Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.950
Filter
1.
Neurooncol Adv ; 6(1): vdae075, 2024.
Article in English | MEDLINE | ID: mdl-38962751

ABSTRACT

Background: ELP1 pathogenic variants (PV) have been recently identified as the most frequent variants predisposing to Sonic Hedgehog (SHH) medulloblastomas (MB); however, guidelines are still lacking for genetic counseling in this new syndrome. Methods: We retrospectively reviewed clinical and genetic data of a French series of 29 ELP1-mutated MB. Results: All patients developed SHH-MB, with a biallelic inactivation of PTCH1 found in 24 tumors. Other recurrent alterations encompassed the TP53 pathway and activation of MYCN/MYCL signaling. The median age at diagnosis was 7.3 years (range: 3-14). ELP1-mutated MB behave as sporadic cases, with similar distribution within clinical and molecular risk groups and similar outcomes (5 y - OS = 86%); no unusual side effect of treatments was noticed. Remarkably, a germline ELP1 PV was identified in all patients with available constitutional DNA (n = 26); moreover, all tested familial trio (n = 11) revealed that the PVs were inherited. Two of the 26 index cases from the French series had a family history of MB; pedigrees from these patients and from 1 additional Dutch family suggested a weak penetrance. Apart from MB, no cancer was associated with ELP1 PVs; second tumors reported in 4 patients occurred within the irradiation fields, in the usual time-lapse for expected radiotherapy-induced neoplasms. Conclusions: The low penetrance, the "at risk' age window limited to childhood and the narrow tumor spectrum, question the actual benefit of genetic screening in these patients and their family. Our results suggest restricting ELP1 germline sequencing to patients with SHH-MB, depending on the parents" request.

2.
Cell ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971152

ABSTRACT

We identify a population of Protogenin-positive (PRTG+ve) MYChigh NESTINlow stem cells in the four-week-old human embryonic hindbrain that subsequently localizes to the ventricular zone of the rhombic lip (RLVZ). Oncogenic transformation of early Prtg+ve rhombic lip stem cells initiates group 3 medulloblastoma (Gr3-MB)-like tumors. PRTG+ve stem cells grow adjacent to a human-specific interposed vascular plexus in the RLVZ, a phenotype that is recapitulated in Gr3-MB but not in other types of medulloblastoma. Co-culture of Gr3-MB with endothelial cells promotes tumor stem cell growth, with the endothelial cells adopting an immature phenotype. Targeting the PRTGhigh compartment of Gr3-MB in vivo using either the diphtheria toxin system or chimeric antigen receptor T cells constitutes effective therapy. Human Gr3-MBs likely arise from early embryonic RLVZ PRTG+ve stem cells inhabiting a specific perivascular niche. Targeting the PRTGhigh compartment and/or the perivascular niche represents an approach to treat children with Gr3-MB.

3.
Radiol Case Rep ; 19(9): 3610-3612, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38983304

ABSTRACT

Medulloblastoma is a frequent and aggressive pediatric tumor. It causes intracranial hypertension, necessitating ventriculoperitoneal shunting with surgical resection. Intraperitoneal metastases are rare and result from the migration of neoplastic cells through the shunt and into the peritoneal cavity. This metastatic form involving the ventriculoperitoneal shunt has a poor prognosis, making therapeutic management even more difficult. We report the case of a 14-year-old boy with a history of medulloblastoma of the cerebellum who was initially treated with complete resection of the tumor with placement of a ventriculoperitoneal shunt, followed by radiotherapy and chemotherapy, with good progression until he presented to the emergency department with acute abdominal symptoms. Imaging revealed multiple peritoneal masses with intra- and retroperitoneal lymphadenopathies. An ultrasound-guided biopsy revealed a metastatic medulloblastoma in the peritoneal cavity, and the patient underwent chemotherapy. The placement of the ventriculoperitoneal shunt in the tumor dissemination is therefore to blame.

4.
Childs Nerv Syst ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995395

ABSTRACT

OBJECTIVE: We aim to report the epidemiology, surgical outcomes, and survival rates of pediatric patients with posterior fossa tumors in a large single-center case series. METHODS: A retrospective analysis was conducted on pediatric patients who underwent surgical treatment for posterior fossa tumors between January 2011 and January 2019. RESULTS: A total of 135 pediatric patients, with an average age of 7.5 years at diagnosis and a mean follow-up of 35.7 months, were included in the study. Most tumors were located within the midline, with ventriculomegaly observed in 71.4% of the patients. Pilocytic astrocytomas encompassed the majority of tumors (34.1%), followed by medulloblastomas (27.4%) and ependymomas (11.8%). Gross total resection (GTR) was achieved in 71.8% of the patients, with a recurrence rate of 20%. Surgical complications were observed in 25.9% of the patients. GTR significantly impacted 5-year overall survival (OS) and 4-year progression-free survival (PFS) in patients with posterior fossa tumors. Patients who underwent GTR had a 5-year OS of 89.7%, compared to 72.7% for near-total resection and 70.8% for subtotal resection. The 4-year PFS for patients who underwent GTR was 82.5%, whereas it was 63.6% for patients who underwent near-total resection and 54.2% for patients who underwent subtotal resection. CONCLUSION: Surgical resection remains the main treatment for pediatric posterior fossa tumors, and higher resection rates are linked to better survival outcomes. Despite limited resources for molecular diagnosis, our institution has demonstrated that a specialized neurooncological center with a high surgical volume can still achieve favorable survival outcomes for these patients.

5.
Brain Pathol ; : e13283, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946128

ABSTRACT

The prognosis for many pediatric brain tumors, including cerebellar medulloblastoma (MB), remains dismal but there is promise in new therapies. We have previously generated a mouse model developing spontaneous MB at high frequency, Ptch1+/-/Tis21-/-. In this model, reproducing human tumorigenesis, we identified the decline of the Cxcl3 chemokine in cerebellar granule cell precursors (GCPs) as responsible for a migration defect, which causes GCPs to stay longer in the proliferative area rather than differentiate and migrate internally, making them targets of transforming insults. We demonstrated that 4-week Cxcl3 infusion in cerebella of 1-month-old mice, at the initial stage of MB formation, forces preneoplastic GCPs (pGCPs) to leave lesions and differentiate, with a complete suppression of MB development. In this study, we sought to verify the effect of 4-week Cxcl3 treatment in 3-month-old Ptch1+/-/Tis21-/- mice, when MB lesions are at an advanced, irreversible stage. We found that Cxcl3 treatment reduces tumor volumes by sevenfold and stimulates the migration and differentiation of pGCPs from the lesion to the internal cerebellar layers. We also tested whether the pro-migratory action of Cxcl3 favors metastases formation, by xenografting DAOY human MB cells in the cerebellum of immunosuppressed mice. We showed that DAOY cells express the Cxcl3 receptor, Cxcr2, and that Cxcl3 triggers their migration. However, Cxcl3 did not significantly affect the frequency of metastases or the growth of DAOY-generated MBs. Finally, we mapped the expression of the Cxcr2 receptor in human MBs, by evaluating a well-characterized series of 52 human MBs belonging to different MB molecular subgroups. We found that Cxcr2 was variably expressed in all MB subgroups, suggesting that Cxcl3 could be used for therapy of different MBs.

6.
Neurooncol Adv ; 6(1): vdae091, 2024.
Article in English | MEDLINE | ID: mdl-38946880

ABSTRACT

Background: Medulloblastoma (MB) is the most common malignant pediatric brain tumor, with 5-year survival rates > 70%. Cranial radiotherapy (CRT) to the whole brain, with posterior fossa boost (PFB), underpins treatment for non-infants; however, radiotherapeutic insult to the normal brain has deleterious consequences to neurocognitive and physical functioning, and causes accelerated aging/frailty. Approaches to ameliorate radiotherapy-induced late-effects are lacking and a paucity of appropriate model systems hinders their development. Methods: We have developed a clinically relevant in vivo model system that recapitulates the radiotherapy dose, targeting, and developmental stage of childhood medulloblastoma. Consistent with human regimens, age-equivalent (postnatal days 35-37) male C57Bl/6J mice received computerized tomography image-guided CRT (human-equivalent 37.5 Gy EQD2, n = 12) ±â€…PFB (human-equivalent 48.7 Gy EQD2, n = 12), via the small animal radiation research platform and were longitudinally assessed for > 12 months. Results: CRT was well tolerated, independent of PFB receipt. Compared to a sham-irradiated group (n = 12), irradiated mice were significantly frailer following irradiation (frailty index; P = .0002) and had reduced physical functioning; time to fall from a rotating rod (rotarod; P = .026) and grip strength (P = .006) were significantly lower. Neurocognitive deficits were consistent with childhood MB survivors; irradiated mice displayed significantly worse working memory (Y-maze; P = .009) and exhibited spatial memory deficits (Barnes maze; P = .029). Receipt of PFB did not induce a more severe late-effect profile. Conclusions: Our in vivo model mirrored childhood MB radiotherapy and recapitulated features observed in the late-effect profile of MB survivors. Our clinically relevant model will facilitate both the elucidation of novel/target mechanisms underpinning MB late effects and the development of novel interventions for their amelioration.

7.
Cureus ; 16(5): e61339, 2024 May.
Article in English | MEDLINE | ID: mdl-38947611

ABSTRACT

Medulloblastoma, an embryonal tumor located in the posterior fossa of the brain, originates from the neuro-epidermal layer of the cerebellum. It is the most prevalent malignant tumor in children, while it is rare in adults and predominantly affects males. Multimodal therapeutic interventions, such as surgery, radiotherapy, and chemotherapy, have substantially enhanced the prognosis of this condition. Extraneural metastases are infrequent. We present a case of medulloblastoma relapse with nodal metastasis in a 28-year-old adult.

8.
Arch Pharm (Weinheim) ; : e2400218, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963677

ABSTRACT

The Hedgehog (Hh) signaling pathway plays important roles in various physiological functions. Several malignancies, such as basal cell carcinoma (BCC) and medulloblastoma (MB), have been linked to the aberrant activation of Hh signaling. Although therapeutic drugs have been developed to inhibit Hh pathway-dependent cancer growth, drug resistance remains a major obstacle in cancer treatment. Here, we show that the newly identified, 2-{3-[1-(benzylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl]-2-methyl-1H-indol-1-yl}-1-(pyrrolidin-1-yl)ethenone analog (LKD1214) exhibits comparable potency to vismodegib in suppressing the Hh pathway activation. LKD1214 represses Smoothened (SMO) activity by blocking its ciliary translocation. Interestingly, we also identified that it has a distinctive binding interface with SMO compared with other SMO-regulating chemicals. Notably, it maintains an inhibitory activity against the SmoD477H mutant, as observed in a patient with vismodegib-resistant BCC. Furthermore, LKD1214 inhibits tumor growth in the mouse model of MB. Collectively, these findings suggest that LKD1214 has the therapeutic potential to overcome drug-resistance in Hh-dependent cancers.

9.
Neuro Oncol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963825

ABSTRACT

BACKGROUND: Treatment of childhood medulloblastoma has evolved to reduce neurotoxicity while improving survival. However, the impact of evolving therapies on late neurocognitive outcomes and adult functional independence remains unknown. METHODS: Adult survivors of childhood medulloblastoma (n=505; median[minimum-maximum] age, 29[18-46] years) and sibling controls (n=727; 32[18-58] years) from the Childhood Cancer Survivor Study completed surveys assessing neurocognitive problems and chronic health conditions (CHCs). Treatment exposures were categorized as historical (craniospinal irradiation [CSI]≥30 Gy, no chemotherapy), standard-risk (CSI>0 to <30 Gy +chemotherapy) and high-risk (CSI≥30 Gy +chemotherapy) therapy. Latent class analysis identified patterns of functional independence using employment, independent living, assistance with routine/personal care needs, driver's license, marital/partner status. Multivariable models estimated risk of neurocognitive impairment in survivors versus siblings and by treatment exposure group, and associations between neurocognitive impairment, CHCs, and functional independence. RESULTS: Survivors in each treatment exposure group had 4- to 5-fold elevated risk of impaired memory and task efficiency compared to siblings. Contemporary risk-based therapies did not confer lower risk compared to historical therapy. Survivors treated in the 1990s had higher risk of memory impairment (relative risk [RR] 2.24, 95% confidence interval [CI] 1.39-3.60) compared to survivors treated in the 1970s. Sensorimotor, hearing problems and seizures were associated with 33%-34%, 25-26% and 21%-42% elevated risk of task efficiency and memory impairment, respectively. Treatment-related CHCs and neurocognitive impairment were associated with non-independence. CONCLUSIONS: Despite treatment changes, long-term survivors of childhood medulloblastoma remain at risk for neurocognitive impairment, which was associated with CHCs. Neurocognitive surveillance after contemporary regimens is imperative.

10.
Purinergic Signal ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976175

ABSTRACT

Medulloblastoma is the most common malignant tumor in the pediatric population. Its classification has incorporated key molecular variations alongside histological characterization. CD39 (also known as ENTPD1) and CD73 (also known as NT5E), enzymes of the purinergic signaling pathway, act in synergy to generate extracellular adenosine, creating an immunosuppressive tumor microenvironment. Our study examined the expression of mRNA of these genes in previously described transcriptome data sets of medulloblastoma patient samples from the Cavalli Cohort (n = 763). Survival distribution was estimated according to the Kaplan-Meier method using a median cut-off and log-rank statistics (p ≤ 0.05). In non-WNT and non-SHH medulloblastoma Group 4 (n = 264), the high expression of ENTPD1 and NT5E was significantly related to a lower overall survival (p = 2.7e-04; p = 2.6e-03). In the SHH-activated group (n = 172), the high expression of ENTPD1 was significantly related to lower overall survival (p = 7.8e-03), while the high expression of NT5E was significantly related to greater overall survival (p = 0.017). In the WNT group (n = 63), the expressions of ENTPD1 and NT5E were not significantly correlated with overall survival (p = 0.212; p = 0.101). In non-WNT and non-SHH medulloblastoma Group 3 (n = 113), the high expression of ENTPD1 was significantly related to greater survival (p = 0.034), while expression of NT5E was not significantly related to survival of patients (p = 0.124). This in silico analysis indicates that ENTPD1 (CD39) and NT5E (CD73) can be seen as potential prognostic markers and therapeutic targets for primary medulloblastomas in non-WNT and non-SHH Group 4.

11.
Am J Cancer Res ; 14(6): 2868-2880, 2024.
Article in English | MEDLINE | ID: mdl-39005661

ABSTRACT

Medulloblastoma (MB) is a severe malignancy of the central nervous system that predominantly occurs in the cerebellum of children. Overactivation of the sonic hedgehog (Shh) signaling pathway is the primary cause of the development and progression of Shh subtype MB, although the detailed mechanisms underlying this process remain largely elusive. In this study, we discovered that Shh can promote proliferation in MB cells through non-canonical Hedgehog signaling. This involves Shh binding to Patched 1, disrupting its interaction with Cyclin B1, allowing for nuclear translocation of Cyclin B1, and inducing the activation of genes involved in cell division. Furthermore, we observed that deregulation of Cdc14B leads to the stabilization of the Cyclin B1/CDK1 complex in MB cells through activating Cdc25C, a phosphatase known to help maintain Cyclin B1 stability. Our findings highlight the role of Cdc14B/Cdc25C/CDK1/Cyclin B1 in mediating Hedgehog signaling-driven pathogenesis in MB and have implications for identifying potential therapeutic targets.

12.
Asian J Neurosurg ; 19(2): 286-289, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974448

ABSTRACT

Medulloblastoma (MB) cerebelli is a common brain tumor of the childhood. MB commonly spreads through cerebrospinal fluid; however, there are several reported cases of extracranial spread. The most common sites of extracranial metastasis are bones and bone marrow followed by peritoneum, liver, and lungs. Here, we report a case of pulmonary metastatic lesions of adult cerebellar MB that were discovered 1 year after the primary surgical treatment. We also tried to highlight similar reported cases in the literature.

13.
Immunotargets Ther ; 13: 319-333, 2024.
Article in English | MEDLINE | ID: mdl-38948503

ABSTRACT

Purpose: Medulloblastoma (MB) is the most prevalent paediatric brain tumour. Despite improvements in patient survival with current treatment strategies, the quality of life of these patients remains poor owing to the sequelae and relapse risk. An alternative, or, in addition to the current standard treatment, could be considered immunotherapy, such as Natural Killer cells (NK). NK cells are cytotoxic innate lymphoid cells that play a major role in cancer immunosurveillance. To date, the mechanism of cytotoxicity of NK cells, especially regarding the steps of adhesion, conjugation, cytotoxic granule polarisation in the cell contact area, perforin and granzyme release in two and three dimensions, and therapeutic efficacy in vivo have not been precisely described. Materials and Methods: Each step of NK cytotoxicity against the three MB cell lines was explored using confocal microscopy for conjugation, Elispot for degranulation, flow cytometry, and luminescence assays for target cell necrosis and lysis and mediators released by cytokine array, and then confirmed in a 3D spheroid model. Medulloblastoma-xenografted mice were treated with NK cells. Their persistence was evaluated by flow cytometry, and their efficacy in tumour growth and survival was determined. In addition, their effects on the tumour transcriptome were evaluated. Results: NK cells showed variable affinities for conjugation with MB target cells depending on their subgroup and cytokine activation. Chemokines secreted during NK and MB cell co-culture are mainly associated with angiogenesis and immune cell recruitment. NK cell cytotoxicity induces MB cell death in both 2D and 3D co-culture models. NK cells initiated an inflammatory response in a human MB murine model by modulating the MB cell transcriptome. Conclusion: Our study confirmed that NK cells possess both in vitro and in vivo cytotoxic activity against MB cells and are of interest for the development of immunotherapy.

14.
Front Neurol ; 15: 1386121, 2024.
Article in English | MEDLINE | ID: mdl-39015321

ABSTRACT

Introduction: Molecular subgroups influence the vascular architecture within medulloblastomas, particularly the wingless (WNT) subgroup, which contributes to its propensity for primary tumor hemorrhage. Whether this mechanism affects intraoperative blood loss remains unknown. This study aimed to assess the association between WNT medulloblastoma and the predisposition for blood loss. Methods: This was a retrospective observational study using data from a neuro-oncology center comprising molecular data on patients treated between December 31, 2014, and April 30, 2023. Differences between WNT and other subgroups in the risk of primary outcome-intraoperative blood loss were assessed using multivariable-adjusted linear regression. Results: Of the 148 patients included in the analysis, 18 patients (12.2%) had WNT, 42 (28.4%) had sonic hedgehog (SHH) TP53-wildtype, 7 (4.7%) had SHH TP53-mutant, and 81 (54.7%) were non-WNT/ non-SHH. The WNT subgroup more frequently underwent primary intratumoral hemorrhage (22% vs. 3.8%; p = 0.011). The median intraoperative blood loss was 400.00 (interquartile range [IQR] 250, 500) mL for WNT and 300.00 [200, 400] mL for the other subgroups (p = 0.136), with an adjusted ß of 135.264 (95% confidence intervals [CI], 11.701-258.827; p = 0.032). Similar results were observed in both midline and noninfiltrative margin medulloblastoma. Discussion: WNT medulloblastoma is typically associated with primary intratumoral hemorrhage and intraoperative blood loss. The validity of determining the surgical approach based on predicted molecular subtypes from imaging data is questionable. However, attempting to engage in risk communication with patients in a molecular-specific way is worthwhile to validate.

15.
Cancer Cell Int ; 24(1): 248, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010056

ABSTRACT

BACKGROUND: Medulloblastoma is one of the common primary central nervous system (CNS) malignancies in pediatric patients. The main treatment is surgical resection preceded and/or followed by chemoradiotherapy. However, their serious side effects necessitate a better understanding of medulloblastoma biology to develop novel therapeutic options. MAIN BODY: Circular RNA (circRNA) and long non-coding RNA (lncRNA) regulate gene expression via microRNA (miRNA) pathways. Although growing evidence has highlighted the significance of circRNA and lncRNA-associated competing endogenous RNA (ceRNA) networks in cancers, no study has comprehensively investigated them in medulloblastoma. For this aim, the Web of Science, PubMed, Scopus, and Embase were systematically searched to obtain the relevant papers published before 16 September 2023, adhering to the PRISMA-ScR statement. HOTAIR, NEAT1, linc-NeD125, HHIP-AS1, CRNDE, and TP73-AS1 are the oncogenic lncRNAs, and Nkx2-2as is a tumor-suppressive lncRNA that develop lncRNA-associated ceRNA networks in medulloblastoma. CircSKA3 and circRNA_103128 are upregulated oncogenic circRNAs that develop circRNA-associated ceRNA networks in medulloblastoma. CONCLUSION: In summary, this study has provided an overview of the existing evidence on circRNA and lncRNA-associated ceRNA networks and their impact on miRNA and mRNA expression involved in various signaling pathways of medulloblastoma. Suppressing the oncogenic ceRNA networks and augmenting tumor-suppressive ceRNA networks can provide ample opportunities for medulloblastoma treatment.

16.
J Clin Med ; 13(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930121

ABSTRACT

Background/Objectives: Medulloblastoma is the most common malignant brain tumor in children. In recent decades, the therapeutic landscape has undergone significant changes, with stereotactic radiosurgery (SRS) emerging as a promising treatment for recurrent cases. Our study provides a comprehensive analysis of the long-term efficacy and safety of SRS in recurrent medulloblastomas across both pediatric and adult patients at a single institution. Methods: We retrospectively reviewed the clinical and radiological records of patients who underwent CyberKnife SRS for recurrent cranial medulloblastomas at our institution between 1998 and 2023. Follow-up data were available for 15 medulloblastomas in 10 patients. The cohort comprised eight pediatric patients (ages 3-18) and two adult patients (ages 19-75). The median age at the time of SRS was 13 years, the median tumor volume accounted for 1.9 cc, the median biologically equivalent dose (BED) was 126 Gy, and the single-fraction equivalent dose (SFED) was 18 Gy. The SRS was administered at 75% of the median isodose line. Results: Following a median follow-up of 39 months (range: 6-78), 53.3% of the medulloblastomas progressed, 13.3% regressed, and 33.3% remained stable. The 3-year local tumor control (LTC) rate for all medulloblastomas was 65%, with lower rates observed in the adult cohort (50%) and higher rates in pediatric patients (67%). The 3-year overall survival (OS) rate was 70%, with significantly higher rates in pediatric patients (75%) compared to adult patients (50%). The 3-year progression-free survival (PFS) rate was 58.3%, with higher rates in pediatric patients (60%) compared to adult patients (50%). Two pediatric patients developed radiation-induced edema, while two adult patients experienced radiation necrosis at the latest follow-up, with both adult patients passing away. Conclusions: Our study provides a complex perspective on the efficacy and safety of CyberKnife SRS in treating recurrent cranial medulloblastomas across pediatric and adult populations. The rarity of adverse radiation events (AREs) underscores the safety profile of SRS, reinforcing its role in enhancing treatment outcomes. The intricacies of symptomatic outcomes, intertwined with factors such as age, tumor location, and prior surgeries, emphasize the need for personalized treatment approaches. Our findings underscore the imperative for ongoing research and the development of more refined treatment strategies for recurrent medulloblastomas. Given the observed disparities in treatment outcomes, a more meticulous tailoring of treatment approaches becomes crucial.

17.
Sci Rep ; 14(1): 14490, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914641

ABSTRACT

Medulloblastoma is a malignant neuroepithelial tumor of the central nervous system. Accurate prediction of prognosis is essential for therapeutic decisions in medulloblastoma patients. We analyzed data from 2,322 medulloblastoma patients using the SEER database and randomly divided the dataset into training and testing datasets in a 7:3 ratio. We chose three models to build, one based on neural networks (DeepSurv), one based on ensemble learning that Random Survival Forest (RSF), and a typical Cox Proportional-hazards (CoxPH) model. The DeepSurv model outperformed the RSF and classic CoxPH models with C-indexes of 0.751 and 0.763 for the training and test datasets. Additionally, the DeepSurv model showed better accuracy in predicting 1-, 3-, and 5-year survival rates (AUC: 0.767-0.793). Therefore, our prediction model based on deep learning algorithms can more accurately predict the survival rate and survival period of medulloblastoma compared to other models.


Subject(s)
Deep Learning , Medulloblastoma , SEER Program , Medulloblastoma/mortality , Humans , Female , Male , Child , Prognosis , Cerebellar Neoplasms/mortality , Adolescent , Child, Preschool , Proportional Hazards Models , Survival Rate , Adult , Young Adult , Middle Aged , Neural Networks, Computer , Infant
18.
Cancers (Basel) ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38927954

ABSTRACT

Medulloblastoma is the most frequently encountered malignant brain tumor in the pediatric population. The standard of care currently consists of surgical resection, craniospinal irradiation, and multi-agent chemotherapy. However, despite this combination of multiple aggressive modalities, recurrence of the disease remains a substantial concern, and treatment resistance is a rising issue. The development of this resistance results from the interplay of a myriad of anatomical properties, cellular processes, molecular pathways, and genetic and epigenetic alterations. In fact, several efforts have been directed towards this domain and characterizing the major contributors to this resistance. Herein, this review highlights the different mechanisms that drive relapse and are implicated in the occurrence of treatment resistance and discusses them in the context of the latest molecular-based classification of medulloblastoma. These mechanisms include the impermeability of the blood-brain barrier to drugs, the overactivation of specific molecular pathways, the resistant and multipotent nature of cancer stem cells, intratumoral and intertumoral heterogeneity, and metabolic plasticity. Subsequently, we build on that to explore potential strategies and targeted agents that can abrogate these mechanisms, undermine the development of treatment resistance, and augment medulloblastoma's response to therapeutic modalities.

19.
Cancers (Basel) ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38927953

ABSTRACT

Medulloblastoma (MB) is the most frequent malignant brain tumor in children with extensive heterogeneity that results in varied clinical outcomes. Recently, MB was categorized into four molecular subgroups, WNT, SHH, Group 3, and Group 4. While SHH and Group 4 are known for their intermediate prognosis, studies have reported wide disparities in patient outcomes within these subgroups. This study aims to create a radiomic prognostic signature, medulloblastoma radiomics risk (mRRisk), to identify the risk levels within the SHH and Group 4 subgroups, individually, for reliable risk stratification. Our hypothesis is that this signature can comprehensively capture tumor characteristics that enable the accurate identification of the risk level. In total, 70 MB studies (48 Group 4, and 22 SHH) were retrospectively curated from three institutions. For each subgroup, 232 hand-crafted features that capture the entropy, surface changes, and contour characteristics of the tumor were extracted. Features were concatenated and fed into regression models for risk stratification. Contrasted with Chang stratification that did not yield any significant differences within subgroups, significant differences were observed between two risk groups in Group 4 (p = 0.04, Concordance Index (CI) = 0.82) on the cystic core and non-enhancing tumor, and SHH (p = 0.03, CI = 0.74) on the enhancing tumor. Our results indicate that radiomics may serve as a prognostic tool for refining MB risk stratification, towards improved patient care.

20.
Dev Cell ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38834071

ABSTRACT

Normal cells coordinate proliferation and differentiation by precise tuning of gene expression based on the dynamic shifts of the epigenome throughout the developmental timeline. Although non-mutational epigenetic reprogramming is an emerging hallmark of cancer, the epigenomic shifts that occur during the transition from normal to malignant cells remain elusive. Here, we capture the epigenomic changes that occur during tumorigenesis in a prototypic embryonal brain tumor, medulloblastoma. By comparing the epigenomes of the different stages of transforming cells in mice, we identify nuclear factor I family of transcription factors, known to be cell fate determinants in development, as oncogenic regulators in the epigenomes of precancerous and cancerous cells. Furthermore, genetic and pharmacological inhibition of NFIB validated a crucial role of this transcription factor by disrupting the cancer epigenome in medulloblastoma. Thus, this study exemplifies how epigenomic changes contribute to tumorigenesis via non-mutational mechanisms involving developmental transcription factors.

SELECTION OF CITATIONS
SEARCH DETAIL
...