Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Article in English | MEDLINE | ID: mdl-38847969

ABSTRACT

Nowadays, cardiovascular diseases are the most common cause of death worldwide. Besides, atherosclerosis is a cardiovascular disease that occurs with persistent narrowing of arteries, especially medium and large-sized arteries. Atherosclerosis begins with a local elevation in the permeability of the arterial wall as a result of endothelial inflammation. Subsequently, excess LDL permeates into the arterial wall. Then, through several chemical responses and reactions, foam cells are produced. These foam cells serve as a crucial indicator for assessing the development of atherosclerosis within the arteries. In this study, the effect of endothelial layer modeling, heart rate (HR) and hypertension on the foam cell accumulation is numerically investigated in a patient-specific geometry of the human thoracic aorta. Navier-Stokes, Darcy, and mass transfer equations are used to obtain the velocity and concentration field within the domain. Regarding the dependence of endothelial cell properties on time-averaged wall shear stress, it is observed that foam cells are mainly concentrated in the outer curvature of the aortic arch, downstream of the left subclavian artery. However, considering oscillatory-shear-rate as the determinant of endothelial cell properties leads to the accumulation of foam cells in the inner curvature of the descending aorta. Regarding the HR, with the increase of HR, the volume average concentration of the foam cell decreases. However, there is no substantial difference between the cases of different HRs. Moreover, foam cell concentration significantly increases in the hypertension case. This result implies that a slight increase in the blood pressure may induce irreparable problems in the circulatory system.

2.
J Biochem ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729213

ABSTRACT

Tendons and ligaments, crucial components of the musculoskeletal system, connect muscles to bones. In the realm of sports, tendons and ligaments are vulnerable tissues with injuries such as Achilles tendon rupture and anterior cruciate ligament tears directly impacting an athlete's career. Furthermore, repetitive trauma and tissue degeneration can lead to conditions like secondary osteoarthritis, ultimately affecting the overall quality of life. Recent research highlights the pivotal role of mechanical stress in maintaining homeostasis within tendons and ligaments. This review delves into the latest insights on the structure of tendons and ligaments and the plasticity of tendon tissue in response to mechanical loads.

3.
Sci Rep ; 14(1): 11991, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796487

ABSTRACT

Physiochemical tissue inducers and mechanical stimulation are both efficient variables in cartilage tissue fabrication and regeneration. In the presence of biomolecules, decellularized extracellular matrix (ECM) may trigger and enhance stem cell proliferation and differentiation. Here, we investigated the controlled release of transforming growth factor beta (TGF-ß1) as an active mediator of mesenchymal stromal cells (MSCs) in a biocompatible scaffold and mechanical stimulation for cartilage tissue engineering. ECM-derived hydrogel with TGF-ß1-loaded alginate-based microspheres (MSs) was created to promote human MSC chondrogenic development. Ex vivo explants and a complicated multiaxial loading bioreactor replicated the physiological conditions. Hydrogels with/without MSs and TGF-ß1 were highly cytocompatible. MSCs in ECM-derived hydrogel containing TGF-ß1/MSs showed comparable chondrogenic gene expression levels as those hydrogels with TGF-ß1 added in culture media or those without TGF-ß1. However, constructs with TGF-ß1 directly added within the hydrogel had inferior properties under unloaded conditions. The ECM-derived hydrogel group including TGF-ß1/MSs under loading circumstances formed better cartilage matrix in an ex vivo osteochondral defect than control settings. This study demonstrates that controlled local delivery of TGF-ß1 using MSs and mechanical loading is essential for neocartilage formation by MSCs and that further optimization is needed to prevent MSC differentiation towards hypertrophy.


Subject(s)
Alginates , Bioreactors , Chondrogenesis , Hydrogels , Mesenchymal Stem Cells , Microspheres , Tissue Engineering , Alginates/chemistry , Tissue Engineering/methods , Humans , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Animals , Cartilage/metabolism , Cartilage/cytology , Tissue Scaffolds/chemistry , Decellularized Extracellular Matrix/chemistry , Transforming Growth Factor beta1/metabolism , Cell Differentiation , Cells, Cultured , Transforming Growth Factor beta/metabolism , Extracellular Matrix/metabolism
4.
Biotechnol J ; 19(4): e2300714, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622793

ABSTRACT

Natural bone tissue features a complex mechanical environment, with cells responding to diverse mechanical stimuli, including fluid shear stress (FSS) and hydrostatic pressure (HP). However, current in vitro experiments commonly employ a singular mechanical stimulus to simulate the mechanical environment in vivo. The understanding of the combined effects and mechanisms of multiple mechanical stimuli remains limited. Hence, this study constructed a mechanical stimulation device capable of simultaneously applying FSS and HP to cells. This study investigated the impact of FSS and HP on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and examined the distinctions and interactions between the two mechanisms. The results demonstrated that both FSS and HP individually enhanced the osteogenic differentiation of BMSCs, with a more pronounced effect observed through their combined application. BMSCs responded to external FSS and HP stimulation through the integrin-cytoskeleton and Piezo1 ion channel respectively. This led to the activation of downstream biochemical signals, resulting in the dephosphorylation and nuclear translocation of the intracellular transcription factors Yes Associated Protein 1 (YAP1) and nuclear factor of activated T cells 2 (NFAT2). Activated YAP1 could bind to NFAT2 to enhance transcriptional activity, thereby promoting osteogenic differentiation of BMSCs more effectively. This study highlights the significance of composite mechanical stimulation in BMSCs' osteogenic differentiation, offering guidance for establishing a complex mechanical environment for in vitro functional bone tissue construction.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/physiology , Hydrostatic Pressure , Cell Differentiation/physiology , Transcription Factors/metabolism , Cells, Cultured , Bone Marrow Cells
5.
Biomater Adv ; 157: 213738, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154401

ABSTRACT

Bone mesenchymal stem cells (BMSCs) are crucial for bone tissue regeneration, the mechanical microenvironment of hard tissues, including bone and teeth, significantly affects the osteogenic differentiation of BMSCs. Biomaterials may mimic the microenvironment of the extracellular matrix and provide mechanical signals to regulate BMSCs differentiation via inducing the secretion of various intracellular factors. Biomaterials direct the differentiation of BMSCs via mechanical signals, including tension, compression, shear, hydrostatic pressure, stiffness, elasticity, and viscoelasticity, which can be transmitted to cells through mechanical signalling pathways. Besides, biomaterials with piezoelectric effects regulate BMSCs differentiation via indirect mechanical signals, such as, electronic signals, which are transformed from mechanical stimuli by piezoelectric biomaterials. Mechanical stimulation facilitates achieving vectored stem cell fate regulation, while understanding the underlying mechanisms remains challenging. Herein, this review summarizes the intracellular factors, including translation factors, epigenetic modifications, and miRNA level, as well as the extracellular factor, including direct and indirect mechanical signals, which regulate the osteogenic differentiation of BMSCs. Besides, this review will also give a comprehensive summary about how mechanical stimuli regulate cellular behaviours, as well as how biomaterials promote the osteogenic differentiation of BMSCs via mechanical microenvironments. The cellular behaviours and activated signal pathways will give more implications for the design of biomaterials with superior properties for bone tissue engineering. Moreover, it will also provide inspiration for the construction of bone organoids which is a useful tool for mimicking in vivo bone tissue microenvironments.


Subject(s)
Biocompatible Materials , Osteogenesis , Osteogenesis/genetics , Bone and Bones , Cell Differentiation/genetics , Bone Regeneration
6.
Front Bioeng Biotechnol ; 11: 1271762, 2023.
Article in English | MEDLINE | ID: mdl-38053849

ABSTRACT

Mechanical stimuli regulate the chondrogenic differentiation of mesenchymal stem cells and the homeostasis of chondrocytes, thus affecting implant success in cartilage tissue engineering. The mechanical microenvironment plays fundamental roles in the maturation and maintenance of natural articular cartilage, and the progression of osteoarthritis Hence, cartilage tissue engineering attempts to mimic this environment in vivo to obtain implants that enable a superior regeneration process. However, the specific type of mechanical loading, its optimal regime, and the underlying molecular mechanisms are still under investigation. First, this review delineates the composition and structure of articular cartilage, indicating that the morphology of chondrocytes and components of the extracellular matrix differ from each other to resist forces in three top-to-bottom overlapping zones. Moreover, results from research experiments and clinical trials focusing on the effect of compression, fluid shear stress, hydrostatic pressure, and osmotic pressure are presented and critically evaluated. As a key direction, the latest advances in mechanisms involved in the transduction of external mechanical signals into biological signals are discussed. These mechanical signals are sensed by receptors in the cell membrane, such as primary cilia, integrins, and ion channels, which next activate downstream pathways. Finally, biomaterials with various modifications to mimic the mechanical properties of natural cartilage and the self-designed bioreactors for experiment in vitro are outlined. An improved understanding of biomechanically driven cartilage tissue engineering and the underlying mechanisms is expected to lead to efficient articular cartilage repair for cartilage degeneration and disease.

7.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762629

ABSTRACT

Bones are constantly exposed to mechanical forces from both muscles and Earth's gravity to maintain bone homeostasis by stimulating bone formation. Mechanotransduction transforms external mechanical signals such as force, fluid flow shear, and gravity into intracellular responses to achieve force adaptation. However, the underlying molecular mechanisms on the conversion from mechanical signals into bone formation has not been completely defined yet. In the present review, we provide a comprehensive and systematic description of the mechanotransduction signaling pathways induced by mechanical stimuli during osteogenesis and address the different layers of interconnections between different signaling pathways. Further exploration of mechanotransduction would benefit patients with osteoporosis, including the aging population and postmenopausal women.


Subject(s)
Mechanotransduction, Cellular , Osteogenesis , Humans , Female , Aged , Aging , Gravitation , Homeostasis
8.
Physiol Rep ; 11(15): e15780, 2023 08.
Article in English | MEDLINE | ID: mdl-37537718

ABSTRACT

The circadian clock, a collection of endogenous cellular oscillators with an approximate 24-h cycle, involves autoregulatory transcriptional/translational feedback loops to enable synchronization within the body. Circadian rhythmicity is controlled by a master clock situated in the hypothalamus; however, peripheral tissues are also under the control of autonomous clocks which are coordinated by the master clock to regulate physiological processes. Although light is the primary signal required to entrain the body to the external day, non-photic zeitgeber including exercise also entrains circadian rhythmicity. Cellular mechano-sensing is imperative for functionality of physiological systems including musculoskeletal tissues. Over the last decade, mechano-regulation of circadian rhythmicity in skeletal muscle, intervertebral disc, and bone has been demonstrated to impact tissue homeostasis. In contrast, few publications exist characterizing the influence of mechanical loading on the circadian rhythm in articular cartilage, a musculoskeletal tissue in which loading is imperative for function; importantly, a dysregulated cartilage clock contributes to development of osteoarthritis. Hence, this review summarizes the literature on mechano-regulation of circadian clocks in musculoskeletal tissues and infers on their collective importance in understanding the circadian clock and its synchronicity for articular cartilage mechanobiology.


Subject(s)
Cartilage, Articular , Circadian Clocks , Circadian Clocks/physiology , Cues , Circadian Rhythm/physiology , Hypothalamus
9.
Eur Arch Otorhinolaryngol ; 280(12): 5391-5399, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37561188

ABSTRACT

PURPOSE: The aim of this prospective study was to examine the characteristics of a clinical test for the assessment of nasal trigeminal sensitivity to mechanical stimuli and its association with the perception of nasal patency. METHODS: Thirty-two normosmic healthy subjects participated (17 women and 15 men; age = 26 ± 3 years). Precisely defined air puffs were used with a flow rate of 2L/min for mechanical stimulation. They were presented to the nasal vestibule, nasal septum, and inferior turbinate with various stimulus durations. Thresholds were measured by single-staircase stimuli with changes in stimulus duration in steps of 10 ms. Trigeminal suprathreshold intensity was rated by subjects for stimulus durations of 200, 300, 400, and 500 ms. Test-retest reliability was examined by intraclass correlations (ICCs) and Bland-Altman plot with limits of agreement. Pearson's correlations were calculated between self-rated nasal patency and nasal trigeminal sensitivity. RESULTS: As indicated by trigeminal threshold and suprathreshold intensities, the nasal vestibule is the most sensitive area among the three locations, followed by the nasal septum and the inferior turbinate (p < 0.001). Coefficients of correlations between test and retest were 0.76 for thresholds, and 0.56 suprathreshold intensities (p < 0.001). The Bland-Altman analysis showed a good agreement between test-retest values. In addition, significant positive associations between trigeminal suprathreshold intensities and self-rated nasal obstruction were found at the inferior turbinate (r = 0.4, p < 0.05). CONCLUSION: Reliable assessment of nasal trigeminal sensitivity for air puffs appears to be possible. Nasal trigeminal suprathreshold sensitivity to mechanical stimuli is associated with the perception of nasal patency at the inferior turbinate. This opens a window into the assessment of the perception of nasal airflow in various clinical purposes, especially for patients with sinonasal diseases.


Subject(s)
Nasal Cavity , Nasal Obstruction , Male , Humans , Female , Young Adult , Adult , Prospective Studies , Reproducibility of Results , Nasal Cavity/physiology , Nasal Obstruction/diagnosis , Nasal Septum , Perception/physiology , Trigeminal Nerve/physiology
10.
J Biochem ; 174(4): 305-315, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37461198

ABSTRACT

Pain and mechanical stimulation are thought to be alarm systems that alert the brain to physical abnormalities. When we experience unpleasant feelings in infected or traumatized tissues, our awareness is directed to the afflicted region, prompting activities such as resting or licking the tissue. Despite extensive research into the molecular biology of nociceptors, it was unclear whether their role was limited to the generation and transmission of unpleasant feelings or whether they actively modulate the pathogenesis of infected or traumatized tissues. Recently, it has become clear how the sensory and immune systems interact with one another and share similar receptors and ligands to modify the pathogenesis of various diseases. In this paper, we summarize the mechanisms of crosstalk between the sensory and immune systems and the impact of this new interdisciplinary field, which should be dubbed 'senso-immunology,' on medical science.


Subject(s)
Nociceptors , Pain , Humans , Nociceptors/physiology
11.
Biochem Biophys Res Commun ; 663: 25-31, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37116394

ABSTRACT

Tendon overuse injuries are common, but the processes that govern tendon response to mechanical load are not fully understood. A series of experiments of in vitro and in vivo experiments was devised to study to the relationship between mechanical stimuli and the matricellular protein Cellular Communication Network Factor 1 (CCN1) in tenocytes and tendons. First, human and murine tenocytes were subjected to cyclic uniaxial loading in order to evaluate changes in CCN1 gene expression as a response to mechanical stimuli. Then, baseline Ccn1 gene expression in different murine tendons (Achilles, patellar, forearm, and tail) was examined. Finally, changes in Ccn1 expression after in vivo unloading experiments were examined. It was found that CCN1 expression significantly increased in both human and murine tenocytes at 5 and 10% cyclical uniaxial strain, while 2.5% strain did not have any effect on CCN1 expression. At baseline, the Achilles, patellar, and forearm tendons had higher expression levels of Ccn1 as compared to tail tendons. Twenty-four hours of immobilization of the hind-limb resulted in a significant decrease in Ccn1 expression in both the Achilles and patellar tendons. In summary, CCN1 expression is up-regulated in tenocytes subjected to mechanical load and down-regulated by loss of mechanical load in tendons. These results show that CCN1 expression in tendons is at least partially regulated by mechanical stimuli.


Subject(s)
Achilles Tendon , Tendon Injuries , Mice , Humans , Animals , Achilles Tendon/metabolism , Tendon Injuries/metabolism , Tenocytes/metabolism , Patella , Stress, Mechanical
12.
Chem Asian J ; 18(10): e202300124, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37005980

ABSTRACT

Organic emitters capable of changing their luminescence properties in response to mechanical stimuli have recently attracted considerable attention. While mechanoresponsive switching of luminescence color has been widely investigated, there are only a limited examples regarding the on-off luminescence intensity switching by mechanical stimulation. Consequently, rational design guidelines for mechanoresponsive switching of luminescence intensity have not been established. Herein, on-off luminescence switching has been achieved by two-component organic emitters composed of phenanthroimidazolylbenzothiadiazoles, which exhibit mechanochromic luminescence (MCL), and non-emissive pigments. In these two-component emitters, the emission color can be tuned by changing the MCL dye, and the apparent color under room light can be modulated by changing the non-emissive pigment. Moreover, we have demonstrated the encryption and decryption of luminescent displays by using the two-component emitter. The present two-component strategy is expected to serve as a useful method for developing advanced mechanoresponsive luminescent materials.

13.
Mol Ther Nucleic Acids ; 32: 94-110, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37020681

ABSTRACT

Aged cells have declined regenerative ability when subjected to environmental insult. Here we elucidate the mechanism by which mechanical stimulus induces hair regeneration at the microenvironmental regulation level using the hair plucking and organoid culture models. We observed that the skin cells harvested from post-plucking day 3 (PPD3) have the best self-organizing ability during skin organoid culture and have the highest hair regeneration upon transplantation. By bulk RNA sequencing (RNA-seq) and single-cell RNA-seq analysis and in situ hybridization, we identified that the chemokine signaling pathway genes including CCL2 are significantly increased in the skin at PPD3 and in skin organoid cultures. Immunostaining shows that the PPD3 skin epithelial cells have increased multipotency, which is verified by the ability to self-organize to form epidermal aggregates during organoid culture. By adding CCL2 recombinant protein to the organoid culture using an environmental reprogramming protocol, we observed the PPD0 adult skin cells, which lose their regenerative ability can self-organize in organoid culture and regenerate hair follicles robustly upon transplantation. Our study demonstrates that CCL2 functions in immune regulation of hair regeneration under mechanical stimulus, and enhances cell multipotency during organoid culture. This provides a therapeutic potential for future clinical application.

14.
J Colloid Interface Sci ; 640: 510-520, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36878069

ABSTRACT

Bacteria adapt the mechanical properties of their cell envelope, including cell wall stiffness, turgor, and cell wall tension and deformation, to grow and survive in harsh environments. However, it remains a technical challenge to simultaneously determine these mechanical properties at a single cell level. Here we combined theoretical modelling with an experimental approach to quantify the mechanical properties and turgor of Staphylococcus epidermidis. It was found that high osmolarity leads to a decrease in both cell wall stiffness and turgor. We also demonstrated that the turgor change is associated with a change in the viscosity of the bacterial cell. We predicted that the cell wall tension is much higher in deionized (DI) water and it decreases with an increase in osmolality. We also found that an external force increases the cell wall deformation to reinforce its adherence to a surface and this effect can be more significant in lower osmolarity. Overall, our work highlights how bacterial mechanics supports survival in harsh environments and uncovers the adaption of bacterial cell wall mechanical integrity and turgor to osmotic and mechanical challenges.


Subject(s)
Bacteria , Cell Wall , Microscopy, Atomic Force , Cell Wall/metabolism , Cell Membrane , Osmotic Pressure
15.
PeerJ ; 11: e14950, 2023.
Article in English | MEDLINE | ID: mdl-36908813

ABSTRACT

Background: Bicuspid aortic valve (BAV) is a congenital cardiac deformity, increasing the risk of developing calcific aortic valve disease (CAVD). The disturbance of hemodynamics can induce valvular calcification, but the mechanism has not been fully identified. Methods: We constructed a finite element model (FEM) of the aortic valve based on the computed tomography angiography (CTA) data from BAV patients and tricuspid aortic valve (TAV) individuals. We analyzed the hemodynamic properties based on our model and investigated the characteristics of mechanical stimuli on BAV. Further, we detected the expression of Notch, NICD and Runx2 in valve samples and identified the association between mechanical stress and the Notch1 signaling pathway. Results: Finite element analysis showed that at diastole phase, the equivalent stress on the root of BAV was significantly higher than that on the TAV leaflet. Correspondingly, the expression of Notch1 and NICH decreased and the expression of Runx2 elevated significantly on large BAV leaflet belly, which is associated with equivalent stress on leaflet. Our findings indicated that the root of BAV suffered higher mechanical stress due to the abnormal hemodynamic environment, and the disturbance of the Notch1/NICD/Runx2 signaling pathway caused by mechanical stimuli contributed to valvular calcification.


Subject(s)
Aortic Valve Stenosis , Bicuspid Aortic Valve Disease , Heart Valve Diseases , Humans , Bicuspid Aortic Valve Disease/metabolism , Heart Valve Diseases/metabolism , Stress, Mechanical , Aortic Valve/abnormalities , Aortic Valve Stenosis/metabolism , Receptor, Notch1/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism
16.
Front Bioeng Biotechnol ; 11: 1115312, 2023.
Article in English | MEDLINE | ID: mdl-36890920

ABSTRACT

Tendon injuries often result in significant pain and disability and impose severe clinical and financial burdens on our society. Despite considerable achievements in the field of regenerative medicine in the past several decades, effective treatments remain a challenge due to the limited natural healing capacity of tendons caused by poor cell density and vascularization. The development of tissue engineering has provided more promising results in regenerating tendon-like tissues with compositional, structural and functional characteristics comparable to those of native tendon tissues. Tissue engineering is the discipline of regenerative medicine that aims to restore the physiological functions of tissues by using a combination of cells and materials, as well as suitable biochemical and physicochemical factors. In this review, following a discussion of tendon structure, injury and healing, we aim to elucidate the current strategies (biomaterials, scaffold fabrication techniques, cells, biological adjuncts, mechanical loading and bioreactors, and the role of macrophage polarization in tendon regeneration), challenges and future directions in the field of tendon tissue engineering.

17.
Front Bioeng Biotechnol ; 10: 995460, 2022.
Article in English | MEDLINE | ID: mdl-36263353

ABSTRACT

Breathing exposes lung cells to continual mechanical stimuli, which is part of the microenvironmental signals directing cellular functions together with the extracellular matrix (ECM). Therefore, developing systems that incorporate both stimuli is urgent to fully understand cell behavior. This study aims to introduce a novel in vitro culture methodology combining a cyclic stretch that simulates in vivo breathing with 3D cell culture platforms in the form of decellularized lung slices (DLS) and precision cut lung slices (PCLS). To this end, we have constructed a device that mimics the amplitudes and frequencies of distensions seen in the breathing human lung. For its validation, we cultured H441 lung epithelial cells in human DLS exposed to 16 stretch cycles per minute with a 10% stretch amplitude. Cell viability (resazurin reduction), proliferation (Ki-67) and YAP1 activation were evaluated at 24 and 96 h by immunohistochemistry, while the expression of SFTPB, COL3A1, COL4A3 and LAMA5 was evaluated by qPCR. Cyclic stretch induced an increase in SFTPB expression after 24 h without a concomitant increase in the stretch responsive gene YAP1. Moreover, the ECM milieu lowered the expression of the basement membrane protein genes COL4A3 and LAMA5 compared to tissue culture plastic control cultures, but no effect was observed by the mechanical stimuli. The device also confirmed good compatibility with PCLS culture, showing preserved morphology and metabolism in rat PCLS after 72 h of mechanical stretch. Thus, we present a novel device and methodology for the easy assembling and study of lung tissue slice cultures subjected to physiomimetic mechanical stimuli, which shows promise for future studies of cell and tissue function in a lung ECM milieu with physiological or pathological mechanical stimuli.

18.
Front Physiol ; 13: 904203, 2022.
Article in English | MEDLINE | ID: mdl-36060694

ABSTRACT

Mechanosensation is essential for normal gastrointestinal (GI) function, and abnormalities in mechanosensation are associated with GI disorders. There are several mechanosensitive ion channels in the GI tract, namely transient receptor potential (TRP) channels, Piezo channels, two-pore domain potassium (K2p) channels, voltage-gated ion channels, large-conductance Ca2+-activated K+ (BKCa) channels, and the cystic fibrosis transmembrane conductance regulator (CFTR). These channels are located in many mechanosensitive intestinal cell types, namely enterochromaffin (EC) cells, interstitial cells of Cajal (ICCs), smooth muscle cells (SMCs), and intrinsic and extrinsic enteric neurons. In these cells, mechanosensitive ion channels can alter transmembrane ion currents in response to mechanical forces, through a process known as mechanoelectrical coupling. Furthermore, mechanosensitive ion channels are often associated with a variety of GI tract disorders, including irritable bowel syndrome (IBS) and GI tumors. Mechanosensitive ion channels could therefore provide a new perspective for the treatment of GI diseases. This review aims to highlight recent research advances regarding the function of mechanosensitive ion channels in the GI tract. Moreover, it outlines the potential role of mechanosensitive ion channels in related diseases, while describing the current understanding of interactions between the GI tract and mechanosensitive ion channels.

19.
Front Physiol ; 13: 917510, 2022.
Article in English | MEDLINE | ID: mdl-36091380

ABSTRACT

Human adipose-derived stem cells (hASCs) have multi-directional differentiation potential including osteogenic differentiation. Mechanical stimulation is thought to be a key regulator of bone remodeling and has been proved to promote osteogenic differentiation of mesenchymal stem cells. However, the mechanism how mechanical tension-induced osteogenesis of hASCs still remains poor understood. Polycystin-2 (PC2), a member of the transient receptor potential polycystic (TRPP) family, is involved in cilia-mediated mechanical transduction. To understand the role of PC2 in osteogenic differentiation under mechanical stimuli in hASCs, PKD2 gene was stably silenced by using lentivirus-mediated shRNA technology. The results showed that mechanical tension sufficiently enhanced osteogenic differentiation but hardly affected proliferation of hASCs. Silencing PKD2 gene caused hASCs to lose the ability of sensing mechanical stimuli and subsequently promoting osteogenesis. PC2 knock-out also reduced the cilia population frequency and cilia length in hASCs. TAZ (transcriptional coactivator with PDZ-binding motif, also known as Wwtr1) could mediate the genes regulation and biological functions of mechanotransduction signal pathway. Here, mechanical tension also enhanced TAZ nuclear translocation of hASCs. PC2 knock-out blocked tension-induced upregulation of nuclear TAZ and suppress tension-induced osteogenesis. TAZ could directly interact with Runx2, and inhibiting TAZ could suppress tension-induced upregulation of Runx2 expression. In summary, our findings demonstrated that PC2 mediate mechanical tension-induced osteogenic differentiation of hASCs by activating TAZ.

20.
Sensors (Basel) ; 22(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36146238

ABSTRACT

Bioengineered in vitro models of the kidney offer unprecedented opportunities to better mimic the in vivo microenvironment. Kidney-on-a-chip technology reproduces 2D or 3D features which can replicate features of the tissue architecture, composition, and dynamic mechanical forces experienced by cells in vivo. Kidney cells are exposed to mechanical stimuli such as substrate stiffness, shear stress, compression, and stretch, which regulate multiple cellular functions. Incorporating mechanical stimuli in kidney-on-a-chip is critically important for recapitulating the physiological or pathological microenvironment. This review will explore approaches to applying mechanical stimuli to different cell types using kidney-on-a-chip models and how these systems are used to study kidney physiology, model disease, and screen for drug toxicity. We further discuss sensor integration into kidney-on-a-chip for monitoring cellular responses to mechanical or other pathological stimuli. We discuss the advantages, limitations, and challenges associated with incorporating mechanical stimuli in kidney-on-a-chip models for a variety of applications. Overall, this review aims to highlight the importance of mechanical stimuli and sensor integration in the design and implementation of kidney-on-a-chip devices.


Subject(s)
Kidney , Lab-On-A-Chip Devices , Epithelial Cells , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...