ABSTRACT
Sandy soils (containing > 50% sand) are widely distributed worldwide and are characterized by their poor structure, low organic matter, weak hydraulic and nutritional properties, and low crop productivity. Using a 2-year pot experiment, in this study, we investigated the effects of humic acid (HA) as a soil amendment and study two plant growth stimulants (PGSs), zinc oxide nanoparticles (ZnONPs), and L-tryptophan (L-TRP), as a foliar application on wheat grown in nutrient-poor sandy soil. Three HA rates (0 (HA0), 0.2 (HA0.2), and 0.4 (HA0.4) g kg-1 soil) and five PGS levels [control, 50 mg l-1 (ZnONPs50), 100 mg l-1 (ZnONPs100), 0.25 mmol l-1 (L-TRP0.25), and 0.5 mmol l-1 (L-TRP0.5)] were used. The soil hydro-physico-chemical properties, morpho-physiological responses, yield, and quality were measured. HA addition amended the soil structure by allowing rapid macroaggregate formation, decreasing bulk density and pH, and increasing porosity and electrical conductivity, thereby improving soil hydraulic properties. HA0.2 and HA0.4 additions improved growth, yield components, and grain minerals, resulting in higher grain yield by 28.3-54.4%, grain protein by 10.2-13.4%, wet gluten by 18.2-23.3%, and dry gluten by 23.5-29.5%, respectively, than HA0. Foliar application of ZnONPs or L-TRP, especially at higher concentrations compared to the control, noticeably recorded the same positive results as HA treatments. The best results were achieved through the integration of HA0.4 + ZnONPs100 or L-TRP0.5 to the tested nutrient-poor sandy soil. The interactive application of HA0.4 + ZnONPs100 or L-TRP0.5 and the use of mineral fertilizer, which is considered a surplus point in permaculture, can be recommended for sustainable wheat production in nutrient-poor sandy soil.
ABSTRACT
Concerns about the negative effects of agriculture on soil physical quality and soil organic carbon (SOC) pools have spurred on the adoption of conservation tillage systems in tropical regions. This study aimed to evaluate the long-term impacts (16th year) of conventional (CT), minimum (MT) and no-tillage (NT) practices and different cover crops (sunn hemp and a bean/millet sequence) on soil physical properties and SOC content of a corn cultivated Ultisol in the northeast of Brazil. Soil bulk density (Bd), soil penetration resistance (SPR), soil aggregation, and total aggregate-associated carbon (C) (4-2 mm) were evaluated. Tillage practices exerted strong control on soil physical properties and total aggregate-C content but were influenced by cover crop species. Minimum tillage presented the lowest Bd, irrespective of cover crop, while NT with bean/millet sequence resulted in the lowest SPR. However, as regards soil aggregation and total aggregate-C, the results indicated that there were no differences between MT and NT, with both systems presenting greater mean weight diameter (MWD) and total aggregate-C content than CT. Total aggregate-C content in the 0.00-0.05 m soil layer in conservation tillage was increased by the adoption of a bean/millet sequence. Increased mechanical disturbance through CT practices was harmful to Bd, soil aggregation and SOC accrual. Overall, more conservative tillage practices and the proper choice of cover crops might yield greater soil quality. Low intensity of soil disturbances due to the adoption of MT favors soil aggregation and the accrual of SOC in weakly structured soils through increases in contact between organic and mineral particles while not causing significant destruction of soil aggregates.(AU)
Subject(s)
Soil Analysis , Soil Characteristics , Land Conservation , Sustainable AgricultureABSTRACT
Concerns about the negative effects of agriculture on soil physical quality and soil organic carbon (SOC) pools have spurred on the adoption of conservation tillage systems in tropical regions. This study aimed to evaluate the long-term impacts (16th year) of conventional (CT), minimum (MT) and no-tillage (NT) practices and different cover crops (sunn hemp and a bean/millet sequence) on soil physical properties and SOC content of a corn cultivated Ultisol in the northeast of Brazil. Soil bulk density (Bd), soil penetration resistance (SPR), soil aggregation, and total aggregate-associated carbon (C) (4-2 mm) were evaluated. Tillage practices exerted strong control on soil physical properties and total aggregate-C content but were influenced by cover crop species. Minimum tillage presented the lowest Bd, irrespective of cover crop, while NT with bean/millet sequence resulted in the lowest SPR. However, as regards soil aggregation and total aggregate-C, the results indicated that there were no differences between MT and NT, with both systems presenting greater mean weight diameter (MWD) and total aggregate-C content than CT. Total aggregate-C content in the 0.00-0.05 m soil layer in conservation tillage was increased by the adoption of a bean/millet sequence. Increased mechanical disturbance through CT practices was harmful to Bd, soil aggregation and SOC accrual. Overall, more conservative tillage practices and the proper choice of cover crops might yield greater soil quality. Low intensity of soil disturbances due to the adoption of MT favors soil aggregation and the accrual of SOC in weakly structured soils through increases in contact between organic and mineral particles while not causing significant destruction of soil aggregates.