Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 436
Filter
1.
Avicenna J Phytomed ; 14(1): 112-125, 2024.
Article in English | MEDLINE | ID: mdl-38948177

ABSTRACT

Objective: Medicago sativa (M. sativa) has been traditionally used for treating anemia; therefore, M. sativa hydro-ethanolic extract therapeutic effects against cyclophosphamide (CP) -induced hematologic and liver toxicity were examined. Materials and Methods: Thirty male Wistar rats were randomly divided to control (saline); CP (100 mg/kg, day 1-3, subcutaneously); CP+ M. sativa 200 mg/kg (MS 200); CP+ M. sativa 400 mg/kg (MS 400); CP+ dexamethasone (0.1 mg/kg), (all groups n=6). Treated animals received M. sativa or dexamethasone by gavage from days 7-14. On days 0, 7, and 14, hematologic parameters, and on the 14th day, serum and liver tissue oxidative stress markers including nitric oxide, malondialdehyde (MDA) and total thiol levels, superoxide dismutase (SOD) and catalase (CAT) activities, serum lipids, and liver enzymes were measured. Results: Animal weight, platelet, white blood cells, and red blood cells counts, hemoglobin and hematocrit as well as thiol, SOD, and CAT activities in serum and liver tissue were significantly reduced, but serum nitric oxide, MDA, total cholesterol, triglycerides, low-density lipoproteins levels, and liver enzymes were increased in the CP group compared to the control group (p<0.05 to p<0.001). Administering M. sativa extract (400 mg/kg) significantly enhanced platelet count, and SOD and CAT activities and inhibited all of the CP toxic effects, while dexamethasone improved platelet count and oxidative stress markers compared to the CP group (p<0.05 to p<0.001). Conclusion: The extract of M. sativa (400 mg/kg) showed therapeutic effects against the CP-induced myelosuppression and thrombocytopenia and improved oxidative stress markers which were comparable to the effect of dexamethasone.

2.
Chemosphere ; 362: 142737, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950747

ABSTRACT

Recently, phytoremediation has been regarded as a green and environment friendly technique to treat metals contaminated soils. Thus, in this study, pot experiments were designed to investigate the combine effects of biochar and magnesium (MPs) to purify cadmium (Cd)-contaminated soils by Medicago sativa L. (alfalfa). The results showed that the combined use of biochar and Mg significantly increased the accumulation of Cd and promoted the transport of Cd from root to shoot in alfalfa, simultaneously. Importantly, the combined use of biochar and Mg could increase the accumulation of Cd in shoot and whole plant (shoot + root) of alfalfa up-to 59.1% and 23.1%, respectively. Moreover, the enhancement mechanism can be analyzed from several aspects. Firstly, the photosynthesis was enhanced, which was beneficial to plant growth. The product of photosynthesis provided energy for uptake and transport of Cd. Meanwhile, its transport in phloem could promote the transport of Cd. Secondly, the enhancement of antioxidant capacity of alfalfa effectively protected the membrane structure of alfalfa, which indicated that Cd could enter alfalfa from the channel on the cell membrane. Lastly, the chemical form of Cd and microbial community structure in soil were changed. Overall, these changes reduced the Cd toxicity in soil, enhanced the resistance capability of alfalfa, increased the Cd uptake by alfalfa and promoted the growth of alfalfa. Thus, the obtained results suggested that the combined use of biochar and Mg is an effective approach to enhance phytoremediation performance for purifying Cd-contaminated soils.

3.
Neotrop Entomol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995502

ABSTRACT

We report for the first time that larvae of the genus Bothynus Hope (Coleoptera: Melolonthidae) caused economic damage to lucerne (Medicago sativa L., Fabaceae) crops in General Acha, province of La Pampa, Argentina. In two consecutive years (2021 and 2022), this insect infested 150 ha of lucerne, causing seedling losses of 80 ha. Based on soil sampling and laboratory insect rearing, the species was identified as Bothynus striatellus (Faimaire) (Coleoptera: Melolonthidae). Information is given here on the damage recorded in this forage crop, the density of the larvae observed at the time of damage assessment and the morphological characteristics of the third instar larvae reported in this crop in Argentina.

4.
J Hazard Mater ; 476: 135232, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39024768

ABSTRACT

Plant-beneficial bacteria (PBB) have emerged as a promising approach for assisting phytoremediation of heavy metal (HM)-contaminated soils. However, their colonization efficiency is often challenged by complex soil environments. In this study, we screened one rhizobacterium (Klebsiella variicola Y38) and one endophytic bacterium (Serratia surfactantfaciens Y15) isolated from HM-contaminated soils and plants for their high resistance to Cd and strong growth-promoting abilities. These strains were encapsulated individually or in combination with alginate and applied with Medicago sativa in Cd-contaminated soil pot experiments. The effectiveness of different bacterial formulations in promoting plant growth and enhancing Cd bioconcentration in M. sativa was evaluated. Results showed that PBB application enhanced plant growth and antioxidant capacity while reducing oxidative damage. Encapsulated formulations outperformed unencapsulated ones, with combined formulations yielding superior results to individual applications. Quantitative PCR indicated enhanced PBB colonization in Cd-contaminated soils with alginate encapsulation, potentially explaining the higher efficacy of alginate-encapsulated PBB. Additionally, the bacterial agents modified Cd speciation in soils, resulting in increased Cd bioaccumulation in M. sativa by 217-337 %. The alginate-encapsulated mixed bacterial agent demonstrated optimal effectiveness, increasing the Cd transfer coefficient by 3.2-fold. Structural equation modeling and correlation analysis elucidated that K. variicola Y38 promoted Cd bioaccumulation in M. sativa roots by reducing oxidative damage and enhancing root growth, while S. surfactantfaciens Y15 facilitated Cd translocation to shoots, promoting shoot growth. The combined application of these bacteria leveraged the benefits of both strains. These findings contribute to diversifying strategies for effectively and sustainably remediating Cd-contaminated soils, while laying a foundation for future investigations into bacteria-assisted phytoremediation.

5.
Rev Fac Cien Med Univ Nac Cordoba ; 81(2): 391-402, 2024 06 28.
Article in Spanish | MEDLINE | ID: mdl-38941218

ABSTRACT

The guinea pig in Ecuador is synonymous with our ancestral gastronomy and cultural tradition, but because of the diet rich in L-canavanine (alfalfa) that they receive; could limit its consumption in patients with primary immune thrombocytopenia (ITP). Ingestion of alfalfa in humans can cause kidney failure and lupus-like syndrome. The John Hopkins Lupus Center recommends avoiding it in the diet of patients with Systemic Lupus Erythematosus (SLE), as it aggravates inflammation by stimulating immune activity (flares). We present two cases of patients with ITP linked to guinea pig ingestion. It is probable


El cuy en el Ecuador es sinónimo de nuestra gastronomía ancestral y de tradición cultural, pero por la alimentación rica en L-canavanina (alfalfa) que reciben; podría limitar su consumo en pacientes con trombocitopenia inmune primaria (PTI). La ingesta de alfalfa en humanos puede propiciar insuficiencia renal y síndrome lupus-like.  El centro de Lupus John Hopkins recomiendan evitarla en la dieta de los pacientes con Lupus Eritematoso Sistémico (LES), al agravar la inflamación por estimulación de la actividad inmune (flares). Presentamos dos casos de pacientes con PTI vinculados con la ingesta de cuy.  ¿Es probable?


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Animals , Humans , Guinea Pigs , Female , Purpura, Thrombocytopenic, Idiopathic/etiology , Adult , Lupus Erythematosus, Systemic/complications , Ecuador , Male , Middle Aged
6.
Plant J ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943631

ABSTRACT

Cold and saline-alkali stress are frequently encountered by plants, and they often occur simultaneously in saline-alkali soils at mid to high latitudes, constraining forage crop distribution and production. However, the mechanisms by which forage crops respond to the combination of cold and saline-alkali stress remain unknown. Alfalfa (Medicago sativa L.) is one of the most essential forage grasses in the world. In this study, we analyzed the complex response mechanisms of two alfalfa species (Zhaodong [ZD] and Blue Moon [BM]) to combined cold and saline-alkali stress using multi-omics. The results revealed that ZD had a greater ability to tolerate combined stress than BM. The tricarboxylic acid cycles of the two varieties responded positively to the combined stress, with ZD accumulating more sugars, amino acids, and jasmonic acid. The gene expression and flavonoid content of the flavonoid biosynthesis pathway were significantly different between the two varieties. Weighted gene co-expression network analysis and co-expression network analysis based on RNA-Seq data suggested that the MsMYB12 gene may respond to combined stress by regulating the flavonoid biosynthesis pathway. MsMYB12 can directly bind to the promoter of MsFLS13 and promote its expression. Moreover, MsFLS13 overexpression can enhance flavonol accumulation and antioxidant capacity, which can improve combined stress tolerance. These findings provide new insights into improving alfalfa resistance to combined cold and saline-alkali stress, showing that flavonoids are essential for plant resistance to combined stresses, and provide theoretical guidance for future breeding programs.

7.
Chemosphere ; 362: 142521, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857630

ABSTRACT

As emerging persistent pollutants, microplastic (MPs) pollution attracted increasing attention worldwide since it is posing several environmental concerns. MPs interact with heavy metals in soil and may provoke damages on soil properties and ultimately impaired plants and human health. The present study aims to evaluate alfalfa plants (Medicago sativa) response after exposure to heavy metal polluted soils from mine site in the North of Tunisia in presence of environmental microplastic. For that, soils were sampled from two sites of Jebel Ressass mine in addition to a control soil. Plants were exposed to the three soils in presence of two increasing rates of microplastics D1 (1 mg/kg of soil) and D2 (100 mg/kg of soil) for 60 days. After harvest, agronomic parameters, chlorophyll content as well as heavy metal accumulation in plants were analyzed. Furthermore, oxidative status was evaluated in terms of malondialdehyde accumulation (MDA), catalase (CAT) activities and glutathion-S-transferase (GST). Overall, our finding highlights that MPs disrupted agronomic parameters and the photosynthetic activities of alfalfa plants. Additionally, our results revealed that the presence of MPs in polluted soils cause an increase on heavy metal accumulation in alfalfa shoots. Biochemical analyses demonstrated that the combined exposure to MPs and heavy metal induced oxidative stress in alfalfa plants by increasing CAT activity and MDA accumulation. The present investigation highlights the ecological risks of microplastics in terrestrial environment.

8.
Plant Physiol Biochem ; 213: 108764, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879983

ABSTRACT

The phosphoenolpyruvate carboxylase kinase of Medicago sativa L. (MsPPCK1) modulates the phosphorylation status and activity of the C4 pathway phosphoenolpyruvate carboxylase enzyme, which is pivotal for photosynthetic carbon assimilation in plants. This study investigated the role of MsPPCK1 in alfalfa by creating transgenic plants overexpressing MsPPCK1 under the control of the CaMV35S promoter. The enhanced alkali tolerance of transgenic plants indicated an important role of MsPPCK1 gene in regulating plant alkali tolerance. Transgenic plants exhibited heightened antioxidant activity (SOD, POD, and CAT), reduced MDA, H2O2, OFR and REC% content, increased activity of key photosynthetic enzymes (PEPC, PPDK, NADP-ME, and NADP-MDH), and enhanced photosynthetic parameters (Pn, E, Gs, and Ci). Moreover, MsPPCK1 overexpression increased the content of organic acids (oxaloacetic, malic, citric, and succinic acids) in the plants. The upregulation of MsPPCK1 under rhizobial inoculation showcased its other role in nodule development. In transgenic plants, MsDMI2, MsEnod12, and MsNODL4 expression increased, facilitating root nodule development and augmenting plant nodulation. Accelerated root nodule growth positively influences plant growth and yield and enhances alfalfa resistance to alkali stress. This study highlights the pivotal role of MsPPCK1 in fortifying plant alkali stress tolerance and improving yield, underscoring its potential as a key genetic target for developing alkali-tolerant and high-yielding alfalfa varieties.


Subject(s)
Medicago sativa , Photosynthesis , Plant Proteins , Plants, Genetically Modified , Medicago sativa/genetics , Medicago sativa/enzymology , Medicago sativa/growth & development , Photosynthesis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/growth & development , Root Nodules, Plant/metabolism , Gene Expression Regulation, Plant , Alkalies , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Serine-Threonine Kinases
9.
Front Plant Sci ; 15: 1330219, 2024.
Article in English | MEDLINE | ID: mdl-38903432

ABSTRACT

Introduction: Viral diseases have become a vital factor limiting the development of the alfalfa (Medicago sativa) industry. Six viruses infecting alfalfa with a high incidence rate are Alfalfa mosaic virus (AMV), Medicago sativa alphapartitivirus 1 (MsAPV1), Medicago sativa alphapartitivirus 2 (MsAPV2), Medicago sativa deltapartitivirus 1 (MsDPV1), Medicago sativa amalgavirus 1 (MsAV1), and Cnidium vein yellowing virus 1 (CnVYV1). The purpose of this study was to develop preventive measures against these viruses by investigating their transmission through alfalfa seeds. Methods: In this study, we investigated the transmission rate of alfalfa viruses from seed to seedling by PCR, determined the location of viruses in seed by dissecting seed embryos and seed coat, tracked the changes of viruses in seedlings, and finally discover effective elimination measures for alfalfa viruses from 16 measures. Results and discussion: Our results demonstrated that all these six viruses could be transmitted from alfalfa seeds to seedlings with the transmission rate ranging from 44.44% to 88.89%. For AMV, MsAPV2, and MsAV1, the viral load was significantly higher in the seed coats than in the seed embryos; however, it did not show significant differences between these two parts of the seeds for MsAPV1, MsDPV1, and CnVYV1. Dynamic accumulation analysis of AMV and MsAPV2 indicated that the viral load in plants increased continuously in the early growth stage, making it important to inactivate these viruses prior to their seed-to-seedling transmission. Sixteen treatments including physical, chemical, and combinations of physical and chemical measures were compared in terms of their elimination efficiency on AMV and MsAPV2 and impacts on seed germination. The results showed that soaking alfalfa seeds in sterile distilled water for 2h + 2% NaClO for 1h or 2% NaClO for 1h were more promisingly applicable because it could significantly reduce AMV and MsAPV2 particles in both seeds and seedlings. Our data revealed a route of virus transmission in alfalfa and shed light on the discovery of a highly efficient method for the management of alfalfa viral diseases.

10.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892413

ABSTRACT

The stem base of alfalfa is a critical part for its overwintering, regeneration, and yield. To better understand the specificity and importance of the stem base, we analyzed the structure, metabolic substances, and transcriptome of the stem base using anatomical techniques, ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), and RNA sequencing (RNA-seq), and compared it with stems and roots. The anatomical structure shows that the ratio of xylem to phloem changes at the base of the stem. A total of 801 compounds involved in 91 metabolic pathways were identified from the broadly targeted metabolome. Transcriptome analysis revealed 4974 differentially expressed genes (DEGs) at the stem base compared to the stem, and 5503 DEGs compared to the root. Comprehensive analyses of differentially accumulated compounds (DACs) and DEGs, in the stem base vs. stem, identified 10 valuable pathways, including plant hormone signal transduction, zeatin biosynthesis, α-Linolenic acid metabolism, histidine metabolism, carbon metabolism, carbon fixation in photosynthetic organisms, pentose phosphate pathway, galactose metabolism, and fructose and mannose metabolism. The pathways of plant hormone signal transduction and carbon metabolism were also identified by comparing the stem base with the roots. Taken together, the stem base of alfalfa is the transition region between the stem and root in morphology; in terms of material metabolism, its growth, development, and function are regulated through hormones and sugars.


Subject(s)
Gene Expression Regulation, Plant , Medicago sativa , Plant Stems , Medicago sativa/metabolism , Medicago sativa/genetics , Plant Stems/metabolism , Metabolic Networks and Pathways , Plant Roots/metabolism , Plant Roots/genetics , Transcriptome , Gene Expression Profiling , Metabolome , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Plant Growth Regulators/metabolism
11.
BMC Plant Biol ; 24(1): 544, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872112

ABSTRACT

BACKGROUND: Plant height (PH) is an important agronomic trait influenced by a complex genetic network. However, the genetic basis for the variation in PH in Medicago sativa remains largely unknown. In this study, a comprehensive genome-wide association analysis was performed to identify genomic regions associated with PH using a diverse panel of 220 accessions of M. sativa worldwide. RESULTS: Our study identified eight novel single nucleotide polymorphisms (SNPs) significantly associated with PH evaluated in five environments, explaining 8.59-12.27% of the phenotypic variance. Among these SNPs, the favorable genotype of chr6__31716285 had a low frequency of 16.4%. Msa0882400, located proximal to this SNP, was annotated as phosphate transporter 3;1, and its role in regulating alfalfa PH was supported by transcriptome and candidate gene association analysis. In addition, 21 candidate genes were annotated within the associated regions that are involved in various biological processes related to plant growth and development. CONCLUSIONS: Our findings provide new molecular markers for marker-assisted selection in M. sativa breeding programs. Furthermore, this study enhances our understanding of the underlying genetic and molecular mechanisms governing PH variations in M. sativa.


Subject(s)
Genome-Wide Association Study , Medicago sativa , Polymorphism, Single Nucleotide , Medicago sativa/genetics , Phenotype , Genes, Plant , Quantitative Trait Loci/genetics , Genotype
12.
Plant Dis ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937929

ABSTRACT

The first tri-segmented viruses in the family Rhabdoviridae were recently discovered by exploring publicly available plant datasets in several hosts, including alfalfa (Medicago sativa L.) (Bejerman et al. 2023). They were classified in a novel genus "Trirhavirus" within the family Rhabdoviridae. The trirhavirus identified in alfalfa was named Medicago trirhavirus 1 (MeTRV1). Here we report the first confirmation of MeTRV1 in commercial alfalfa fields in Washington State, USA. Samples were collected in 2019-2021 in Benton and Grant Counties, WA. The alfalfa leaves in which the virus was detected displayed irregular chlorotic spotting (Fig.1). Total RNA extraction, library preparation, high throughput sequencing, and bioinformatics analysis were performed as described in Nemchinov et al (2023). Raw reads were trimmed with Trimmomatic 0.39 (Bolger at al. 2014). SPAdes 3.15.5 (Bankevich et al. 2012) was used for assembly. MeTRV1 was identified in four plants out of 100 tested and three complete RNA segments were recovered from one of them. For clarity, the virus found in the alfalfa field samples was designated MeTRV1-Wa. De novo assembly resulted in three contigs, which, when subjected to BLASTn analyses, aligned to the respective RNA segments of MeTRV1. The first contig was 6,498 nucleotides (nts)-long, 99.4% identical to RNA1 of MeTRV1 (BK064256.1), and 5,922 reads mapped to it (coverage 125x). RNA1 of MeTRV1-Wa encoded a protein 2,040 amino acid (aa)-long that aligned with protein L of MeTRV1 (DBA36559.1, 99.8%). The second contig was 4,014 nts-long and 95.2% identical to the RNA2 of MetRV1 (BK064257.1) with 1,751 reads mapping (coverage 59x). It contained four open reading frames (ORFs) encoding proteins N (445 aa, 99.8%, DBA36560.1); P2 (343 aa, 99.4%, DBA36561.1); P3 (183 aa, 99.4%, DBA36562.1); and P4 (72 aa, 98.6%, DBA36563.1). Altogether, 4,653 reads mapped to the third contig (coverage 131x) that was 4,889 nts-long and 99.1% identical to the RNA 3 segment of MeTRV1 (BK064258.1). RNA3 of MeTRV1-Wa encoded four proteins: P6 (274 aa, 100%, DBA36565.1); P7 (189 aa, 99.5%, DBA36566.1); P8 (514 aa, 99 %, DBA36567.1); and P5 (303 aa, 99.7%, DBA36564.1). The 5' trailer of each RNA segment had a nearly identical 24 nts at the end. Genomic organization of the MeTRV1-Wa and the locations of its ORFs are shown in Fig.2. To confirm the virus's presence, two sets of primers were designed based on the predicted sequence of the viral RNA 3 segment. The correct-size products were amplified in RT-PCR assays with RNA extracted from infected plants (Fig.3) and verified by Sanger sequencing. Besides MeTRV1-Wa, sequences of the following viruses known to cause symptoms in alfalfa were identified in the same library: alfalfa mosaic virus, bean leafroll virus, lucerne transient streak virus, and pea streak virus. Thus, the observed symptomatology may not be clearly attributed to MeTRV1-Wa due to coinfecting organisms. However, a possible association of the disease symptoms with the virus presence could be suggested based on comparison with both asymptomatic and symptomatic plants negative for MeTRV1-Wa (Fig.1). Since plant rhabdoviruses are recognized as a cause of economic losses in alfalfa and other major crops and are transmitted by insects (Bejerman et al. 2011, 2015; Jackson et al. 2005; Man and Dietzgen 2014), this first experimental confirmation of the occurrence of the new virus in the U.S. alfalfa is important for understanding its origin, distribution, and pathogenic potential.

13.
Environ Sci Pollut Res Int ; 31(24): 35332-35352, 2024 May.
Article in English | MEDLINE | ID: mdl-38727971

ABSTRACT

Petroleum hydrocarbons are a stubborn pollutant that is difficult to degrade globally, and plant-microbial degradation is the main way to solve this type of pollutant. In this study, the physiological and ecological responses of alfalfa to petroleum hydrocarbons in different concentrations of petroleum hydrocarbon-contaminated soil with KB1 (Rhodococcus erythropolis) were analyzed and determined by laboratory potting techniques. The growth of alfalfa (CK) and alfalfa with KB1 (JZ) in different concentrations of petroleum hydrocarbons contaminated soil was compared and analyzed. The results of the CK group showed that petroleum hydrocarbons could significantly affect the activity of alfalfa antioxidant enzyme system, inhibit the development of alfalfa roots and the normal growth of plants, especially in the high-concentration group. KB1 strain had the ability to produce IAA, form biofilm, fix nitrogen, produce betaine and ACC deaminase, and the addition of KB1 could improve the growth traits of alfalfa in the soil contaminated with different concentrations of petroleum hydrocarbons, the content of soluble sugars in roots, and the stress resistance and antioxidant enzyme activities of alfalfa. In addition, the degradation kinetics of the strain showed that the degradation rate of petroleum could reach 75.2% after soaking with KB1. Furthermore, KB1 can efficiently degrade petroleum hydrocarbons in advance and significantly alleviate the damage of high concentration of petroleum hydrocarbons to plant roots. The results showed that KB1 strains and alfalfa plants could effectively enhance the degradation of petroleum hydrocarbons, which provided new ideas for improving bioremediation strategies.


Subject(s)
Biodegradation, Environmental , Hydrocarbons , Medicago sativa , Petroleum , Rhodococcus , Soil Pollutants , Petroleum/metabolism , Soil Pollutants/metabolism , Rhodococcus/metabolism , Hydrocarbons/metabolism , Soil Microbiology , Plant Roots/metabolism
14.
Front Insect Sci ; 4: 1324044, 2024.
Article in English | MEDLINE | ID: mdl-38715767

ABSTRACT

Alfalfa (Medicago sativa L.) is an economically important commodity in the Intermountain Western United States. A major concern for alfalfa producers in this region is the alfalfa weevil (Hypera postica Gyllenhal). Insecticide resistance development coupled with regulatory changes in pesticide use has resulted in renewed interest by producers in non-chemical control methods such as cultural control. One such cultural control method is early harvest, which consists of producers timing their harvests early in the season to decrease alfalfa weevil damage. This method is thought to be effective by exposing weevil larvae to adverse conditions before significant damage occurs. Still, early harvest can be difficult to employ because recommendations are often vague. To better understand how early harvest impacts both alfalfa weevils and their natural enemies and how producers are using this method across the Intermountain Western United States, we conducted a study in alfalfa production fields in Colorado, Montana, and Wyoming over three growing seasons. We determined that the timing of the initial alfalfa harvest spanned more than 1 month across fields, and alfalfa plant stage at harvest ranged from late vegetative to early bloom. Harvest was more impactful on reducing alfalfa weevil densities the earlier it was implemented. Removing windrows in a timely manner is likely useful to further decrease alfalfa weevil densities. Harvest timing was not associated with parasitism rates of alfalfa weevil, but higher parasitism rates were associated with lower post-harvest alfalfa weevil densities. This work has increased our understanding of early harvest in an on-farm setting and to improve recommendations for producers across the Intermountain Western United States.

15.
Heliyon ; 10(7): e28751, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586365

ABSTRACT

In this work, the utilization of phosphogypsum (PG), a waste coming from the manufacture of phosphate fertilizers, as fertilizer for alfalfa (Medicago sativa L.) crops was investigated using pot experiments. The objective of this study was to evaluate the effects of both phosphogypsum and red mud (RM) in two soils representative of the pasture production area in Southern Spain. The morpho-physiological parameters of biomass, plant height, number of stems and number of leaves, as well as the chemical parameters of soil content, were measured. High doses of PG inhibited seed germination in some treatments. In addition, the treatment substrate (2550 g soil + 50 g kg-1 PG + 100 g kg-1 RM) also affected seed germination, possibly due to the large amount of RM. The application of PG and RM to the soil increased the availability of important nutrients for alfalfa, such as phosphorus (P), calcium (Ca2+) and magnesium (Mg2+). The results demonstrate that the treatment with PG significantly improved the uptake of P in alfalfa.

16.
Plants (Basel) ; 13(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674487

ABSTRACT

Floral bud growth influences seed yield and quality; however, the molecular mechanism underlying the development of floral buds in alfalfa (Medicago sativa) is still unclear. Here, we comprehensively analyzed the transcriptome and targeted metabolome across the early, mid, and late bud developmental stages (D1, D2, and D3) in alfalfa. The metabolomic results revealed that gibberellin (GA), auxin (IAA), cytokinin (CK), and jasmonic acid (JA) might play an essential role in the developmental stages of floral bud in alfalfa. Moreover, we identified some key genes associated with GA, IAA, CK, and JA biosynthesis, including CPS, KS, GA20ox, GA3ox, GA2ox, YUCCA6, amid, ALDH, IPT, CYP735A, LOX, AOC, OPR, MFP2, and JMT. Additionally, many candidate genes were detected in the GA, IAA, CK, and JA signaling pathways, including GID1, DELLA, TF, AUX1, AUX/IAA, ARF, GH3, SAUR, AHP, B-ARR, A-ARR, JAR1, JAZ, and MYC2. Furthermore, some TFs related to flower growth were screened in three groups, such as AP2/ERF-ERF, MYB, MADS-M-type, bHLH, NAC, WRKY, HSF, and LFY. The findings of this study revealed the potential mechanism of floral bud differentiation and development in alfalfa and established a theoretical foundation for improving the seed yield of alfalfa.

17.
J Plant Physiol ; 296: 154238, 2024 May.
Article in English | MEDLINE | ID: mdl-38581742

ABSTRACT

While parasites are likely to connect to multiple host plants in nature, parasitism dynamics under multiple association conditions remain unclear and are difficult to separate from competitive effects. In this study, a five-compartment split root-box was constructed to allow a single facultative root hemiparasite, Phtheirospermum japonicum, to connect to zero, one or two Medicago sativa hosts while maintaining constant plant number and independently controlling nutrient supply. In the first experiment, we found that P. japonicum derived equal, additive benefits from attachment to a second host irrespective of parasite N status. In the second experiment, parasites were grown at four N levels in either parasitic or control conditions. Attachment caused a constant, absolute increase in parasite mass at all N levels, while host damage increased at higher parasite N levels despite an apparent decrease in host to parasite N transfer. Our findings suggest that host damage caused by P. japonicum may be strengthened by exogenous nitrogen supply to the parasite.


Subject(s)
Orobanchaceae , Plants , Nitrogen , Symbiosis , Host-Parasite Interactions , Plant Roots
18.
Plants (Basel) ; 13(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38611482

ABSTRACT

The perennial legume alfalfa (Medicago sativa L.) is of high value in providing cheap and high-nutritive forages. Due to a lack of tillage during the production period, the soil in which alfalfa grows prunes to become compacted through highly mechanized agriculture. Compaction deteriorates the soil's structure and fertility, leading to compromised alfalfa development and productivity. However, the way alfalfa responses to different levels of soil compaction and the underlying molecular mechanism are still unclear. In this study, we systematically evaluated the effects of gradient compacted soil on the growth of different cultivars of alfalfa, especially the root system architecture, phytohormones and internal gene expression profile alterations. The results showed that alfalfa growth was facilitated by moderate soil compaction, but drastically inhibited when compaction was intensified. The inhibition effect was universal across different cultivars, but with different severity. Transcriptomic and physiological studies revealed that the expression of a set of genes regulating the biosynthesis of lignin and flavonoids was significantly repressed in compaction treated alfalfa roots, and this might have resulted in a modified secondary cell wall and xylem vessel formation. Phytohormones, like ABA, are supposed to play pivotal roles in the regulation of the overall responses. These findings provide directions for the improvement of field soil management in alfalfa production and the molecular breeding of alfalfa germplasm with better soil compaction resilience.

19.
Heliyon ; 10(7): e28975, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38601528

ABSTRACT

Rising atmospheric CO2 levels drive greenhouse effects, elevating temperatures, and diminishing water accessibility in semi-arid regions, affecting agriculture. Alfalfa contributes to climate change mitigation by sequestering carbon, enhancing soil fertility and carbon storage, reducing synthetic nitrogen fertilizer use, preventing soil erosion, supplying high-quality livestock feed, and serving as a bioenergy source. This research examined the effects of elevated CO2 levels in climate change scenarios (600, 800, and 1000 ppm, with control at 400 ppm) on two alfalfa varieties, Medicago sativa cv. Nimet and Bilensoy-80. The experiments were conducted in specialized Climate Change Simulation Greenhouses, allowing control of CO2, water, and temperature variables. Results revealed a positive relationship between higher CO2 concentrations and increased photosynthesis (P ≤ 0.001), promoting the plant growth leaf area (P ≤ 0.001), yields and both leaf (P ≤ 0.05) and stem dry biomass (P ≤ 0.001). At 1000 ppm CO2, a saturation point was reached, halting further photosynthesis. This down-regulation was linked to decreased intercellular CO2 levels, which expedited chlorophyll and breakdown and potentially induced leaf senescence. High CO2 levels led to greater biomass, as anticipated. However, total protein levels, a forage quality indicator, initially decreased with high CO2 concentrations (up to 1000 ppm) due to an inverse relationship with shoot yield. Surprisingly, the 1000 ppm CO2 concentration mitigated this protein reduction in both alfalfa varieties.

20.
BMC Genomics ; 25(1): 382, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637768

ABSTRACT

BACKGROUND: Auxin/induced-3-acetic acid (Aux/IAA) is an important plant hormone that affects plant growth and resistance to abiotic stresses. Drought stress is a vital factor in reducing plant biomass yield and production quality. Alfalfa (Medicago sativa L.) is the most widely planted leguminous forage and one of the most economically valuable crops in the world. Aux/IAA is one of the early responsive gene families of auxin, playing a crucial role in response to drought stress. However, the characteristics of the Aux/IAA gene family in alfalfa and its potential function in response to drought stress are still unknown. RESULT: A total of 41 Aux/IAA gene members were identified in alfalfa genome. The physicochemical, peptide structure, secondary and tertiary structure analysis of proteins encoded by these genes revealed functional diversity of the MsIAA gene. A phylogenetic analysis classified the MsIAA genes into I-X classes in two subgroups. And according to the gene domain structure, these genes were classified into typical MsIAA and atypical MsIAA. Gene structure analysis showed that the MsIAA genes contained 1-4 related motifs, and except for the third chromosome without MsIAAs, they were all located on 7 chromosomes. The gene duplication analysis revealed that segmental duplication and tandem duplication greatly affected the amplification of the MsIAA genes. Analysis of the Ka/Ks ratio of duplicated MsAux/IAA genes suggested purification selection pressure was high and functional differences were limited. In addition, identification and classification of promoter cis-elements elucidated that MsIAA genes contained numerous elements associated to phytohormone response and abiotic stress response. The prediction protein-protein interaction network showed that there was a complex interaction between the MsAux/IAA genes. Gene expression profiles were tissue-specific, and MsAux/IAA had a broad response to both common abiotic stress (ABA, salt, drought and cold) and heavy metal stress (Al and Pb). Furthermore, the expression patterns analysis of 41 Aux/IAA genes by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that Aux/IAA genes can act as positive or negative factors to regulate the drought resistance in alfalfa. CONCLUSION: This study provides useful information for the alfalfa auxin signaling gene families and candidate evidence for further investigation on the role of Aux/IAA under drought stress. Future studies could further elucidate the functional mechanism of the MsIAA genes response to drought stress.


Subject(s)
Droughts , Medicago sativa , Medicago sativa/genetics , Phylogeny , Plant Proteins/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators , Stress, Physiological/genetics , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...