Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Med Mycol J ; 65(1): 17-21, 2024.
Article in English | MEDLINE | ID: mdl-38417883

ABSTRACT

Disseminated trichosporonosis is a rare fungal infection whose risk factors are hematological malignancies and neutropenia. Recently, breakthrough Trichosporon infections after administration of micafungin, the first-line systemic antifungal agent in compromised hosts, have been widely recognized. A man in his seventies about 1 month into chemotherapy for acute megakaryoblastic leukemia presented with a worsening fever and dyspnea. The patient was being administered with empirical micafungin therapy for suspected candidiasis. As the symptoms progressed, scattered erythema appeared on the trunk, some with a dark red vesicle at the center. Blood cultures identified Trichosporon asahii, as did the specimen of the skin biopsy. On the basis also of the presence of pneumonia on chest computed tomography, we confirmed the diagnosis of disseminated trichosporonosis and changed the antifungal agent from micafungin to voriconazole. Blood culture turned out to be negative 1 month after administrating voriconazole. However, the patient died of the leukemia. Our review of previous reports on cutaneous manifestations of disseminated trichosporonosis revealed that despite their morphological diversity, erythema with a red papule or vesicle at the center, implying necrosis, was also observed in previous cases. Our case report suggests that dermatologists should be aware of skin manifestations of disseminated trichosporonosis after micafungin administration, especially in cases of hematological malignancies.


Subject(s)
Hematologic Neoplasms , Leukemia, Megakaryoblastic, Acute , Trichosporon , Trichosporonosis , Male , Humans , Micafungin , Antifungal Agents/therapeutic use , Voriconazole , Trichosporonosis/diagnosis , Trichosporonosis/drug therapy , Trichosporonosis/microbiology , Leukemia, Megakaryoblastic, Acute/complications , Leukemia, Megakaryoblastic, Acute/drug therapy , Hematologic Neoplasms/complications , Hematologic Neoplasms/drug therapy , Erythema/complications , Erythema/drug therapy
2.
Virchows Arch ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38374236

ABSTRACT

Extramedullary involvement of acute myeloid leukemia (AML), aka myeloid sarcoma, is a rare phenomenon in acute megakaryoblastic leukemia with RBM15:: MRTFA(MKL1) fusion, which might mimic non-hematologic malignancies. A 7-month-old infant presented with leukocytosis, hepatosplenomegaly, multiple lymphadenopathies, and a solid mass in the right thigh. Initially, the patient was diagnosed with a malignant vascular tumor regarding the expression of vascular markers from the biopsy of the right thigh lesion that was performed after the inconclusive bone marrow biopsy. The second bone marrow biopsy, which was performed due to the partial response to sarcoma treatment, showed hypercellular bone marrow with CD34 and CD61-positive spindle cell infiltration and > 20% basophilic blasts with cytoplasmic blebs. RNA sequencing of soft tissue biopsy revealed the presence of RBM15::MRTFA(MKL1) fusion. Based on these findings, myeloid sarcoma/AML with RBM15::MRTFA(MKL1) fusion diagnosis was made. AML with RBM15::MRTFA(MKL1) fusion can initially present as extramedullary lesions and might cause misdiagnosis of non-hematologic malignancies.

3.
Article in English | MEDLINE | ID: mdl-38008596

ABSTRACT

Acute megakaryoblastic leukemia is characterized by heterogeneous biology and clinical behavior. Immunophenotypic characteristics include the expression of megakaryocytic differentiation markers (e.g. CD41, CD42a, CD42b, CD61) associated with immaturity markers (CD34, CD117, HLA-DR) and myeloid markers (e.g. CD13, CD33) and even with lymphoid cross-lineage markers (e.g. CD7, CD56). Although the diagnostic immunophenotype has already been well described, given the rarity of the disease, its immunophenotypic heterogeneity and post-therapeutic instability, there is no consensus on the combination of monoclonal markers to detect minimal/measurable residual disease (MRD). Currently, MRD is an important tool for assessing treatment efficacy and prognostic risk. In this study, we evaluated the immunophenotypic profile of MRD in a retrospective cohort of patients diagnosed with acute megakaryoblastic leukemia, to identify which markers, positive or negative, were more stable after treatment and which could be useful for MRD evaluation. The expression profile of each marker was evaluated in sequential MRD samples. In conclusion, the markers evaluated in this study can be combined in an MRD immunophenotypic panel to investigate for megakaryoblastic leukemia. Although this study is retrospective and some data are missing, the information obtained may contribute to prospective studies to validate more specific strategies in the detection of MRD in acute megakaryoblastic leukemia.

4.
Cell Rep ; 42(9): 113084, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37716355

ABSTRACT

Pediatric acute megakaryoblastic leukemia (AMKL) is an aggressive blood cancer associated with poor therapeutic response and high mortality. Here we describe the development of CBFA2T3-GLIS2-driven mouse models of AMKL that recapitulate the phenotypic and transcriptional signatures of the human disease. We show that an activating Ras mutation that occurs in human AMKL increases the penetrance and decreases the latency of CBF2AT3-GLIS2-driven AMKL. CBFA2T3-GLIS2 and GLIS2 modulate similar transcriptional networks. We identify the dominant oncogenic properties of GLIS2 that trigger AMKL in cooperation with oncogenic Ras. We find that both CBFA2T3-GLIS2 and GLIS2 alter the expression of a number of BH3-only proteins, causing AMKL cell sensitivity to the BCL2 inhibitor navitoclax both in vitro and in vivo, suggesting a potential therapeutic option for pediatric patients suffering from CBFA2T3-GLIS2-driven AMKL.


Subject(s)
Leukemia, Megakaryoblastic, Acute , Animals , Mice , Child , Humans , Leukemia, Megakaryoblastic, Acute/drug therapy , Leukemia, Megakaryoblastic, Acute/genetics , Aniline Compounds , Sulfonamides , Oncogene Proteins, Fusion/metabolism , Repressor Proteins
5.
Leuk Res Rep ; 20: 100381, 2023.
Article in English | MEDLINE | ID: mdl-37560406

ABSTRACT

Introduction: Transient abnormal myelopoiesis (TAM) is a transient, clonal myeloproliferative disorder unique to Down Syndrome (DS) babies. It is characterized by increased peripheral blasts and presence of GATA1 mutation. The clinical spectrum ranges from jaundice and hepatosplenomegaly to multi-organ failure and death. Here we present a case of a premature baby with DS diagnosed to have TAM with extramedullary involvement at birth who had a fatal outcome. Case report: A 30.3-week-old female fetus with DS had leukocytosis (WBC: 187.82 K/uL) with neutrophilia (ANC 27.65 K/uL), macrocytic anemia (RBC: 2.41 m/uL, Hb 8.8 g/dL, MCV 108.3, MCH 36.5, MCHC 33.7) and thrombocytosis (platelet count 361 K/uL) at birth. Liver panels demonstrated normal bilirubin levels with elevated liver enzymes (AST = 239 U/L, ALT = 216 U/L). Results: Peripheral smear showed marked leukocytosis with increased blasts (70%), nucleated RBCs, giant platelets, and megakaryocytic elements. Flow cytometry demonstrated two populations of cells: 20% myeloblasts and 26% dim CD45 CD34- cells. GATA1 mutation was present. Based on these findings a diagnosis of TAM with extramedullary hematopoiesis was made. She received two cycles of cytarabine chemotherapy. Though her WBC levels reached a low of 18.93 K/uL, she developed multi-organ failure, eventually leading to death on day 45. Discussion: TAM is a transient condition resulting in disease resolution in around 80% of cases. Death is reported in 10% of cases. Risk factors associated with early death include prematurity, hyperleukocytosis, elevated bilirubin levels. Management of high-risk babies with chemotherapy is recommended to improve survival.

6.
Cancer Genet ; 276-277: 36-39, 2023 08.
Article in English | MEDLINE | ID: mdl-37478796

ABSTRACT

KMT2A (11q23.3) gene rearrangements are found in acute leukemia and are associated with a poor or intermediate prognosis. MLLT10 is the fourth most common gene fusion partner for KMT2A. A reciprocal translocation t(10;11) is insufficient to produce an in-frame KMT2A/MLLT10 fusion, because the genes involved in the rearrangement have opposite transcriptional orientations. In order to bring KMT2A and MLLT10 into juxtaposition, complex rearrangements are required. Until now, conventional chromosome, fluorescence in situ hybridization (FISH), and reverse transcriptase-polymerase chain reaction (RT-PCR) studies have been used to detect KMT2A/MLLT10 fusions. However, conventional studies have limitations, such as poor and inconsistent resolution, when compared to next-generation sequencing (NGS). In this study, we report a pediatric patient with acute megakaryoblastic leukemia, in whom the cryptic KMT2A/MLLT10 fusion was not detected by KMT2A break-apart probe FISH and chromosome analysis, but detected by NGS. In this patient, NGS showed cryptic insertion of MLLT10 exons 9-24 into intron 9 of KMT2A, resulting in a KMT2A/MLLT10 fusion. Therefore, NGS is a valuable complementary option for the evaluation of structural aberrations, especially those with a cryptic size.


Subject(s)
Leukemia, Megakaryoblastic, Acute , Leukemia, Myeloid, Acute , Child , Humans , Leukemia, Megakaryoblastic, Acute/genetics , In Situ Hybridization, Fluorescence , Transcription Factors/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Leukemia, Myeloid, Acute/genetics , Translocation, Genetic , High-Throughput Nucleotide Sequencing , Oncogene Proteins, Fusion/genetics
7.
Cancers (Basel) ; 15(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37444375

ABSTRACT

Myeloid leukemia of Down syndrome (ML-DS) is characterized by a distinct natural history and is classified by the World Health Organization (WHO) as an independent entity, occurring with unique clinical and molecular features. The presence of a long preleukemic, myelodysplastic phase, called transient abnormal myelopoiesis (TAM), precedes the initiation of ML-DS and is defined by unusual chromosomal findings. Individuals with constitutional trisomy 21 have a profound dosage imbalance in the hematopoiesis-governing genes located on chromosome 21 and thus are subject to impaired fetal as well as to neonatal erythro-megakaryopoiesis. Almost all neonates with DS develop quantitative and morphological hematological abnormalities, yet still only 5-10% of them present with one of the preleukemic or leukemic conditions of DS. The acquired mutations in the key hematopoietic transcription factor gene GATA1, found solely in cells trisomic for chromosome 21, are considered to be the essential step for the selective growth advantage of leukemic cells. While the majority of cases of TAM remain clinically 'silent' or undergo spontaneous remission, the remaining 20% to 30% of them progress into ML-DS until the age of 4 years. The hypersensitivity of ML-DS blasts to chemotherapeutic agents, including but not limited to cytarabine, and drugs' increased infectious and cardiac toxicity have necessitated the development of risk-adapted treatment protocols for children with ML-DS. Recent advances in cytogenetics and specific molecular mechanisms involved in the evolution of TAM and ML-DS are reviewed here, as well as their integration in the improvement of risk stratification and targeted management of ML-DS.

8.
Front Cell Dev Biol ; 11: 1170622, 2023.
Article in English | MEDLINE | ID: mdl-37325571

ABSTRACT

Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia (AML) in which leukemic blasts have megakaryocytic features. AMKL makes up 4%-15% of newly diagnosed pediatric AML, typically affecting young children (less than 2 years old). AMKL associated with Down syndrome (DS) shows GATA1 mutations and has a favorable prognosis. In contrast, AMKL in children without DS is often associated with recurrent and mutually exclusive chimeric fusion genes and has an unfavorable prognosis. This review mainly summarizes the unique features of pediatric non-DS AMKL and highlights the development of novel therapies for high-risk patients. Due to the rarity of pediatric AMKL, large-scale multi-center studies are needed to progress molecular characterization of this disease. Better disease models are also required to test leukemogenic mechanisms and emerging therapies.

9.
Biol Pharm Bull ; 46(8): 1141-1144, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37286514

ABSTRACT

Megakaryoblastic leukemia 2 (MKL2)/myocardin-related transcription factor-B (MRTFB) is a serum response factor (SRF) cofactor that is enriched in the brain and controls SRF target genes and neuronal morphology. There are at least four isoforms of MKL2/MRTFB. Among these, MKL2/MRTFB isoform 1 and spliced neuronal long isoform of SRF transcriptional coactivator (SOLOIST)/MRTFB isoform 4 (MRTFB i4) are highly expressed in neurons. Although, when overexpressed in neurons, isoform 1 and SOLOIST/MRTFB i4 have opposing effects on dendritic morphology and differentially regulate SRF target genes, it is unknown how endogenous SOLOIST/MRTFB i4 regulates gene expression. Using isoform-specific knockdown, we investigated the role of endogenous SOLOST/MRTFB i4 in regulating the expression of other MKL2/MRTFB isoforms and SRF-target genes in Neuro-2a cells. Knockdown of SOLOIST/MRTFB i4 downregulated SOLOIST/MRTFB i4, while it upregulated isoform 1 without affecting isoform 3. Knockdown of SOLOIST/MRTFB i4 downregulated the SRF target immediate early genes egr1 and Arc, while it upregulated c-fos. Double knockdown of isoform 1 and SOLOIST/MRTFB i4 inhibited c-fos expression. Taken together, our findings in Neuro-2a cells suggest that endogenous SOLOIST/MRTFB i4 positively regulates egr1 and Arc expression. In addition, endogenous SOLOIST/MRTFB i4 may negatively regulate c-fos expression, possibly by downregulating isoform 1 in Neuro-2a cells.


Subject(s)
Genes, Immediate-Early , Trans-Activators , Trans-Activators/genetics , Trans-Activators/metabolism , Serum Response Factor/genetics , Serum Response Factor/metabolism , Transcription Factors/metabolism , Neurons/metabolism , Protein Isoforms/genetics
10.
Int J Hematol ; 118(4): 514-518, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37314622

ABSTRACT

Acute myeloid leukemia (AML) is known as one of the subsequent malignant neoplasms that can develop after cancer treatment, but it is difficult to distinguish from relapse when the preceding cancer is leukemia. We report a 2-year-old boy who developed acute megakaryoblastic leukemia (AMKL, French-American-British classification [FAB]: M7) at 18 months of age and achieved complete remission with multi-agent chemotherapy without hematopoietic stem cell transplantation. Nine months after diagnosis and 4 months after completing treatment for AMKL, he developed acute monocytic leukemia (AMoL) with the KMT2A::LASP1 chimeric gene (FAB: M5b). The second complete remission was achieved using multi-agent chemotherapy and he underwent cord blood transplantation 4 months after AMoL was diagnosed. He is currently alive and disease free at 39 and 48 months since his AMoL and AMKL diagnoses, respectively. Retrospective analysis revealed that the KMT2A::LASP1 chimeric gene was detected 4 months after diagnosis of AMKL. Common somatic mutations were not detected in AMKL or AMoL and no germline pathogenic variants were detected. Since the patient's AMoL was different from his primary leukemia of AMKL in terms of morphological, genomic, and molecular analysis, we concluded that he developed a subsequent leukemia rather than a relapse of his primary leukemia.


Subject(s)
Leukemia, Megakaryoblastic, Acute , Leukemia, Monocytic, Acute , Child, Preschool , Humans , Male , Adaptor Proteins, Signal Transducing , Cytoskeletal Proteins , Leukemia, Megakaryoblastic, Acute/diagnosis , Leukemia, Megakaryoblastic, Acute/genetics , Leukemia, Megakaryoblastic, Acute/therapy , Leukemia, Monocytic, Acute/diagnosis , Leukemia, Monocytic, Acute/genetics , Leukemia, Monocytic, Acute/therapy , LIM Domain Proteins , Recurrence , Remission Induction , Retrospective Studies , Histone-Lysine N-Methyltransferase/genetics , Oncogene Proteins, Fusion/genetics
11.
Front Oncol ; 13: 1093434, 2023.
Article in English | MEDLINE | ID: mdl-37228497

ABSTRACT

Introduction: It was first reported that germ cell tumor patients suffer from hematologic malignancies 37 years ago. Since then, the number of relevant reports has increased each year, with most cases being mediastinal germ cell tumor. Theories have been proposed to explain this phenomenon, including a shared origin of progenitor cells, the effects of treatment, and independent development. However, up to now, no widely accepted explanation exists. The case with acute megakaryoblastic leukemia and intracranial germ cell tumor has never been reported before and the association is far less known. Methods: We used whole exome sequencing and gene mutation analysis to study the relationship between intracranial germ cell tumor and acute megakaryoblastic leukemia of our patient. Results: We report a patient who developed acute megakaryoblastic leukemia after treatment for an intracranial germ cell tumor. Through whole exome sequencing and gene mutation analysis, we identified that both tumors shared the same mutation genes and mutation sites, suggesting they originated from the same progenitor cells and differentiated in the later stage. Discussion: Our findings provide the first evidence supporting the theory that acute megakaryoblastic leukemia and intracranial germ cell tumor has the same progenitor cells.

12.
Front Oncol ; 13: 1116205, 2023.
Article in English | MEDLINE | ID: mdl-36874138

ABSTRACT

Background: AMKL without DS is a rare but aggressive hematological malignant disease in children, and it is associated with inferior outcomes. Several researchers have regarded pediatric AMKL without DS as high-risk or at least intermediate-risk AML and proposed that upfront allogenic hematopoietic stem cell transplantation (HSCT) in first complete remission might improve long-term survival. Patients and method: We conducted a retrospective study with twenty-five pediatric (< 14 years old) AMKL patients without DS who underwent haploidentical HSCT in the Peking University Institute of Hematology, Peking University People's Hospital from July 2016 to July 2021. The diagnostic criteria of AMKL without DS were adapted from the FAB and WHO: ≥ 20% blasts in the bone marrow, and those blasts expressed at least one or more of the platelet glycoproteins: CD41, CD61, or CD42. AMKL with DS and therapy related AML was excluded. Children without a suitable closely HLA-matched related or unrelated donor (donors with more than nine out of 10 matching HLA-A, HLA-B, HLA-C, HLA-DR, and HLA-DQ loci), were eligible to receive haploidentical HSCT. Definition was adapted from international cooperation group. All statistical tests were conducted with SPSS v.24 and R v.3.6.3. Results: The 2-year OS was 54.5 ± 10.3%, and the EFS was 50.9 ± 10.2% in pediatric AMKL without DS undergoing haplo-HSCT. Statistically significantly better EFS was observed in patients with trisomy 19 than in patients without trisomy 19 (80 ± 12.6% and 33.3 ± 12.2%, respectively, P = 0.045), and OS was better in patients with trisomy 19 but with no statistical significance (P = 0.114). MRD negative pre-HSCT patients showed a better OS and EFS than those who were positive (P < 0.001 and P = 0.003, respectively). Eleven patients relapsed post HSCT. The median time to relapse post HSCT was 2.1 months (range: 1.0-14.4 months). The 2-year cumulative incidence of relapse (CIR) was 46.1 ± 11.6%. One patient developed bronchiolitis obliterans and respiratory failure and died at d + 98 post HSCT. Conclusion: AMKL without DS is a rare but aggressive hematological malignant disease in children, and it is associated with inferior outcomes. Trisomy 19 and MRD negative pre-HSCT might contribute to a better EFS and OS. Our TRM was low, haplo-HSCT might be an option for high-risk AMKL without DS.

13.
Cureus ; 15(3): e35965, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36911590

ABSTRACT

Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia (AML) characterized by abnormal megakaryoblasts expressing platelet-specific surface antigens. 4%-16% of childhood AMLs are AMKL. Childhood AMKL is usually associated with Down syndrome (DS). It is 500 times more common in patients with DS when compared to the general population. In contrast, non-DS-AMKL is much rarer. We describe a case of de novo non-DS-AMKL in a teenage girl child who presented with a history of excessive tiredness, fever, abdominal pain for three months, and vomiting for four days. She had lost appetite, and weight. On examination she was pale; there was no clubbing, hepatosplenomegaly or lymphadenopathy. There were no dysmorphic features or neurocutaneous markers. Laboratory tests showed bicytopenia (Hb: 6.5g/dL, total WBC count: 700/µL, platelet count: 216,000/ µL, Reticulocyte %: 0.42) and 14% blasts on the peripheral blood smear. Platelet clumps and anisocytosis were also noted. Bone marrow aspirate showed a few hypocellular particles with dilute cell trails but showed 42% blasts. Mature megakaryocytes showed marked dyspoiesis. Flow cytometry on bone marrow aspirate showed myeloblasts and megakaryoblasts. Karyotyping showed 46 XX. Hence, a final diagnosis of non-DS-AMKL was established. She was treated symptomatically. However, she was discharged on request. Interestingly, the expression of erythroid markers such as CD36 and lymphoid markers like CD7 is usually seen in DS-AMKL and not in non-DS-AMKL. AMKL is treated with AML-directed chemotherapies. Although complete remission rates are similar to other AML subtypes, overall survival is only about 18-40 weeks.

14.
Pediatr Blood Cancer ; 70(5): e30251, 2023 05.
Article in English | MEDLINE | ID: mdl-36789545

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) with megakaryocytic differentiation (AMkL) is a rare subtype of AML more common in children. Recent literature has identified multiple fusions associated with this type of leukemia. METHODS: Morphology, cytogenetics, and genomic sequencing were assessed in patients from Children's Oncology Group trials AAML0531 and AAML1031 with central-pathology review confirmed non-Down syndrome AMkL. The 5-year event-free survival (EFS), overall survival (OS), and RR were evaluated in these AMkL subcategories. RESULTS: A total of 107 cases of AMkL (5.5%) were included. Distinct fusions were identified in the majority: RBM15::MRTFA (20%), CBFA2T3::GLIS2 (16%), NUP98 (10%), KMT2A (7%), TEC::MLLT10 (2%), MECOM (1%), and FUS::ERG (1%); many of the remaining cases were classified as AMkL with (other) myelodysplasia-related changes (MRC). Very few cases had AML-associated somatic mutations. Cases with CBFA2T3::GLIS2 were enriched in trisomy 3 (p = .015) and the RAM phenotype, with associated high CD56 expression (p < .001). Cases with NUP98 fusions were enriched in trisomy 6 (p < .001), monosomy 13/del(13q) (p < .001), trisomy 21 (p = .026), and/or complex karyotypes (p = .026). While different 5-year EFS and OS were observed in AMkL in each trial, in general, those with CBFA2T3::GLIS2 or KMT2A rearrangements had worse outcomes compared to other AMkL, while those with RBM15::MRTFA or classified as AMkl-MRC fared better. AMkL with NUP98 fusions also had poor outcomes in the AAML1031 trial. CONCLUSION: Given the differences in outcomes, AMkL classification by fusions, cytogenetics, and morphology may be warranted to help in risk stratification and therapeutic options.


Subject(s)
Leukemia, Myeloid, Acute , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Young Adult , Cytogenetic Analysis , Disease-Free Survival , Down Syndrome/genetics , Gene Fusion , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Mutation Rate
15.
Biol Pharm Bull ; 46(4): 636-639, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36801840

ABSTRACT

Serum response factor (SRF) is a transcription factor that plays essential roles in multiple brain functions in concert with SRF cofactors such as ternary complex factor (TCF) and megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF), which comprises MKL1/MRTFA and MKL2/MRTFB. Here, we stimulated primary cultured rat cortical neurons with brain-derived neurotrophic factor (BDNF) and investigated the levels of SRF and SRF cofactor mRNA expression. We found that SRF mRNA was transiently induced by BDNF, whereas the levels of SRF cofactors were differentially regulated: mRNA expression of Elk1, a TCF family member, and MKL1/MRTFA were unchanged, while in contrast, mRNA expression of MKL2/MRTFB was transiently decreased. Inhibitor experiments revealed that BDNF-mediated alteration in mRNA levels detected in this study was mainly due to the extracellular signal-regulated protein kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway. Collectively, BDNF mediates the reciprocal regulation of SRF and MKL2/MRTFB at the mRNA expression level through ERK/MAPK, which may fine-tune the transcription of SRF target genes in cortical neurons. Accumulating evidence regarding the alteration of SRF and SRF cofactor levels detected in several neurological disorders suggests that the findings of this study might also provide novel insights into valuable therapeutic strategies for the treatment of brain diseases.


Subject(s)
Brain-Derived Neurotrophic Factor , Serum Response Factor , Rats , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Serum Response Factor/genetics , Serum Response Factor/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Neurons/metabolism
16.
Int J Hematol ; 117(5): 781-785, 2023 May.
Article in English | MEDLINE | ID: mdl-36472792

ABSTRACT

We present a patient with acute megakaryoblastic leukemia (AMKL) harboring KMT2A-MLLT3 that converted to T cell acute lymphoblastic leukemia (T-ALL) at her fourth relapse. A 4-year-old girl developed AMKL with multiple swollen lymph nodes. She exhibited several recurrences in the bone marrow and died of septic shock after her fourth relapse. Bone marrow cells at the initial diagnosis and at all four relapses had the same KMT2A-MLLT3 fusion transcript. She also developed a somatic mutation (c.7177C > T p.Q2393X) of NOTCH1 at the fourth relapse. This sequential phenotypic and cytogenetic study may yield valuable insights into the mechanism of AMKL to T-ALL lineage switch and possible implications for treatment selection.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Megakaryoblastic, Acute , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Child, Preschool , Female , Humans , Leukemia, Megakaryoblastic, Acute/genetics , Leukemia, Megakaryoblastic, Acute/therapy , Nuclear Proteins/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Recurrence , T-Lymphocytes
17.
Front Genet ; 13: 891214, 2022.
Article in English | MEDLINE | ID: mdl-36035173

ABSTRACT

Myeloid leukemia associated with Down syndrome (ML-DS) has a unique molecular landscape that differs from other subtypes of acute myeloid leukemia. ML-DS is often preceded by a myeloproliferative neoplastic condition called transient abnormal myelopoiesis (TAM) that disrupts megakaryocytic and erythroid differentiation. Over the last two decades, many genetic and epigenetic changes in TAM and ML-DS have been elucidated. These include overexpression of molecules and micro-RNAs located on chromosome 21, GATA1 mutations, and a range of other somatic mutations and chromosomal alterations. In this review, we summarize molecular changes reported in TAM and ML-DS and provide a comprehensive discussion of these findings. Recent advances in the development of CRISPR/Cas9-modified induced pluripotent stem cell-based disease models are also highlighted. However, despite significant progress in this area, we still do not fully understand the pathogenesis of ML-DS, and there are no targeted therapies. Initial diagnosis of ML-DS has a favorable prognosis, but refractory and relapsed disease can be difficult to treat; therapeutic options are limited in Down syndrome children by their stronger sensitivity to the toxic effects of chemotherapy. Because of the rarity of TAM and ML-DS, large-scale multi-center studies would be helpful to advance molecular characterization of these diseases at different stages of development and progression.

18.
Front Oncol ; 12: 915833, 2022.
Article in English | MEDLINE | ID: mdl-36003795

ABSTRACT

Pediatric acute megakaryoblastic leukemia (AMKL) is a subtype of acute myeloid leukemia (AML) characterized by abnormal megakaryoblasts, and it is divided into the AMKL patients with Down syndrome (DS-AMKL) and AMKL patients without DS (non-DS-AMKL). Pediatric non-DS-AMKL is a heterogeneous disease with extremely poor outcome. We performed single-cell RNA sequencing (scRNA-seq) of the bone marrow from two CBFA2T3-GLIS2 fusion-positive and one RBM15-MKL1 fusion-positive non-DS-AMKL children. Meanwhile, we downloaded the scRNA-seq data of normal megakaryocyte (MK) cells of the fetal liver and bone marrow from healthy donors as normal controls. We conducted cell clustering, cell-type identification, inferCNV analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Monocle2 analysis to investigate the intratumoral heterogeneity of AMKL. Using canonical markers, we identified and characterized the abnormal blasts and other normal immune cells from three AMKL samples. We found intratumoral heterogeneity of AMKL in various cell-type proportions, malignant cells' diverse copy number variations (CNVs), maturities, significant genes expressions, and enriched pathways. We also identified potential markers for pediatric AMKL, namely, RACK1, ELOB, TRIR, NOP53, SELENOH, and CD81. Our work offered insight into the heterogeneity of pediatric acute megakaryoblastic leukemia and established the single-cell transcriptomic landscape of AMKL for the first time.

19.
Leuk Res ; 120: 106920, 2022 09.
Article in English | MEDLINE | ID: mdl-35872339

ABSTRACT

Acute megakaryoblastic leukaemia (AMKL) is characterized by expansion of megakaryoblasts, which are hyper-proliferative cells that fail to undergo differentiation. Insight to the cell-cycle regulation revealed important events in early or late megakaryocytes (MKs) maturation; the cyclin-dependent kinases 4 and 6 (CDK4/6) have been reported to participate in the development of progenitor megakaryocytes, mainly by promoting cell cycle progression and DNA polyploidization. However, it remains unclear whether the continuous proliferation, but not differentiation, of megakaryoblasts is related to an aberrant regulation of CDK4/6 in AMKL. Here, we found that CDK4/6 were up regulated in patients with AMKL, and persistently maintained at a high level during the differentiation of abnormal megakaryocytes in vitro, according to a database and western blot. Additionally, AMKL cells were exceptionally reliant on the cell cycle regulators CDK4 or 6, as blocking their activity using an inhibitor or short hairpin RNA (shRNA) significantly reduced the proliferation of 6133/MPL megakaryocytes, reduced DNA polyploidy, induced apoptosis, decreased the level of phosphorylated retinoblastoma protein (p-Rb), and activation of caspase 3. Additionally, CDK4/6 inhibitors and shRNA reduced the numbers of leukemia cells in the liver and bone marrow (BM), alleviated hepatosplenomegaly, and prolonged the survival of AMKL-transplanted mice. These results suggested that blocking the activity of CDK4/6 may represent an effective approach to control megakaryoblasts in AMKL.


Subject(s)
Leukemia, Megakaryoblastic, Acute , Animals , Cyclins , DNA , Leukemia, Megakaryoblastic, Acute/drug therapy , Leukemia, Megakaryoblastic, Acute/genetics , Megakaryocyte Progenitor Cells , Mice , RNA, Small Interfering
20.
Cancers (Basel) ; 14(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35805057

ABSTRACT

Children with Down syndrome (DS) are at an increased risk of developing clonal myeloproliferative disorders. The balance between treatment intensity and treatment-related toxicity has not yet been defined. We analyzed this population to identify risk factors and optimal treatment. This single-center retrospective study included 78 DS patients <16 years-old with Transient Abnormal Myelopoiesis (TAM, n = 25), Acute Myeloblastic Leukemia (DS-AML, n = 41) of which 35 had classical Myeloid Leukemia associated with DS (ML-DS) with megakaryoblastic immunophenotype (AMKL) and 6 sporadic DS-AML (non-AMKL). Patients with DS-AML were treated according to four BFM-based protocols. Classical ML-DS vs. non-DS-AMKL were compared and the outcome of ML-DS was analyzed according to treatment intensity. Only four patients with TAM required cytoreduction with a 5-year Event-Free Survival probability (EFSp) of 74.4 (±9.1)%. DS-AML treatment-related deaths were due to infections, with a 5-year EFSp of 60.6 (±8.2)%. Megakaryoblastic immunophenotype was the strongest good-prognostic factor in univariate and multivariate analysis (p = 0.000). When compared ML-DS with non-DS-AMKL, a better outcome was associated with a lower relapse rate (p = 0.0002). Analysis of administered treatment was done on 32/33 ML-DS patients who achieved CR according to receiving or not high-dose ARA-C block (HDARA-C), and no difference in 5-year EFSp was observed (p = 0.172). TAM rarely required treatment and when severe manifestations occurred, early intervention was effective. DS-AML good outcome was associated with AMKL with a low relapse-rate. Even if treatment-related mortality is still high, our data do not support the omission of HDARA-C in ML-DS since we observed a trend to detect a higher relapse rate in the arm without HDARA-C.

SELECTION OF CITATIONS
SEARCH DETAIL
...