9-Hesperidin interactions. Conclusion: MMP-9 plays a crucial role in prognosis of pulpitis. Incorporating MMP-9 inhibitors into pulp capping agents may enhance therapeutic efficacy. Hesperidin emerges as a potent MMP-9 inhibitor, warranting further in vivo validation against other agents.

3.
J Conserv Dent Endod ; 27(6): 566-571, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38989495

ABSTRACT

Matrix metalloproteinases (MMPs) have been identified as agents that disintegrate the collagen structures of dental hybrid layers, resulting in reduced restorative bond strength. Multiple MMP inhibitors (MMPIs) are known to counteract this degenerative mechanism, thereby preserving bond strength and promoting the longevity of resin-based restorations. Additionally, literature suggests that certain MMPI materials possess antimicrobial/anticariogenic properties, potentially reducing the risk of secondary caries development. Therefore, this review article aims to narrate on the integration of matrix metalloproteinase inhibitors into adhesive systems and their impact on bond strength.

4.
Heliyon ; 10(12): e32494, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948030

ABSTRACT

Objective: To explore the potential targets for melatonin in the treatment of periodontitis through network pharmacologic analysis and experimental validation via in vivo animal models and in vitro cellular experiments. Materials and methods: In this study, we first screened melatonin targets from Pharm Mapper for putative targets, Drug Bank, and TCMSP databases for known targets. Then, disease database was searched and screened for differential expressed genes associated with periodontitis. The intersection of disease and melatonin-related genes yielded potential target genes of melatonin treatment for periodontitis. These target genes were further investigated by protein-protein interaction network and GO/KEGG enrichment analysis. In addition, the interactions between melatonin and key target genes were interrogated by molecular docking simulations. Then, we performed animal studies to validate the therapeutic effect of melatonin by injecting melatonin into the peritoneal cavity of ligation-induced periodontitis (LIP) mice. The effects of melatonin on the predicted target proteins were also analyzed using Western blot and immunofluorescence techniques. Finally, we constructed an in vitro cellular model and validated the direct effect of melatonin on the predicted targets by using qPCR. Results: We identified 8 potential target genes by network pharmacology analysis. Enrichment analysis suggests that melatonin may treat periodontitis by inhibiting the expression of three potential targets (MPO, MMP8, and MMP9). Molecular docking results showed that melatonin could effectively bind to MMP8 and MMP9. Subsequently, melatonin was further validated in a mouse LIP model to inhibit the expression of MPO, MMP8, and MMP9 in the periodontal tissue. Finally, we verified the direct effect of melatonin on the mRNA expression of MPO, MMP8, and MMP9 in an in vitro cellular model. Conclusions: Through a combination of network pharmacology and experimental validation, this study provides a more comprehensive understanding of the mechanism of melatonin to treat periodontitis. Our study suggests that MPO, MMP8, and MMP9 as key target genes of melatonin to treat periodontitis. These findings present a more comprehensive basis for further investigation into the mechanisms of pharmacological treatment of periodontitis by melatonin.

5.
J Ethnopharmacol ; 334: 118535, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972529

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Blumea balsamifera (L.) DC. (BB), the source of Blumea balsamifera oil (BBO), is an aromatic medicinal plant, renowned for its pharmacological properties and its traditional use in Southeast Asian countries such as China, Thailand, Vietnam, Malaysia, and the Philippines for centuries. Traditionally, BB has been used as a raw herbal medicine for treating various skin conditions like eczema, dermatitis, athlete's foot, and wound healing for skin injuries. AIM OF THE STUDY: This research aimed to explore the inhibitory effects of BBO on skin aging using two models: in vitro analysis with human dermal fibroblasts (HDF) under UVB-induced stress, and in vivo studies on UVA-induced dorsal skin aging in mice. The study sought to uncover the mechanisms behind BBO's anti-aging effects, specifically, its impact on cellular and tissue responses to UV-induced skin aging. MATERIALS AND METHODS: We applied doses of 10-20 µL/mL of BBO to HDF cells that had been exposed to UVB radiation to simulate skin aging. We measured cell viability, and levels of reactive oxygen species (ROS), SA-ß-gal, pro-inflammatory cytokines, and matrix metalloproteinases (MMPs). In addition, we investigated the involvement of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways in mediating the anti-aging effects of BBO. Histopathological and biochemical analyses were conducted in a mouse model to examine the effects of BBO on UV-induced photoaging. RESULTS: UV exposure accelerated aging, and caused cellular damage and inflammatory responses through ROS-mediated pathways. In HDF cells, BBO treatment countered the UVB-induced senescence, and the recovery of cell viability was correlated to notable reductions in SA-ß-gal, ROS, pro-inflammatory cytokines, and MMPs. Mechanistically, the anti-aging effect of BBO was associated with the downregulation of the JNK/NF-κB signaling pathways. In the in vivo mouse model, BBO exhibited protective capabilities against UV-induced photoaging, which were manifested by the enhanced antioxidant enzyme activities and tissue remodeling. CONCLUSIONS: BBO effectively protects fibroblasts from UV-induced photoaging through the JNK/NF-κB pathway. Recovery from photoaging involves an increase in dermal fibroblasts, alleviation of inflammation, accelerated synthesis of antioxidant enzymes, and slowed degradation of ECM proteins. Overall, BBO enhances the skin's defensive capabilities against oxidative stress, underscoring its potential as a therapeutic agent for oxidative stress-related skin aging.

6.
Diagnostics (Basel) ; 14(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39001241

ABSTRACT

Acute kidney damage (AKI) is a serious and common consequence among critically unwell individuals. Traditional biomarkers, such as serum creatinine, frequently fail to detect AKI in its early stages, necessitating the development of new accurate early biomarkers. Tissue inhibitor of metalloproteinases 2 (TIMP-2) has emerged as a promising biomarker for predicting early AKI. The present narrative review investigates the role of TIMP-2 in AKI prediction in a variety of clinical scenarios. In the NephroCheck® test, TIMP-2 exceeds established biomarkers for the early identification of AKI in terms of sensitivity and specificity when combined with insulin-like growth factor-binding protein 7 (IGFBP-7). Elevated levels of these biomarkers can provide a warning signal for AKI two to three days before clinical symptoms appear. TIMP-2 and IGFBP-7 have high predictive values, with an area under the curve (AUC) typically above 0.8, indicating good predictive capacity. For example, the [TIMP-2] × [IGFBP-7] product produced an AUC of 0.85 in surgical patients at high risk. In critically ill patients, a threshold of 0.3 (ng/mL)2/1000 demonstrated 92% sensitivity and 72% specificity. Elevated TIMP-2 levels have been correlated with higher mortality rates and the need for renal replacement therapy (RRT). In sepsis-associated AKI (SA-AKI), TIMP-2 levels combined with clinical prognostic models improved predictive accuracy (AUC: 0.822). Furthermore, elevated urine TIMP-2 levels were good predictors of AKI in pediatric patients after cardiac surgery, with AUC-ROC values of up to 0.848. Urine output and the presence of concomitant disorders may influence the prognostic accuracy of these biomarkers; therefore, more research is needed to fully understand their utility. The predictive value of TIMP-2 could be strengthened by combining it with other clinical parameters, reinforcing its role in the early detection and treatment of AKI.

7.
Cells ; 13(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38994938

ABSTRACT

In Crohn's Disease (CD), intestinal fibrosis is a prevalent yet unresolved complication arising from chronic and transmural inflammation. The histological assessment of CD intestines shows changes in tissue morphology in all the layers, including the mucosa and muscularis. This study aimed to determine the differences in fibrogenesis between mucosa and muscularis. Human precision-cut intestinal slices (hPCIS) were prepared from human intestine mucosa and muscularis and treated with TGF-ß1 and/or PDGF-BB for 72 h. Gene and protein expression and matrix metalloproteinase (MMP) activity were determined. The basal gene expression of various fibrosis markers was higher in muscularis compared to mucosa hPCIS. During incubation, Pro-Collagen-1A1 secretion increased in muscularis but not in mucosa hPCIS. MMP gene expression increased during incubation in mucosa and muscularis hPCIS, except for MMP9, MMP12, and MMP13 in muscularis hPCIS. Incubation with TGF-ß1 caused increased COL1A1 expression in the mucosa but not in muscularis hPCIS. In muscularis hPCIS, TGF-ß1 treatment caused a decrease in MMP1 and CTSK expression, while MMP13 was increased. In the presence of TGF-ß1, protease inhibitor expression was stable, except for SERPINE1, which was increased in muscularis hPCIS. We conclude that fibrogenesis is more pronounced in muscularis hPCIS compared to mucosa hPCIS, especially when stimulated with TGF-ß1.


Subject(s)
Fibrosis , Intestinal Mucosa , Transforming Growth Factor beta1 , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/drug effects , Transforming Growth Factor beta1/metabolism , Collagen Type I, alpha 1 Chain , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Crohn Disease/pathology , Crohn Disease/metabolism , Crohn Disease/genetics , Collagen Type I/metabolism , Collagen Type I/genetics , Muscle, Smooth/metabolism , Muscle, Smooth/pathology , Muscle, Smooth/drug effects , Male , Female , Adult
8.
J Infect Dis ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843067

ABSTRACT

HIF-1α is a pivotal regulator of metabolic and inflammatory responses. This study investigated the role of HIF-1α in M. bovis infection and its effects on host immune metabolism and tissue damage. We evaluated the expression of immunometabolism markers and MMPs infected with M. bovis, and following HIF-1α inhibition in vitro. To understand the implications of HIF-1α inhibition on disease progression, mice at different infection stages were treated with the HIF-1α inhibitor, YC-1. Our results revealed an upregulation of the HIF-1α in macrophages post-M. bovis infection, facilitating enhanced M1 macrophage polarization. The blockade of HIF-1α moderated these responses but escalated MMP activity, hindering bacterial control. Consistent with our in vitro results, early-stage treatment of mice with YC-1 aggravated pathological alterations and tissue damage, while late-stage HIF-1α inhibition proved beneficial in managing the disease. Overall, our findings underscored the nuanced role of HIF-1α across varying phases of M. bovis infection.

9.
Eur J Neurosci ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844747

ABSTRACT

Despite widespread use of combination antiretroviral therapy (cART), there remains a subset of individuals who display cognitive impairment broadly known as HIV-associated neurocognitive disorder (HAND). Interestingly, HIV-infected cells continuously release the HIV-1 protein Tat even in the presence of cART. Persistent exposure to Tat is proposed to increase both neuroinflammation and neurotoxicity. In vitro evidence shows that matrix metalloproteinases (MMPs) are among the neuroinflammatory molecules induced by Tat, which are known to disrupt specialized neuronal extracellular matrix structures called perineuronal nets (PNNs). PNNs predominantly surround parvalbumin interneurons and help to buffer these cells from oxidant stress and to independently increase their excitability. In order to better understand the link between short-term exposure to Tat, neuroinflammation, and PNNs, we explored the direct effects of Tat on glial cells and neurons. Herein, we report that in mixed glial cultures, Tat directly increases the expression of proinflammatory molecules, including MMP-9. Moreover, direct injection of Tat protein into mouse hippocampus increases the expression of astrocyte and microglia markers as well as MMP-9. The number of PNNs is decreased following Tat exposure, followed later by decreased numbers of hippocampal parvalbumin-expressing neurons. In older mice, Tat induced significant increases in the gene expression of proinflammatory molecules including markers of gliosis, MMPs and complement system proteins. Taken together, these data support a direct effect of Tat on glial-derived MMP expression subsequently affecting PNNs and neuronal health, with older mice more susceptible to Tat-induced inflammation.

10.
Mol Nutr Food Res ; : e2400028, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925577

ABSTRACT

SCOPE: This study investigates the impact of extracts derived from Antarctic fish species, Trematomus newnesi and Trematomus bernacchii, on the migration of human placental trophoblast JEG-3 cells, which is a crucial aspect of successful pregnancy. METHODS AND RESULTS: The extracts, obtained from the muscles of these fish, significantly enhance the migration and invasion of JEG-3 cells in in vitro wound healing, Transwell, and collagen invasion assays. These effects are accompanied by an increase in matrix metalloproteinase (MMP) 9 activity, as demonstrated by zymography. Furthermore, the extracts activated Akt and protein phosphatase 1, resulting in the dephosphorylation of ß-catenin at Ser33/37/Thr41, as confirmed by western blot analysis. Consequently, MMP9 is upregulated, while metallopeptidase inhibitor 1/3 is downregulated, as verified by western blot and qRT-PCR analyses. Finally, utilizing ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, followed by matching with the Global Natural Product Social Molecular Networking library, the study annotates the compound responsible for the observed migratory activity as taurocholic acid. Importantly, the study confirms that taurocholic acid enhances cell migration in JEG-3 cells. CONCLUSION: The results of this study emphasize the potential of Antarctic fish extracts in promoting extravillous trophoblast migration and invasion, which are critical for successful pregnancy.

11.
Mol Neurobiol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935232

ABSTRACT

Alzheimer's disease (AD) is a major contributor to dementia and the most common neurodegenerative disorder. In AD pathophysiology, matrix metalloproteinases (MMPs)-proteolytic enzymes, best known to be responsible for remodeling and degradation of the extracellular matrix-were suggested to play an important role. Due to the diverse nature of the published data and frequent inconsistent results presented in available papers, it was considered essential to analyze all aspects of MMP literature with respect to AD pathophysiology and attempt to outline a unifying concept for understanding their role in AD. Thus, the main contribution of this review article is to summarize the most recent research on the participation of MMP in AD pathophysiology obtained using the cell cultures to understand the molecular principles of their action. Furthermore, an updated comprehensive view regarding this topic based exclusively on papers from human studies is provided as well. It can be concluded that determining the exact role of any particular MMPs in the AD pathophysiology holds promise for establishing their role as potential biomarkers reflecting the severity or progression of this disease or for developing new therapeutic agents targeting the processes that lead to AD.

12.
Article in English | MEDLINE | ID: mdl-38867666

ABSTRACT

Obstructive sleep apnea (OSA), characterized by episodes of intermittent hypoxia (IH), is highly prevalent in patients with abdominal aortic aneurysm (AAA). However, whether IH serves as an independent risk factor for AAA development remains to be investigated. Here, we determined the effects of chronic (6 months) IH on angiotensin (Ang II)-induced AAA development in C57BL/6J male mice, and IH underlying mechanisms in cultured vascular smooth muscle cells (SMCs). IH increased abdominal aortic diameter and the incidence of AAA in mice infused with Ang II as assessed by transabdominal ultrasound imaging. Importantly, IH with Ang II augmented aortic elastin degradation and expression of matrix metalloproteinase (MMP)s, mainly MMP8, MMP12 and a disintegrin and metalloproteinase-17 (ADAM17) as measured by histology and immunohistochemistry. Mechanistically, IH increased the activities of MMP2, MMP8, MMP9, MMP12, and ADAM17, while reducing the expression of the MMP regulator, reversion inducing cysteine rich protein with kazal motifs (RECK) in cultured SMCs. Aortic samples from human AAA were associated with decreased RECK and increased expression of ADAM17 and MMPs. These data suggest that IH promotes the development of AAA in association with an increased expression of MMPs and ADAM17, while decreased expression of RECK may be responsible for the increased protease activity. These findings support a potential causal link between OSA and AAA and provide a better understanding of the molecular mechanisms underlying the pathogenesis of AAA.

13.
J Pharm Bioallied Sci ; 16(Suppl 2): S1077-S1079, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882905

ABSTRACT

Enzymes in peri-implant sulcular fluid (PISF) have emerged as essential biomarkers in the field of periodontics, providing critical insights into the health and stability of dental implants. This essay explores the significance of various enzymes in PISF, including matrix metalloproteinases (MMPs), elastase, alkaline phosphatase, acid phosphatase, aspartate aminotransferase (AST), and alanine aminotransferase (ALT), in assessing the local inflammatory environment and diagnosing peri-implant diseases. The analysis of these enzymes facilitates early detection of complications, personalized treatment planning, and long-term monitoring, emphasizing the need for a multidisciplinary approach to patient care. Collaboration among dental professionals and patient education is crucial in ensuring the successful management and maintenance of dental implants. Understanding the role of enzymes in PISF and their implications in periodontal health underscores their significance in contemporary periodontics and emphasizes the need for ongoing research and technological advancements.

14.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891949

ABSTRACT

Childhood glaucoma encompasses congenital and juvenile primary glaucoma, which are heterogeneous, uncommon, and irreversible optic neuropathies leading to visual impairment with a poorly understood genetic basis. Our goal was to identify gene variants associated with these glaucoma types by assessing the mutational burden in 76 matrix metalloproteinase-related genes. We studied 101 childhood glaucoma patients with no identified monogenic alterations using next-generation sequencing. Gene expression was assessed through immunohistochemistry. Functional analysis of selected gene variants was conducted in cultured cells and in zebrafish. Patients presented a higher proportion of rare variants in four metalloproteinase-related genes, including CPAMD8 and ADAMTSL4, compared to controls. ADAMTSL4 protein expression was observed in the anterior segment of both the adult human and zebrafish larvae's eye, including tissues associated with glaucoma. In HEK-293T cells, expression of four ADAMTSL4 variants identified in this study showed that two variants (p.Arg774Trp and p.Arg98Trp) accumulated intracellularly, inducing endoplasmic reticulum stress. Additionally, overexpressing these ADAMTSL4 variants in zebrafish embryos confirmed partial loss-of-function effects for p.Ser719Leu and p.Arg1083His. Double heterozygous functional suppression of adamtsl4 and cpamd8 zebrafish orthologs resulted in reduced volume of both the anterior eye chamber and lens within the chamber, supporting a genetic interaction between these genes. Our findings suggest that accumulation of partial functional defects in matrix metalloproteinase-related genes may contribute to increased susceptibility to early-onset glaucoma and provide further evidence supporting the notion of a complex genetic inheritance pattern underlying the disease.


Subject(s)
Glaucoma , Zebrafish , Humans , Animals , Zebrafish/genetics , Glaucoma/genetics , Child , Male , Female , Child, Preschool , HEK293 Cells , Genetic Predisposition to Disease , Mutation , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , ADAMTS Proteins/genetics , ADAMTS Proteins/metabolism , Adolescent , Infant , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Endoplasmic Reticulum Stress/genetics
15.
Dent Mater ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876824

ABSTRACT

OBJECTIVE: 10-methacryloyloxidecyl dihydrogen phosphate monomer (10-MDP) is commonly used as a bonding monomer in universal adhesives. Adhesives that contain this monomer can directly contact the surrounding periodontium due to the chemical binding of 10-MDP with hydroxyapatite in hard tissue to form calcium salts. However, the effect of these calcium salts on the periodontium in the case of subgingival fillings remains poorly understood. The objective of this study was to investigate effects of 10-MDP calcium salts on osteoblasts and fibroblasts in the periodontal tissues. METHODS: This study investigated the effects of different concentrations of 10-MDP calcium salts on the migration, proliferation, and differentiation of osteoblasts (MC3T3-E1) and fibroblasts (L929); additionally, the effect on apoptosis and matrix metalloproteinases (MMPs) expression in these cells was evaluated. Cell proliferation assay, alkaline phosphatase (ALP) activity assay, Western blotting, and quantitative real-time polymerase chain reaction were performed to determine the effects. RESULTS: The 10-MDP calcium salts (within a concentration of 0.5 mg/mL) showed no cytotoxicity and did not seem to influence the apoptosis, mitochondrial membrane potential, and reactive oxygen species (ROS) levels in the cells. However, they had an inhibitory effect on the secretion of MMP2 and MMP9 in the osteoblasts and fibroblasts. The ALP activity assay and Alizarin Red staining did not reveal any significant effects of the 10-MDP calcium salts on osteoblast differentiation. SIGNIFICANCE: These results suggest that applying 10-MDP-containing adhesives to subgingival fillings may be safe and beneficial for the periodontal tissues.

16.
Biomed Pharmacother ; 176: 116927, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870633

ABSTRACT

Echinops plants have received great attention for the treatment of many diseases due to pharmacological properties such as their antidiabetic, antioxidant, and anti-inflammatory characteristics. The major purpose of the present study was to investigate the cardioprotective benefits of Echinops cephalotes (Ech) against myocardial ischemia-reperfusion (MI/R) injury. Male Wistar rats were randomly allocated to three groups: sham, MI, and MI + Ech. The left coronary artery (LAD) was blocked for 30 minutes to induce MI. In the treatment group, rats were given 150 mg/kg/day of Ech extract for 28 days. Aqueous extracts were made from Echinops plants. To study heart function, fibrosis, cardiac damage indicators, and oxidative stress factors, echocardiography, Masson's trichrome staining, and biochemical tests were used. The expression of matrix metalloproteinase 2 and 9 (MMP2 and MMP-9) and tissue inhibitor of metalloproteinase (TIMP) was determined using Western blotting. Tissue damage was assessed using hematoxylin and eosin staining. MI group exhibited significantly reduced ejection fraction (EF) and fractional shortening (FS), enhanced levels of lactate dehydrogenase (LDH), creatine kinase MB (CK-MB), cardiac Troponin I (cTnI), and malondialdehyde (MDA), as well as a decrease in the Glutathione (GSH) tissue content, reduced activity of superoxide dismutase (SOD), increasing fibrosis, upregulations of MMP-2 and MMP-9, and reduction of TIMP compared to the sham group. The findings suggest that Ech in particular, could be a promising therapeutic agent to reduce the damage in MI by targeting oxidative stress and modulating the activities of matrix metalloproteinases and their tissue inhibitors.


Subject(s)
Cardiotonic Agents , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Myocardial Reperfusion Injury , Oxidative Stress , Plant Extracts , Rats, Wistar , Animals , Male , Oxidative Stress/drug effects , Matrix Metalloproteinase 2/metabolism , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Matrix Metalloproteinase 9/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/metabolism , Cardiotonic Agents/pharmacology , Cardiotonic Agents/isolation & purification , Rats , Myocardium/pathology , Myocardium/metabolism , Tissue Inhibitor of Metalloproteinases/metabolism , Fibrosis , Water/chemistry , Antioxidants/pharmacology
17.
Cells ; 13(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38891088

ABSTRACT

The ability of human melanoma cells to switch from an epithelial to a mesenchymal phenotype contributes to the metastatic potential of disease. Metalloproteinases (MPs) are crucially involved in this process by promoting the detachment of tumor cells from the primary lesion and their migration to the vasculature. In gray horse melanoma, epithelial-mesenchymal transition (EMT) is poorly understood, prompting us to address MP expression in lesions versus intact skin by transcriptome analyses and the immunofluorescence staining (IF) of gray horse tumor tissue and primary melanoma cells. RNAseq revealed the deregulation of several MPs in gray horse melanoma and, notably, a 125-fold upregulation of matrix metalloproteinase 1 (MMP1) that was further confirmed by RT-qPCR from additional tumor material. The IF staining of melanoma tissue versus intact skin for MMP1 and tumor marker S100 revealed MMP1 expression in all lesions. The co-expression of S100 was observed at different extents, with some tumors scoring S100-negative. The IF staining of primary tumor cells explanted from the tumors for MMP1 showed that the metalloproteinase is uniformly expressed in the cytoplasm of 100% of tumor cells. Overall, the presented data point to MP expression being deregulated in gray horse melanoma, and suggest that MMP1 has an active role in gray horse melanoma by driving EMT-mediated tumor cell dissemination via the degradation of the extracellular matrix. Whilst S100 is considered a reliable tumor marker in human MM, gray horse melanomas do not seem to regularly express this protein.


Subject(s)
Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Matrix Metalloproteinase 1 , Melanoma , Animals , Melanoma/pathology , Melanoma/enzymology , Melanoma/genetics , Melanoma/metabolism , Horses , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Epithelial-Mesenchymal Transition/genetics , Skin Neoplasms/pathology , Skin Neoplasms/enzymology , Skin Neoplasms/genetics , Skin Neoplasms/veterinary , Skin Neoplasms/metabolism , Cell Line, Tumor , Metalloproteases/metabolism , Metalloproteases/genetics , Humans
18.
J Cancer ; 15(12): 4020-4039, 2024.
Article in English | MEDLINE | ID: mdl-38911387

ABSTRACT

Background: Matrix metalloproteinases (MMPs) are involved in many processes of tumour progression and invasion. However, few studies have analysed the effects of MMP expression patterns on endometrial cancer (EC) development from the perspective of the tumour microenvironment (TME). we quantified MMP expression in individual by constructing an MMP score and found MMP score effectively predict the prognosis of EC patients. Methods: MMPs expression profiles were determined based on the differential expression of 12 MMP-related regulators. Principal component analysis (PCA) was used to construct an MMP scoring system which can quantify the MMPs expression patterns individually of EC patients. Kaplan-Meier analysis, the log-rank test, and time-dependent receiver operating characteristic (ROC) curve analysis were used to evaluate the value of MMPs expression in predicting prognosis. Single-cell RNA sequencing (scRNA-seq) dataset was used to verify correlation between MMPs and progression of EC. Gene Ontology (GO) analysis was used to investigate the pathways and functions underlying MMPs expression. Tumour immune dysfunction, exclusion prediction, and pharmacotherapy response analyses were performed to assess the potential response to pharmacotherapy based on MMPs patterns. Results: We downloaded the MMPs expression data, somatic mutation data and corresponding clinical information of EC patients from the TCGA website and ICGC portal. Based on the MMP-related differentially expressed genes (DEGs), the MMP score was constructed, and EC patients were divided into high and low MMP score groups. There was a positive correlation between MMP score and prognosis of EC patients. Patients with high MMP scores had better prognosis, more abundant immune cell infiltration and stronger antitumoor immunity. Although prognosis is worse with the lower group than the high, patients with low MMP score had better response to immunotherapy, which means they could prolong the survival time through Immunological checkpoint blockade (ICB) therapy. scRNA-seq analysis identified significant heterogeneity between MMP score and classical pathways in EC. Conclusion: Our work indicates that the MMP score could be a potential tool to evaluate MMP expression patterns, immune cell infiltration, response to pharmacotherapy, clinicopathological features, and survival outcomes in EC. This will provide the more effective guide to select immunotherapeutic strategies of EC in the future.

20.
J Cell Mol Med ; 28(11): e18460, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864710

ABSTRACT

Haemophilic arthropathy (HA), a common comorbidity in haemophilic patients leads to joint pain, deformity and reduced quality of life. We have recently demonstrated that a long non-coding RNA, Neat1 as a primary regulator of matrix metalloproteinase (MMP) 3 and MMP13 activity, and its induction in the target joint has a deteriorating effect on articular cartilage. In the present study, we administered an Adeno-associated virus (AAV) 5 vector carrying an short hairpin (sh)RNA to Neat1 via intra-articular injection alone or in conjunction with systemic administration of a capsid-modified AAV8 (K31Q) vector carrying F8 gene (F8-BDD-V3) to study its impact on HA. AAV8K31Q-F8 vector administration at low dose, led to an increase in FVIII activity (16%-28%) in treated mice. We further observed a significant knockdown of Neat1 (~40 fold vs. untreated injured joint, p = 0.005) in joint tissue of treated mice and a downregulation of chondrodegenerative enzymes, MMP3, MMP13 and the inflammatory mediator- cPLA2, in mice receiving combination therapy. These data demonstrate that AAV mediated Neat1 knockdown in combination with F8 gene augmentation can potentially impact mediators of haemophilic joint disease.


Subject(s)
Dependovirus , Factor VIII , Genetic Vectors , Hemophilia A , Matrix Metalloproteinase 13 , Matrix Metalloproteinase 3 , RNA, Long Noncoding , Animals , Hemophilia A/genetics , Hemophilia A/therapy , Hemophilia A/complications , Dependovirus/genetics , RNA, Long Noncoding/genetics , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Mice , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 3/metabolism , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Factor VIII/genetics , Factor VIII/metabolism , Joint Diseases/therapy , Joint Diseases/genetics , Joint Diseases/etiology , Humans , Genetic Therapy/methods , Mice, Inbred C57BL , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Disease Models, Animal , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...