Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.128
Filter
1.
J Environ Sci (China) ; 147: 392-403, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003057

ABSTRACT

This study used steel slag, fly ash, and metakaolin as raw materials (SFM materials) to create silica-alumina-based geopolymers that can solidify Hg2+ when activated with sodium-based water glass. The experiments began with a triangular lattice point mixing design experiment, and the results were fitted, analyzed, and predicted. The optimum SFM material mass ratio was found to be 70% steel slag, 25% fly ash, and 5% metakaolin. The optimum modulus of the activator was identified by comparing the unconfined compressive strength and solidifying impact on Hg2+of geosynthetics with different modulus. The SFM geopolymer was then applied in the form of potting to cure the granulated mercury tailings. The inclusion of 50% SFM material generated a geosynthetic that reduced mercury transport to the surface soil by roughly 90%. The mercury concentration of herbaceous plant samples was also reduced by 78%. It indicates that the SFM material can effectively attenuate the migration transformation of mercury. Finally, characterization methods such as XPS and FTIR were used to investigate the mechanism of Hg2+ solidification by geopolymers generated by SFM materials. The possible solidification mechanisms were proposed as alkaline environment-induced mercury precipitation, chemical bonding s, surface adsorption of Hg2+ and its precipitates by the geopolymer, and physical encapsulation.


Subject(s)
Mercury , Mercury/chemistry , Mercury/analysis , Polymers/chemistry , Soil Pollutants/chemistry , Soil Pollutants/analysis , Mining , Coal Ash/chemistry , Models, Chemical
2.
BMC Microbiol ; 24(1): 247, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971740

ABSTRACT

BACKGROUND: Mercury (Hg) is highly toxic and has the potential to cause severe health problems for humans and foraging animals when transported into edible plant parts. Soil rhizobia that form symbiosis with legumes may possess mechanisms to prevent heavy metal translocation from roots to shoots in plants by exporting metals from nodules or compartmentalizing metal ions inside nodules. Horizontal gene transfer has potential to confer immediate de novo adaptations to stress. We used comparative genomics of high quality de novo assemblies to identify structural differences in the genomes of nitrogen-fixing rhizobia that were isolated from a mercury (Hg) mine site that show high variation in their tolerance to Hg. RESULTS: Our analyses identified multiple structurally conserved merA homologs in the genomes of Sinorhizobium medicae and Rhizobium leguminosarum but only the strains that possessed a Mer operon exhibited 10-fold increased tolerance to Hg. RNAseq analysis revealed nearly all genes in the Mer operon were significantly up-regulated in response to Hg stress in free-living conditions and in nodules. In both free-living and nodule environments, we found the Hg-tolerant strains with a Mer operon exhibited the fewest number of differentially expressed genes (DEGs) in the genome, indicating a rapid and efficient detoxification of Hg from the cells that reduced general stress responses to the Hg-treatment. Expression changes in S. medicae while in bacteroids showed that both rhizobia strain and host-plant tolerance affected the number of DEGs. Aside from Mer operon genes, nif genes which are involved in nitrogenase activity in S. medicae showed significant up-regulation in the most Hg-tolerant strain while inside the most Hg-accumulating host-plant. Transfer of a plasmid containing the Mer operon from the most tolerant strain to low-tolerant strains resulted in an immediate increase in Hg tolerance, indicating that the Mer operon is able to confer hyper tolerance to Hg. CONCLUSIONS: Mer operons have not been previously reported in nitrogen-fixing rhizobia. This study demonstrates a pivotal role of the Mer operon in effective mercury detoxification and hypertolerance in nitrogen-fixing rhizobia. This finding has major implications not only for soil bioremediation, but also host plants growing in mercury contaminated soils.


Subject(s)
Gene Transfer, Horizontal , Mercury , Operon , Symbiosis , Transcriptome , Mercury/metabolism , Mercury/toxicity , Nitrogen-Fixing Bacteria/genetics , Nitrogen-Fixing Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Nitrogen Fixation , Rhizobium leguminosarum/genetics , Rhizobium leguminosarum/metabolism , Soil Microbiology
3.
Environ Res ; 260: 119612, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004394

ABSTRACT

Fish consumption can increase purine load in human body, and the enrichment of mercury in fish may affect the glomerular filtration function, both resulting in increased serum uric acid (SUA) levels. The data of blood mercury (BHg), fish consumption frequency and SUA levels of 7653 participants aged 18 years or older was from China National Human Biomonitoring (2017-2018). The associations between fish consumption frequency, ln-transformed BHg and SUA levels were explored through weighted multiple linear regressions. The mediating effect of BHg levels between fish consumption frequency and SUA levels was evaluated by mediation analysis. We found that both the fish consumption frequency and BHg were positively associated with SUA levels in both sexes. Compared to participants who had never consumed fish, participants who consumed fish once a week or more had higher SUA levels [ß (95% confidence interval, CI): 20.39 (2.16, 38.62) in males; ß (95% CI): 10.06 (0.76, 19.37) in females] and ln-transformed BHg [ß (95% CI): 0.97 (0.61, 1.34) in males; ß (95% CI): 0.84 (0.63, 1.05) in females]. Each 1-unit increase in ln-transformed BHg, the SUA levels rose by 4.78 (95% CI: 0.01, 9.54) µmol/L for males and 3.81 (95% CI: 1.60, 6.03) µmol/L for females. The association between fish consumption with SUA levels was mediated by ln-transformed BHg with the percent mediated of 34.66% in males and 26.58% in females. It revealed that BHg played mediating roles in the elevation of SUA levels caused by fish consumption. This study's findings could promote the government to intervene in mercury pollution in fish, so as to ensure the safety of fish consumption.

4.
J Hazard Mater ; 476: 135205, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018599

ABSTRACT

This study describes an adsorption method for the removal of Hg2+ from aquatic environments using sulfhydryl-functionalized Ti3C2Tx (SH-Ti3C2Tx). SH-Ti3C2Tx materials were synthesized through covalent interactions between dithiothreitol and two-dimensional Ti3C2Tx. The insertion of -SH groups increased the interlayer spacing of Ti3C2Tx, resulting in a 3-fold increase in the specific surface area of SH-Ti3C2Tx compared with the original Ti3C2Tx. The maximum Hg2+ adsorption capacity of SH-Ti3C2Tx was 3042 mg/g, which was 2.3-fold greater than that of Ti3C2Tx. After Hg2+ adsorption, SH-Ti3C2Tx was regenerated for repeated used by rinsing with HCl-thiourea. Next, SH-Ti3C2Tx was loaded onto a melamine sponge to construct SH-Ti3C2Tx adsorption columns suitable for continuous flow Hg2+ removal with extremely low flow resistance. Hg2+ removal rates exceeded 95 % when treating both high and low-concentration solutions (20 mg/L Hg2+ and 10 µg/L Hg2+). This study demonstrates the excellent adsorption-regeneration performance of SH-Ti3C2Tx, which has broad application prospects for the in-situ treatment of water contaminated with Hg2+.

5.
Sci Total Environ ; 947: 174562, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38981544

ABSTRACT

The Ross Sea Marine Protected Area (RS-MPA) hosts endemic species that have to cope with multiple threats, including chemical contamination. Adèlie penguin is considered a good sentinel species for monitoring pollutants. Here, 23 unhatched eggs, collected from three colonies along the Ross Sea coasts, were analysed to provide updated results on legacy pollutants and establish a baseline for newer ones. Average sum of polychlorinated biphenyls (∑PCBs) at the three colonies ranged 20.9-24.3 ng/g lipid weight (lw) and included PCBs IUPAC nos. 28, 118, 153, 138, 180. PCBs were dominated by hexachlorinated congeners as previously reported. Hexachlorobenzene (HCB) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) ranged between 134 and 166 and 181-228 ng/g lw, respectively. Overall, ∑PCBs was exceeded by pesticides, contrary to previous studies from the Ross Sea. Sum of polybrominated diphenyl ethers (∑PBDEs) ranged between 0.90 and 1.18 ng/g lw and consisted of BDE-47 (that prevailed as expected, representing 60-80 % of the ∑PBDEs) and BDE-85. Sum of perfluoroalkyl substances (∑PFAS) ranged from 1.04 to 1.53 ng/g wet weight and comprised five long-chain perfluorinated carboxylic acids (PFCAs), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid (PFOA); perfluorooctane sulfonamide (PFOSA) was also detected. The PFAS profile was dominated by PFCAs as already observed in Arctic seabirds. Mercury ranged from 0.07 to 0.15 mg/kg dry weight similarly to previous studies. Legacy pollutants confirmed their ongoing presence in Antarctic biota and their levels seemed mostly in line with the past, but with minor variations in some cases, likely due to continued input or release from past reservoirs. PFAS were reported for the first time in penguins from the Ross Sea, highlighting their ubiquity. Although further studies would be useful to increase the sample size and accordingly improve our knowledge on spatial and temporal trends, this study provides interesting data for future monitoring programs within the RS-MPA that will be crucial to test its effectiveness against human impacts.

6.
Int J Circumpolar Health ; 83(1): 2371623, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38985974

ABSTRACT

Arctic populations are amongst the highest exposed populations to long-range transported contaminants globally, with the main exposure pathway being through the diet. Dietary advice is an important immediate means to address potential exposure and help minimize adverse health effects. The objective of this work is to enable easier access to dietary advice and communication guidance on contaminants with a focus on the Arctic. This manuscript is part of a special issue summarizing the Arctic Monitoring and Assessment Programme's Assessment 2021: Human Health in the Arctic. The information was derived with internet searches, and by contacting relevant experts directly. Results include risk communication efforts in European Arctic countries, effectiveness evaluation studies for several Arctic countries, experience of social media use, and the advantages and challenges of using social media in risk communication. We found that current risk communication activities in most Arctic countries emphasize the importance of a nutritious diet. Contaminant-related restrictions are mostly based on mercury; a limited amount of dietary advice is based on other contaminants. While more information on effectiveness evaluation was available, specific information, particularly from Arctic countries other than Canada, is still very limited.


Subject(s)
Environmental Exposure , Arctic Regions , Humans , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Diet , Social Media , Environmental Pollutants , Food Contamination
7.
Environ Res ; 260: 119545, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986798

ABSTRACT

Mercury concentrations ([Hg]) in fish reflect a complex array of interacting biogeochemical and ecological variables. In northern regions where fish are a critical subsistence food, understanding and predicting fish [Hg] can be particularly difficult, largely due to a paucity of comprehensive data associated with the logistical challenges of field sampling. Building on previous work where we elucidated causal relationships between fish [Hg] and a variety of catchment, water quality, and ecological variables in subarctic lakes, we investigated whether using only ratios of catchment area to lake area (CA:LA) can predict [Hg] in northern freshwater fish species. As CA:LA can be sensed remotely, they may be more feasible and practical to obtain than field data in far northern regions. Our study included thirteen remote lakes that represent a CA:LA gradient of 6.2-423.5 within an ∼66,000 km2 subarctic region of Northwest Territories, Canada. We found that size-standardized [Hg] in three widespread fish species, including Lake Whitefish (Coregonus clupeaformis), Walleye (Sander vitreus), and Northern Pike (Esox lucius), were significantly and positively related to CA:LA (p < 0.007, r2 = 67-80%), indicating higher fish [Hg] in smaller lakes surrounded by relatively larger catchments. Our findings provide compelling evidence that remotely sensed CA:LA can be used to predict [Hg] in northern fishes and aid in prioritizing understudied and subsistence fishing lakes of the Canadian subarctic for [Hg] monitoring programs.

8.
Front Microbiol ; 15: 1376844, 2024.
Article in English | MEDLINE | ID: mdl-39015741

ABSTRACT

In nature, methylmercury (MeHg) is primarily generated through microbial metabolism, and the ability of bacteria to methylate Hg(II) depends on both bacterial properties and environmental factors. It is widely known that, as a metabolic analog, molybdate can inhibit the sulfate reduction process and affect the growth and methylation of sulfate-reducing bacteria (SRB). However, after it enters the cell, molybdate can be involved in various intracellular metabolic pathways as a molybdenum cofactor; whether fluctuations in its concentration affect the growth and methylation of aerobic mercury methylating strains remains unknown. To address this gap, aerobic γ-Proteobacteria strains Raoultella terrigena TGRB3 (B3) and Pseudomonas putida TGRB4 (B4), as well as an obligate anaerobic δ-Proteobacteria strain of the SRB Desulfomicrobium escambiense CGMCC 1.3481 (DE), were used as experimental strains. The growth and methylation ability of each strain were analyzed under conditions of 500 ng·L-1 Hg(II), 0 and 21% of oxygen, and 0, 0.25, 0.50, and 1 mM of MoO4 2-. In addition, in order to explore the metabolic specificity of aerobic strains, transcriptomic data of the facultative mercury-methylated strain B3 were further analyzed in an aerobic mercuric environment. The results indicated that: (a) molybdate significantly inhibited the growth of DE, while B3 and B4 exhibited normal growth. (b) Under anaerobic conditions, in DE, the MeHg content decreased significantly with increasing molybdate concentration, while in B3, MeHg production was unaffected. Furthermore, under aerobic conditions, the MeHg productions of B3 and B4 were not influenced by the molybdate concentration. (c) The transcriptomic analysis showed several genes that were annotated as members of the molybdenum oxidoreductase family of B3 and that exhibited significant differential expression. These findings suggest that the differential expression of molybdenum-binding proteins might be related to their involvement in energy metabolism pathways that utilize nitrate and dimethyl sulfoxide as electron acceptors. Aerobic bacteria, such as B3 and B4, might possess distinct Hg(II) biotransformation pathways from anaerobic SRB, rendering their growth and biomethylation abilities unaffected by molybdate.

9.
Mar Pollut Bull ; 205: 116602, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38950512

ABSTRACT

The potential effect of hydrological conditions on distribution and loadings of Hg species was investigated in the microtidal Hyeongsan River Estuary (HRE). Dissolved Hg (DHg) and dissolved methylmercury (DMeHg) from the creek receiving industrial wastes were effectively settled to sediment during the post-typhoon period, while persistent input from the Hg-contaminated creek without settling was observed during the dry periods. The event-based mean approach was applied to explore the hydrological effects on the annual flux of Hg. The largest inputs of DHg and particulate Hg (PHg) were found in the Hg-contaminated creek, and DHg input was higher in the dry than wet periods whereas PHg input was higher in the wet than dry periods. In sediment, Hg and MeHg concentrations decreased after the typhoon, attributed to erosion of surface sediments. Overall, the HRE serves as an effective sink of Hg that reduces the degree of Hg contamination in coastal water.

10.
Front Cardiovasc Med ; 11: 1388313, 2024.
Article in English | MEDLINE | ID: mdl-38957328

ABSTRACT

Background: Hypertension is the most significant global risk factor for mortality and morbidity, making standardized blood pressure measurement crucial. Objectives: To investigate whether the location of blood pressure monitors and the positioning of cuffs yield differing results in blood pressure measurements. Methods: Patients admitted to the Affiliated Hospital of Jiujiang College between 1 January 2022 and 30 June 2023 were enrolled in this study and randomly allocated into four groups. These groups were defined based on the positioning of monitoring equipment as follows: varied placements of cuffs on automatic blood pressure monitors, different heights for mercury column blood pressure monitors, varied heights for automatic blood pressure monitors, and different orientations for the cuff airbag tubes on electrocardiogram monitors. Blood pressure was measured and recorded for each group, followed by an analysis of the variations in readings across the different setups. Results: In the first cohort of 763 individuals, mean systolic blood pressure measured at the standard upper arm site was 128.8 ± 10.5 mmHg, compared to 125.3 ± 10.4 mmHg at the elbow fossa. The corresponding diastolic pressures were 79.2 ± 10.7 and 75.0 ± 10.6 mmHg, respectively. The difference in systolic pressure between these positions was significant at 3.48 ± 3.22 mmHg (t1 = 29.91, p1 < 0.001) and for diastolic pressure at 4.23 ± 1.31 mmHg (t2 = 88.98, p2 < 0.001). For the subsequent groups, involving 253, 312, and 225 individuals, respectively, blood pressure measurements were analyzed and compared across different methods within each group. All p-values exceeded 0.05, indicating no statistically significant differences. Conclusions: Blood pressure values measured at the elbow fossa position using an upper arm-type automatic sphygmomanometer were found to be lower than those measured at the upper arm position, with a difference of 3.48 mmHg for systolic and 4.23 mmHg for diastolic pressures. It is therefore essential to position the cuff correctly, specifically 2-3 cm above the elbow fossa, when utilizing an upper arm-type automatic sphygmomanometer for blood pressure monitoring. Conversely, the placement of the mercury column sphygmomanometer and the automated sphygmomanometer at varying heights had no significant effect on blood pressure readings. Similarly, the orientation of the electrocardiogram's cuffed balloon tube, whether facing upward or downward, did not influence blood pressure measurement outcomes.

11.
Environ Sci Technol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982755

ABSTRACT

Mercury (Hg) researchers have made progress in understanding atmospheric Hg, especially with respect to oxidized Hg (HgII) that can represent 2 to 20% of Hg in the atmosphere. Knowledge developed over the past ∼10 years has pointed to existing challenges with current methods for measuring atmospheric Hg concentrations and the chemical composition of HgII compounds. Because of these challenges, atmospheric Hg experts met to discuss limitations of current methods and paths to overcome them considering ongoing research. Major conclusions included that current methods to measure gaseous oxidized and particulate-bound Hg have limitations, and new methods need to be developed to make these measurements more accurate. Developing analytical methods for measurement of HgII chemistry is challenging. While the ultimate goal is the development of ultrasensitive methods for online detection of HgII directly from ambient air, in the meantime, new surfaces are needed on which HgII can be quantitatively collected and from which it can be reversibly desorbed to determine HgII chemistry. Discussion and identification of current limitations, described here, provide a basis for paths forward. Since the atmosphere is the means by which Hg is globally distributed, accurately calibrated measurements are critical to understanding the Hg biogeochemical cycle.

12.
J Trace Elem Med Biol ; 85: 127493, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38986393

ABSTRACT

The objective of the present study was to retrospectively evaluate hair mercury (Hg) content in reproductive-age women living in Central Russia (Moscow and Moscow region), and to calculate the potential costs of the potential Hg-induced IQ loss in a hypothetical national birth cohort. MATERIALS AND METHODS: A total of 36,263 occupationally non-exposed women aged between 20 and 40 years living in Moscow (n = 30,626) or Moscow region (n = 5637) in the period between 2005 and 2021 participated in this study. Hair Hg content was evaluated with inductively coupled plasma-mass spectrometry (ICP-MS). Hair Hg levels in reproductive-age women were used for assessment of the potential IQ loss and its costs. RESULTS: The results demonstrate that hair Hg content in the periods between 2010 and 2015, and 2016-2021 was significantly lower than that in 2005-2009 by 26 % and 51 %, respectively. The highest hair Hg level was observed in women in 2005 (0.855 µg/g), being more than 2.5-fold higher than the lowest value observed in 2020 (0.328 µg/g). Multiple regression analysis revealed a significant inverse association between the year of analysis and hair Hg content (ß = -0.288; p < 0.001). The calculations demonstrate that in 2005 the costs of IQ loss in children exceeded 1.0 (1.6) billion USD, whereas in 2020 the costs of IQ loss accounted to approximately 0.15 (0.28) billion USD. CONCLUSION: Taken together, our data demonstrate that Hg accumulation in reproductive-age women reduced significantly in Russia from 2005 to 2021 resulting in predicted economic benefits by decreasing the costs of Hg-induced IQ loss.

13.
Sci Total Environ ; 947: 174438, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960193

ABSTRACT

The methylated form of mercury, MeHg, is a neurotoxin that bioaccumulates and biomagnifies through aquatic food webs, reaching high concentrations in top trophic species. Many seabird species are wide-ranging and feed on forage fish, so they can be used as sentinel species to assess the level of mercury in pelagic or coastal food webs because they integrate the signal from large areas and from lower trophic levels. The Gulf of Maine provides habitat for many seabirds, including endangered roseate terns (Sterna dougalii), common terns (Sterna hirundo), and the southernmost breeding population of black guillemots (Cepphus grylle). Hg levels were assessed in down of newly hatched chicks of three seabird species to determine pre-hatching Hg exposure. Stable isotopes (δ15N, δ13C) in down and chick contour feathers grown after hatching were used as indicators of adult female diet in the period before laying the egg (down) and pre-fledging chick diet (contour feathers). Black guillemot down THg concentrations were 10.07 ± 2.88 µg/g (mean ± 1SD), 5.5× higher than common tern down (1.82 ± 0.436 µg /g), and 7.4× higher than roseate tern down (1.37 ± 0.518 µg/g). Black guillemots also had higher down feather δ15N values (15.1 ± 0.52 ‰) compared to common (13.0 ± 0.72 ‰) or roseate terns (12.8 ± 0.25 ‰), and in black guillemot down feathers, higher Hg concentrations were correlated with δ15N, an indicator of trophic level. Repeated testing of the same tissue types across multiple years is needed to monitor THg exposure for seabirds in the Gulf of Maine; additionally, monitoring species composition and Hg presence in prey species of the black guillemot population would help to determine the source of high THg concentrations in this species.

14.
Environ Sci Technol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995999

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) enter the marine food web, accumulate in organisms, and potentially have adverse effects on predators and consumers of seafood. However, evaluations of PFAS in meso-to-apex predators, like sharks, are scarce. This study investigated PFAS occurrence in five shark species from two marine ecosystems with contrasting relative human population densities, the New York Bight (NYB) and the coastal waters of The Bahamas archipelago. The total detected PFAS (∑PFAS) concentrations in muscle tissue ranged from 1.10 to 58.5 ng g-1 wet weight, and perfluorocarboxylic acids (PFCAs) were dominant. Fewer PFAS were detected in Caribbean reef sharks (Carcharhinus perezi) from The Bahamas, and concentrations of those detected were, on average, ∼79% lower than in the NYB sharks. In the NYB, ∑PFAS concentrations followed: common thresher (Alopias vulpinus) > shortfin mako (Isurus oxyrinchus) > sandbar (Carcharhinus plumbeus) > smooth dogfish (Mustelus canis). PFAS precursors/intermediates, such as 2H,2H,3H,3H-perfluorodecanoic acid and perfluorooctanesulfonamide, were only detected in the NYB sharks, suggesting higher ambient concentrations and diversity of PFAS sources in this region. Ultralong-chain PFAS (C ≥ 10) were positively correlated with nitrogen isotope values (δ15N) and total mercury in some species. Our results provide some of the first baseline information on PFAS concentrations in shark species from the northwest Atlantic Ocean, and correlations between PFAS, stable isotopes, and mercury further contextualize the drivers of PFAS occurrence.

15.
Article in English | MEDLINE | ID: mdl-38995373

ABSTRACT

Mercury chloride (ME) is a chemical pollutant commonly found in the environment, which can contribute to undesirable health consequence worldwide. The current study investigated the detrimental impact of ME on the cerebellum and spinal cord tissues in 6-8-week-old female rats. We also evaluated the neuroprotective efficacy of ß-caryophyllene (BC) against spinal and cerebellar changes caused by ME. Thirty-five young Wistar albino rats were randomly chosen and assigned into five groups: control (CO), olive oil (OI), ME, BC, ME + BC. All samples were analysed by means of unbiased stereological, biochemical, immunohistochemical, and histopathological methods. Our biochemical findings showed that SOD level was significantly increased in the ME group compared to the CO group (p < 0.05). We additionally detected a statistically significant decrease in the number of cerebellar Purkinje cells and granular cells, as well as spinal motor neuron in the ME group compared to the CO group (p < 0.05). In the ME + BC group, the number of Purkinje cells, granular cells, and spinal motor neurons was significantly higher compared to the ME group (p < 0.05). Decreased SOD activity in the ME + BC group was also detected than the ME group (p < 0.05). Immunohistochemical (the tumour necrosis factor-alpha (TNF-α)) and histopathological examinations also exhibited crucial information in each of the group. Taken together, ME exposure was associated with neurotoxicity in the cerebellum and spinal cord tissues. BC treatment also mitigated ME-induced neurological alteration, which may imply its potential therapeutic benefits.

16.
Environ Sci Technol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989600

ABSTRACT

Transition-metal dichalcogenides (TMDs) have shown great promise as selective and high-capacity sorbents for Hg(II) removal from water. Yet, their design should consider safe disposal of spent materials, particularly the subsequent formation of methylmercury (MeHg), a highly potent and bioaccumulative neurotoxin. Here, we show that microbial methylation of mercury bound to MoS2 nanosheets (a representative TMD material) is significant under anoxic conditions commonly encountered in landfills. Notably, the methylation potential is highly dependent on the phase compositions of MoS2. MeHg production was higher for 1T MoS2, as mercury bound to this phase primarily exists as surface complexes that are available for ligand exchange. In comparison, mercury on 2H MoS2 occurs largely in the form of precipitates, particularly monovalent mercury minerals (e.g., Hg2MoO4 and Hg2SO4) that are minimally bioavailable. Thus, even though 1T MoS2 is more effective in Hg(II) removal from aqueous solution due to its higher adsorption affinity and reductive ability, it poses a higher risk of MeHg formation after landfill disposal. These findings highlight the critical role of nanoscale surfaces in enriching heavy metals and subsequently regulating their bioavailability and risks and shed light on the safe design of heavy metal sorbent materials through surface structural modulation.

17.
Environ Res ; 259: 119570, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971354

ABSTRACT

Exposure to mercury (Hg) may cause deleterious health effects in wildlife, including bats. Texas produces more Hg pollution than any other state in the United States, yet only one study has examined Hg accumulation in bats. This study measured the concentration of total Hg (THg) in fur (n = 411) collected from ten bat species across 32 sites in eastern and central Texas, USA. Fur THg concentrations were compared among species, and when samples sizes were large enough, between sex and life stage within a species, and the proximity to coal-fired power plants. For all sites combined and species with a sample size ≥8, mean THg concentrations (µg/g dry weight) were greatest in tri-colored bats (Perimyotis subflavus; 6.04), followed by evening bats (Nycticeius humeralis; 5.89), cave myotis (Myotis velifer; 2.11), northern yellow bats (Lasiurus intermedius; 1.85), Brazilian free-tailed bats (Tadarida brasiliensis; 1.03), and red bats (Lasiurus borealis/blossevillii; 0.974), and lowest in hoary bats (Lasiurus cinereus; 0.809). Within a species, fur THg concentrations did not significantly vary between sex for the five examined species (red bat, northern yellow bat, cave myotis, evening bat, Brazilian free-tailed bat) and only between life stage in evening bats. Site variations in fur THg concentrations were observed for evening bats, tri-colored bats, and Brazilian free-tailed bats. Evening bats sampled closer to point sources of Hg pollution had greater fur THg concentrations than individuals sampled further away. Sixteen percent of evening bats and 8.7% of tri-colored bats had a fur THg concentration exceeding the 10 µg/g toxicity threshold level, suggesting that THg exposure may pose a risk to the health of bats in Texas, particularly those residing in east Texas and on the upper Gulf coast. The results of this study can be incorporated into future management and recovery plans for bats in Texas.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124805, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39003827

ABSTRACT

A novel fluorimetric ratiometric probe of green and eco-friendily nitrogen-enriched, oxygen-doped carbon nanodots (Cnanodots) was prepared for the quantitative analysis of mercury(II) (HgII) and nitrofurantoin (Nit) in the environmental sewage. The Cnanodots exhibits dual-emission peaks respectively at 345 and 445 nm under 285 nm excitation, with excitation-independent properties. Unexpectedly, this Cnanodots displays two obvious ratiometric responses to HgII and Nit through decreasing the signal at 345 nm and remaining invariable at 445 nm. Experimental results confirm that the highly sensitive analysis of HgII and Nit are achieved respectively based on matching energy-level electron transfer and inner filter effect mechanisms. The fluorescence (FL) ratiometric intensity of [FL345nm/FL445nm] expresses a good linear relationship with the concentration of HgII in the scope of 0.01-20 µM, while the logarithm of [Log(FL0345nm-FL345nm)] on the quenching degree of the probe by Nit also shows a good linear correlation within the range of 0.01-100 µM. The detection limits were calculated to be 4.14 nM for HgII, and 7.84 nM for Nit. Moreover, recovery experiments of Cnanodots for HgII and Nit sensing in real sewage samples obtained satisfactory results, comfirming the feasibility of practical application.

19.
Environ Sci Technol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012137

ABSTRACT

Atmospheric mercury (Hg) emissions and subsequent transport and deposition are major concerns within protected lands, including national parks, where Hg can bioaccumulate to levels detrimental to human and wildlife health. Despite this risk to biological resources, there is limited understanding of the relative importance of different Hg sources and delivery pathways within the protected regions. Here, we used Hg stable isotope measurements within a single aquatic bioindicator, dragonfly larvae, to determine if these tracers can resolve spatial patterns in Hg sources, delivery mechanisms, and aquatic cycling at a national scale. Mercury isotope values in dragonfly tissues varied among habitat types (e.g., lentic, lotic, and wetland) and geographic location. Photochemical-derived isotope fractionation was habitat-dependent and influenced by factors that impact light penetration directly or indirectly, including dissolved organic matter, canopy cover, and total phosphorus. Strong patterns for Δ200Hg emerged in the western United States, highlighting the relative importance of wet deposition sources in arid regions in contrast to dry deposition delivery in forested regions. This work demonstrates the efficacy of dragonfly larvae as biosentinels for Hg isotope studies due to their ubiquity across freshwater ecosystems and ability to track variation in Hg sources and processing attributed to small-scale habitat and large-scale regional patterns.

20.
J Agric Food Chem ; 72(28): 15985-15997, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959496

ABSTRACT

Liver disease has become an important risk factor for global health. Resveratrol (Res) is a natural polyphenol which is widely found in foods and has a variety of biological activities. This study investigated the role of the microbiota-gut-liver axis in the Res relieving the liver fibrosis induced by inorganic mercury exposure. Twenty-eight mice were divided into four groups (n = 7) and treated with mercuric chloride and/or Res for 24 weeks, respectively. The results showed that Res mitigated the ileum injury induced by inorganic mercury and restrained LPS and alcohol entering the body circulation. Network pharmacological and molecular analyses showed that Res alleviated oxidative stress, metabolism disorders, inflammation, and hepatic stellate cell activation in the liver. In conclusion, Res alleviates liver fibrosis induced by inorganic mercury via activating the Sirt1/PGC-1α signaling pathway and regulating the microbial-gut-liver axis, particularly, increasing the relative enrichment of Bifidobacterium in the intestinal tract.


Subject(s)
Liver Cirrhosis , Liver , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Resveratrol , Signal Transduction , Sirtuin 1 , Animals , Mice , Resveratrol/pharmacology , Signal Transduction/drug effects , Sirtuin 1/metabolism , Sirtuin 1/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/chemically induced , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Liver/drug effects , Liver/metabolism , Mercury/toxicity , Mercury/metabolism , Humans , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...