Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Psychol ; 14: 1295129, 2023.
Article in English | MEDLINE | ID: mdl-38259552

ABSTRACT

The evaluation of pupillary light reflex (PLR) by chromatic pupillometry may provide a unique insight into specific photoreceptor functions. Chromatic pupillometry refers to evaluating PLR to different wavelengths and intensities of light in order to differentiate outer/inner retinal photoreceptor contributions to the PLR. Different protocols have been tested and are now established to assess in-vivo PLR contribution mediated by melanopsin retinal ganglion cells (mRGCs). These intrinsically photosensitive photoreceptors modulate the non-image-forming functions of the eye, which are mainly the circadian photoentrainment and PLR, via projections to the hypothalamic suprachiasmatic and olivary pretectal nucleus, respectively. In this context, chromatic pupillometry has been used as an alternative and non-invasive tool to evaluate the mRGC system in several clinical settings, including hereditary optic neuropathies, glaucoma, and neurodegenerative disorders such as Parkinson's disease (PD), idiopathic/isolated rapid eye movement sleep behavior disorder (iRBD), and Alzheimer's disease (AD). The purpose of this article is to review the key steps of chromatic pupillometry protocols for studying in-vivo mRGC-system functionality and provide the main findings of this technique in the research setting on neurodegeneration. mRGC-dependent pupillary responses are short-wavelength sensitive, have a higher threshold of activation, and are much slower and sustained compared with rod- and cone-mediated responses, driving the tonic component of the PLR during exposure to high-irradiance and continuous light stimulus. Thus, mRGCs contribute mainly to the tonic component of the post-illumination pupil response (PIPR) to bright blue light flash that persists after light stimulation is switched off. Given the role of mRGCs in circadian photoentrainment, the use of chromatic pupillometry to perform a functional evaluation of mRGcs may be proposed as an early biomarker of mRGC-dysfunction in neurodegenerative disorders characterized by circadian and/or sleep dysfunction such as AD, PD, and its prodromal phase iRBD. The evaluation by chromatic pupillometry of mRGC-system functionality may lay the groundwork for a new, easily accessible biomarker that can be exploited also as the starting point for future longitudinal cohort studies aimed at stratifying the risk of conversion in these disorders.

2.
Exp Eye Res ; 214: 108866, 2022 01.
Article in English | MEDLINE | ID: mdl-34838844

ABSTRACT

Myopia, or nearsightedness, is the most common form of refractive abnormality and is characterized by excessive ocular elongation in relation to ocular power. Retinal neurotransmitter signaling, including dopamine, is implicated in myopic ocular growth, but the visual pathways that initiate and sustain myopia remain unclear. Melanopsin-expressing retinal ganglion cells (mRGCs), which detect light, are important for visual function, and have connections with retinal dopamine cells. Here, we investigated how mRGCs influence normal and myopic refractive development using two mutant mouse models: Opn4-/- mice that lack functional melanopsin photopigments and intrinsic mRGC responses but still receive other photoreceptor-mediated input to these cells; and Opn4DTA/DTA mice that lack intrinsic and photoreceptor-mediated mRGC responses due to mRGC cell death. In mice with intact vision or form-deprivation, we measured refractive error, ocular properties including axial length and corneal curvature, and the levels of retinal dopamine and its primary metabolite, L-3,4-dihydroxyphenylalanine (DOPAC). Myopia was measured as a myopic shift, or the difference in refractive error between the form-deprived and contralateral eyes. We found that Opn4-/- mice had altered normal refractive development compared to Opn4+/+ wildtype mice, starting ∼4D more myopic but developing ∼2D greater hyperopia by 16 weeks of age. Consistent with hyperopia at older ages, 16 week-old Opn4-/- mice also had shorter eyes compared to Opn4+/+ mice (3.34 vs 3.42 mm). Opn4DTA/DTA mice, however, were more hyperopic than both Opn4+/+ and Opn4-/- mice across development ending with even shorter axial lengths. Despite these differences, both Opn4-/- and Opn4DTA/DTA mice had ∼2D greater myopic shifts in response to form-deprivation compared to Opn4+/+ mice. Furthermore, when vision was intact, dopamine and DOPAC levels were similar between Opn4-/- and Opn4+/+ mice, but higher in Opn4DTA/DTA mice, which differed with age. However, form-deprivation reduced retinal dopamine and DOAPC by ∼20% in Opn4-/- compared to Opn4+/+ mice but did not affect retinal dopamine and DOPAC in Opn4DTA/DTA mice. Lastly, systemically treating Opn4-/- mice with the dopamine precursor L-DOPA reduced their form-deprivation myopia by half compared to non-treated mice. Collectively our findings show that disruption of retinal melanopsin signaling alters the rate and magnitude of normal refractive development, yields greater susceptibility to form-deprivation myopia, and changes dopamine signaling. Our results suggest that mRGCs participate in the eye's response to myopigenic stimuli, acting partly through dopaminergic mechanisms, and provide a potential therapeutic target underling myopia progression. We conclude that proper mRGC function is necessary for correct refractive development and protection from myopia progression.


Subject(s)
Myopia/metabolism , Refraction, Ocular/physiology , Retinal Ganglion Cells/metabolism , Rod Opsins/physiology , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Axial Length, Eye/pathology , Cornea/pathology , Disease Models, Animal , Dopamine/metabolism , Dopamine Agents/pharmacology , Female , Levodopa/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myopia/physiopathology , Retina/metabolism , Retinal Ganglion Cells/drug effects , Visual Pathways/metabolism
3.
Arch Soc Esp Oftalmol (Engl Ed) ; 96(6): 299-315, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34092284

ABSTRACT

Our visual system has evolved to provide us with an image of the scene that surrounds us, informing us of its texture, colour, movement, and depth with an enormous spatial and temporal resolution, and for this purpose, the image formation (IF) dedicates the vast majority of our retinal ganglion cell (RGC) population and much of our cerebral cortex. On the other hand, a minuscule proportion of RGCs, in addition to receiving information from classic cone and rod photoreceptors, express melanopsin and are intrinsically photosensitive (ipRGC). These ipRGC are dedicated to non-image-forming (NIF) visual functions, of which we are unaware, but which are essential for aspects related to our daily physiology, such as the timing of our circadian rhythms and our pupillary light reflex, among many others. Before the discovery of ipRGCs, it was thought that the IF and NIF functions were distinct compartments regulated by different RGCs, but this concept has evolved in recent years with the discovery of new types of ipRGCs that innervate subcortical IF regions, and therefore have IF visual functions. Six different types of ipRGCs are currently known. These are termed M1-M6, and differ in their morphological, functional, molecular properties, central projections, and visual behaviour responsibilities. A review is presented on the melanopsin visual system, the most active field of research in vision, for which knowledge has grown exponentially during the last two decades, when RGCs giving rise to this pathway were first discovered.


Subject(s)
Retinal Cone Photoreceptor Cells , Retinal Ganglion Cells , Circadian Rhythm , Retinal Rod Photoreceptor Cells , Vision, Ocular
4.
Arch. Soc. Esp. Oftalmol ; 96(6): 299-315, jun. 2021. ilus, tab
Article in Spanish | IBECS | ID: ibc-217837

ABSTRACT

Nuestro sistema visual ha evolucionado para proveernos una imagen de la escena que nos rodea informándonos de su textura, color, movimiento y profundidad con una enorme capacidad de resolución tanto espacial como temporal, y a esta finalidad la formación de imágenes (FI) dedica la inmensa mayoría de nuestras células ganglionares de la retina (CGR) y gran parte de nuestra corteza cerebral. Por otra parte, una proporción minúscula de las CGR, además de recibir información de fotorreceptores clásicos conos y bastones, expresan melanopsina y son intrínsecamente fotosensibles (CGRif). Estas CGRif se dedican a funciones visuales no formadoras de imágenes (NFI), de las que somos inconscientes, pero que resultan imprescindibles para aspectos relacionados con nuestra fisiología cotidiana como la puesta en hora de nuestros ritmos circadianos y nuestro reflejo fotomotor, entre otras muchas. Desde el descubrimiento de las CGRif se pensó que las funciones FI y NFI eran compartimentos distintos regulados por diferentes CGR, pero este concepto ha evolucionado en los últimos años con el descubrimiento de nuevos tipos de CGRif que inervan regiones subcorticales FI y, por tanto, presentan funciones FI. Hoy se conocen 6 tipos diferentes de CGRif que se denominan M1-M6 y difieren en sus propiedades morfológicas, funcionales, moleculares, proyecciones centrales y responsabilidades en comportamientos visuales. En este trabajo revisamos el sistema visual melanopsínico, el campo de investigación más activo en visión y cuyo conocimiento ha crecido exponencialmente durante las últimas 2décadas, desde que se descubrieron por primera vez las CGR que dan origen a esta vía (AU)


Our visual system has evolved to provide us with an image of the scene that surrounds us, informing us of its texture, colour, movement, and depth with an enormous spatial and temporal resolution, and for this purpose, the image formation (IF) dedicates the vast majority of our retinal ganglion cell (RGC) population and much of our cerebral cortex. On the other hand, a minuscule proportion of RGCs, in addition to receiving information from classic cone and rod photoreceptors, express melanopsin and are intrinsically photosensitive (ipRGC). These ipRGC are dedicated to non-image-forming (NIF) visual functions, of which we are unaware, but which are essential for aspects related to our daily physiology, such as the timing of our circadian rhythms and our pupillary light reflex, among many others. Before the discovery of ipRGCs, it was thought that the IF and NIF functions were distinct compartments regulated by different RGCs, but this concept has evolved in recent years with the discovery of new types of ipRGCs that innervate subcortical IF regions, and therefore have IF visual functions. Six different types of ipRGCs are currently known. These are termed M1-M6, and differ in their morphological, functional, molecular properties, central projections, and visual behaviour responsibilities. A review is presented on the melanopsin visual system, the most active field of research in vision, for which knowledge has grown exponentially during the last 2decades, when RGCs giving rise to this pathway were first discovered (AU)


Subject(s)
Humans , Retinal Ganglion Cells/physiology , Contrast Sensitivity , Vision, Ocular/physiology
5.
Front Neurosci ; 14: 780, 2020.
Article in English | MEDLINE | ID: mdl-32848556

ABSTRACT

Intrinsically photosensitive melanopsin retinal ganglion cells (mRGCs) are crucial for non-image forming functions of the eye, including the photoentrainment of circadian rhythms and the regulation of the pupillary light reflex (PLR). Chromatic pupillometry, using light stimuli at different wavelengths, makes possible the isolation of the contribution of rods, cones, and mRGCs to the PLR. In particular, post-illumination pupil response (PIPR) is the most reliable pupil metric of mRGC function. We have previously described, in post-mortem investigations of AD retinas, a loss of mRGCs, and in the remaining mRGCs, we demonstrated extensive morphological abnormalities. We noted dendrite varicosities, patchy distribution of melanopsin, and reduced dendrite arborization. In this study, we evaluated, with chromatic pupillometry, the PLR in a cohort of mild-moderate AD patients compared to controls. AD and controls also underwent an extensive ophthalmological evaluation. In our AD cohort, PIPR did not significantly differ from controls, even though we observed a higher variability in the AD group and 5/26 showed PIPR values outside the 2 SD from the control mean values. Moreover, we found a significant difference between AD and controls in terms of rod-mediated transient PLR amplitude. These results suggest that in the early stage of AD there are PLR abnormalities that may reflect a pathology affecting mRGC dendrites before involving the mRGC cell body. Further studies, including AD cases with more severe and longer disease duration, are needed to further explore this hypothesis.

6.
Front Neurol ; 9: 1047, 2018.
Article in English | MEDLINE | ID: mdl-30581410

ABSTRACT

Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive RGCs that mediate many relevant non-image forming functions of the eye, including the pupillary light reflex, through the projections to the olivary pretectal nucleus. In particular, the post-illumination pupil response (PIPR), as evaluated by chromatic pupillometry, can be used as a reliable marker of mRGC function in vivo. In the last years, pupillometry has become a promising tool to assess mRGC dysfunction in various neurological and neuro-ophthalmological conditions. In this review we will present the most relevant findings of pupillometric studies in glaucoma, hereditary optic neuropathies, ischemic optic neuropathies, idiopathic intracranial hypertension, multiple sclerosis, Parkinson's disease, and mood disorders. The use of PIPR as a marker for mRGC function is also proposed for other neurodegenerative disorders in which circadian dysfunction is documented.

7.
Front Neurosci ; 11: 235, 2017.
Article in English | MEDLINE | ID: mdl-28491019

ABSTRACT

Glaucoma, one of the leading causes of blindness worldwide, affects primarily retinal ganglion cells (RGCs) and their axons. The pathophysiology of glaucoma is not fully understood, but it is currently believed that damage to RGC axons at the optic nerve head plays a major role. Rodent models to study glaucoma include those that mimic either ocular hypertension or optic nerve injury. Here we review the anatomical loss of the general population of RGCs (that express Brn3a; Brn3a+RGCs) and of the intrinsically photosensitive RGCs (that express melanopsin; m+RGCs) after chronic (LP-OHT) or acute (A-OHT) ocular hypertension and after complete intraorbital optic nerve transection (ONT) or crush (ONC). Our studies show that all of these insults trigger RGC death. Compared to Brn3a+RGCs, m+RGCs are more resilient to ONT, ONC, and A-OHT but not to LP-OHT. There are differences in the course of RGC loss both between these RGC types and among injuries. An important difference between the damage caused by ocular hypertension or optic nerve injury appears in the outer retina. Both axotomy and LP-OHT induce selective loss of RGCs but LP-OHT also induces a protracted loss of cone photoreceptors. This review outlines our current understanding of the anatomical changes occurring in rodent models of glaucoma and discusses the advantages of each one and their translational value.

8.
Invest Ophthalmol Vis Sci ; 56(3): 1924-36, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25722208

ABSTRACT

PURPOSE: To study the responses of the general population of retinal ganglion cells (Brn3a(+)RGCs) versus the intrinsically photosensitive RGCs (melanopsin-expressing RGCs [m(+)RGCs]) to ocular hypertension (OHT), the effects of brain-derived neurotrophic factor (BDNF) on the survival of axonally intact and axonally nonintact RGCs, and the correlation of vascular integrity with sectorial RGC loss. METHODS: In Sprague-Dawley rats, 5 µg BDNF or vehicle was intravitreally injected into the left eye followed by laser photocoagulation of the limbal tissues. To identify RGCs with an active retrograde axonal transport, Fluorogold was applied to both superior colliculi 1 week before euthanasia (FG(+)RGCs). Retinas were dissected 12 or 15 days after lasering and immunoreacted against Brn3a (to identify all RGCs except m(+)RGCs), melanopsin, or RECA1 (inner retinal vasculature). RESULTS: Ocular hypertension resulted at 12 to 15 days in sectorial loss of FG(+)RGCs (78%-84%, respectively) while Brn3a(+)RGCs were significantly greater, indicating that a substantial proportion (approximately 21%-26%) of RGCs with their retrograde axonal transport impaired survive in the retina. Brain-derived neurotrophic factor increased the survival of Brn3a(+)RGCs to 81% to 67% at 12 to 15 days, respectively. The inner retinal vasculature showed no abnormalities that could account for the sectorial loss of RGCs. At 12 to 15 days, m(+)RGCs decreased to approximately 50% to 51%, but this loss was diffuse across the retina and was not prevented by BDNF. CONCLUSIONS: The responses of m(+)RGCs against OHT-induced retinal degeneration and neuroprotection differ from those of Brn3a(+)RGCs; while OHT induces similar loss of Brn3a(+)RGCs and m(+)RGCs, Brn3a(+)RGCs are lost in sectors and can be rescued with BDNF, but m(+)RGCs do not respond to BDNF and their loss is diffuse.


Subject(s)
Brain-Derived Neurotrophic Factor/pharmacology , Ocular Hypertension/drug therapy , Photoreceptor Cells, Vertebrate/drug effects , Retina/injuries , Retinal Ganglion Cells/drug effects , Animals , Cell Death/drug effects , Disease Models, Animal , Female , Intraocular Pressure/drug effects , Intravitreal Injections , Lasers/adverse effects , Ocular Hypertension/physiopathology , Photoreceptor Cells, Vertebrate/pathology , Rats , Rats, Sprague-Dawley , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Rod Opsins/metabolism , Transcription Factor Brn-3A/metabolism
9.
Front Neuroanat ; 8: 131, 2014.
Article in English | MEDLINE | ID: mdl-25477787

ABSTRACT

Here we have studied the population of intrinsically photosensitive retinal ganglion cells (ipRGCs) in adult pigmented and albino mice. Our data show that although pigmented (C57Bl/6) and albino (Swiss) mice have a similar total number of ipRGCs, their distribution is slightly different: while in pigmented mice ipRGCs are more abundant in the temporal retina, in albinos the ipRGCs are more abundant in superior retina. In both strains, ipRGCs are located in the retinal periphery, in the areas of lower Brn3a(+)RGC density. Both strains also contain displaced ipRGCs (d-ipRGCs) in the inner nuclear layer (INL) that account for 14% of total ipRGCs in pigmented mice and 5% in albinos. Tracing from both superior colliculli shows that 98% (pigmented) and 97% (albino) of the total ipRGCs, become retrogradely labeled, while double immunodetection of melanopsin and Brn3a confirms that few ipRGCs express this transcription factor in mice. Rather surprisingly, application of a retrograde tracer to the optic nerve (ON) labels all ipRGCs, except for a sub-population of the d-ipRGCs (14% in pigmented and 28% in albino, respectively) and melanopsin positive cells residing in the ciliary marginal zone (CMZ) of the retina. In the CMZ, between 20% (pigmented) and 24% (albino) of the melanopsin positive cells are unlabeled by the tracer and we suggest that this may be because they fail to send an axon into the ON. As such, this study provides the first evidence for a population of melanopsin interneurons in the mammalian retina.

SELECTION OF CITATIONS
SEARCH DETAIL
...