Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Stem Cell Res Ther ; 15(1): 190, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956621

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) demonstrate a wide range of therapeutic capabilities in the treatment of inflammatory bowel disease (IBD). The intraperitoneal injection of MSCs has exhibited superior therapeutic efficacy on IBD than intravenous injection. Nevertheless, the precise in vivo distribution of MSCs and their biological consequences following intraperitoneal injection remain inadequately understood. Additional studies are required to explore the correlation between MSCs distribution and their biological effects. METHODS: First, the distribution of human umbilical cord MSCs (hUC-MSCs) and the numbers of Treg and Th17 cells in mesenteric lymph nodes (MLNs) were analyzed after intraperitoneal injection of hUC-MSCs. Subsequently, the investigation focused on the levels of transforming growth factor beta1 (TGF-ß1), a key cytokine to the biology of both Treg and Th17 cells, in tissues of mice with colitis, particularly in MLNs. The study also delved into the impact of hUC-MSCs therapy on Treg cell counts in MLNs, as well as the consequence of TGFB1 knockdown hUC-MSCs on the differentiation of Treg cells and the treatment of IBD. RESULTS: The therapeutic effectiveness of intraperitoneally administered hUC-MSCs in the treatment of colitis was found to be significant, which was closely related to their quick migration to MLNs and secretion of TGF-ß1. The abundance of hUC-MSCs in MLNs of colitis mice is much higher than that in other organs even the inflamed sites of colon. Intraperitoneal injection of hUC-MSCs led to a significant increase in the number of Treg cells and a decrease in Th17 cells especially in MLNs. Furthermore, the concentration of TGF-ß1, the key cytokine for Treg differentiation, were also found to be significantly elevated in MLNs after hUC-MSCs treatment. Knockdown of TGFB1 in hUC-MSCs resulted in a noticeable reduction of Treg cells in MLNs and the eventually failure of hUC-MSCs therapy in colitis. CONCLUSIONS: MLNs may be a critical site for the regulatory effect of hUC-MSCs on Treg/Th17 cells and the therapeutic effect on colitis. TGF-ß1 derived from hUC-MSCs promotes local Treg differentiation in MLNs. This study will provide new ideas for the development of MSC-based therapeutic strategies in IBD patients.


Subject(s)
Cell Differentiation , Colitis , Lymph Nodes , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , T-Lymphocytes, Regulatory , Th17 Cells , Transforming Growth Factor beta1 , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Colitis/therapy , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , Mesenchymal Stem Cell Transplantation/methods , Mice , Lymph Nodes/metabolism , Th17 Cells/metabolism , Th17 Cells/immunology , Umbilical Cord/cytology , Mesentery/metabolism , Mice, Inbred C57BL , Mice, Inbred BALB C , Male , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology
2.
J Proteomics ; 296: 105107, 2024 03 30.
Article in English | MEDLINE | ID: mdl-38325729

ABSTRACT

To explore the effect of feeding fermented distiller's grains (FDG) diets on spleen and mesenteric lymph nodes (MLN) immune status and metabolomics in finishing cattle, eighteen Guanling crossbred cattle (18 months old, 250.0 ± 25 kg) were randomly divided into 3 groups: a basal diet (Control) group, an FDG-15% group, and an FDG-30% group (containing 0%, 15% and 30% FDG to partially replace the concentrates, respectively). After 75 days, the spleens and MLN were collected for detection of relative spleen weight, immune parameters, and metabolomic analysis. Compared with the Control group, FDG-30% group significantly increased (P<0.05) the relative spleen weight. In addition, the level of IL-17A in the spleen of the FDG-30% group was significantly higher than that of the FDG-15% group. Metabolomic analysis showed that differential metabolites (VIP>1, P<0.05) of spleen and MLN in FDG-15% and FDG-30% groups are mostly lipids and lipid molecules. KEGG analysis illustrated that choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance were metabolic pathways in spleen shared by FDG-15% group vs.Control group and FDG-30% group vs.Control group, and choline metabolism in cancer was a metabolic pathway in MLN shared by FDG-15% group vs.Control group and FDG-30% group vs.Control group. These results suggest that feeding FDG may promote spleen development by regulating choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance. Additionally, it may affect MLN development by regulating choline metabolism in cancer. SIGNIFICANCE: Fermented distiller's grains (FDG) is a high quality alternative to feed because it is rich in beneficial microorganisms and nutrients. The spleen and mesenteric lymph nodes (MLN) are important peripheral immune organs in animals, whose status reflects the health of the animal. However, there are few reports on the effect of feeding FDG diets on spleen and MLN immune status and metabolomics in domestic animals. In this study, we found that feeding FDG may promote spleen development by regulating choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance metabolic pathways, and may affect MLN development by regulating choline metabolism in cancer. This study extends our understanding of the metabolomics of the spleen and MLN in FDG and helps to further understand of the immunomodulatory effects of the FDG diet.


Subject(s)
Insulin Resistance , Neoplasms , Cattle , Animals , Spleen , Fluorodeoxyglucose F18 , Animal Feed/analysis , Diet/veterinary , Fatty Acids, Unsaturated , Lymph Nodes , Glycerophospholipids , Choline
3.
Int J Pharm ; 648: 123574, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37935311

ABSTRACT

Efficient delivery of antiretroviral agents to lymph nodes is important to decrease the size of the HIV reservoir within the lymphatic system. Lamivudine (3TC) is used in first-line regimens for the treatment of HIV. As a highly hydrophilic small molecule, 3TC is not predicted to associate with chylomicrons and therefore should have negligible uptake into intestinal lymphatics following oral administration. Similarly, negligible amounts of 3TC are predicted to be transported into peripheral lymphatics following subcutaneous (SC) injection due to the faster flow rate of blood in comparison to lymph. In this work, we performed pharmacokinetic and biodistribution studies of 3TC in rats following oral lipid-based, oral lipid-free, SC, and intravenous (IV) administrations. In the oral administration studies, mesenteric lymph nodes (MLNs) had significantly higher 3TC concentrations compared to other lymph nodes, with mean tissue:serum ratios ranging from 1.4 to 2.9. However, cells and chylomicrons found in mesenteric lymph showed low-to-undetectable concentrations. In SC studies, administration-side (right) draining inguinal and popliteal lymph nodes had significantly higher concentrations (tissue:serum ratios as high as 3.2) than corresponding left-side nodes. In IV studies, lymph nodes had lower mean tissue:serum ratios ranging from 0.9 to 1.4. We hypothesize that following oral or SC administration, slower permeation of this hydrophilic molecule into blood capillaries may result in considerable passive 3TC penetration into lymphatic vessels. Further studies will be needed to clarify the mechanism of delivery of 3TC and similar antiretroviral drugs into the lymph nodes.


Subject(s)
Anti-HIV Agents , HIV Infections , Rats , Animals , Lamivudine , Tissue Distribution , Lymph Nodes/metabolism , HIV Infections/drug therapy , Chylomicrons/metabolism , Chylomicrons/therapeutic use , Anti-HIV Agents/pharmacokinetics
4.
Eur J Pharm Biopharm ; 191: 90-102, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37634824

ABSTRACT

The establishment of latent cellular and anatomical viral reservoirs is a major obstacle to achieving a cure for people infected by HIV. Mesenteric lymph nodes (MLNs) are one of the most important anatomical reservoirs of HIV. Suboptimal levels of antiretroviral (ARVs) drugs in these difficult-to-penetrate viral reservoirs is one of the limitations of current antiretroviral therapy (ART) regimens. This study aimed to design and assess highly lipophilic ester prodrugs of dolutegravir (DTG) formulated with long-chain triglyceride (LCT) for delivery of DTG to the viral reservoir in mesenteric lymph and MLNs. A number of alkyl ester prodrugs of DTG were designed based on the predicted affinity to chylomicrons (CM), and the six most promising prodrugs were selected and synthesised. The synthesised prodrugs were further assessed for their intestinal lymphatic transport potential and biotransformation in biorelevant media in vitro and ex vivo. DTG and the most promising prodrug (prodrug 5) were then assessed in pharmacokinetic and biodistribution studies in rats. Although oral administration of 5 mg/kg of unmodified DTG (an allometrically scaled dose from humans) with or without lipids achieved concentrations above protein binding-adjusted IC90 (PA-IC90) (64 ng/mL) in most tissues, the drug was not selectively targeted to MLNs. The combination of lipophilic ester prodrug and LCT-based formulation approach improved the targeting selectivity of DTG to MLNs 4.8-fold compared to unmodified DTG. However, systemic exposure to DTG was limited, most likely due to poor intestinal absorption of the prodrug following oral administration. In vitro lipolysis showed a good correlation between micellar solubilisation of the prodrug and systemic exposure to DTG in rats in vivo. Thus, it is prudent to include in vitro lipolysis in the early assessment of orally administered drugs and prodrugs in lipidic formulations, even when intestinal lymphatic transport is involved in the absorption pathway. Further studies are needed to clarify the underlying mechanisms of low systemic bioavailability of DTG following oral administration of the prodrug and potential ways to overcome this limitation.


Subject(s)
Prodrugs , Humans , Rats , Animals , Prodrugs/pharmacokinetics , Esters , Tissue Distribution , Intestines , Triglycerides/metabolism , Administration, Oral
5.
Brain Behav ; 13(7): e3053, 2023 07.
Article in English | MEDLINE | ID: mdl-37157948

ABSTRACT

INTRODUCTION: Mesenteric lymph nodes (MLNs) are central in immune anatomy. MLNs are associated with the composition of gut microbiota, affecting the central system and immune system. Gut microbiota was found to differ among individuals of different social hierarchies. Nowadays, excision of MLNs is more frequently involved in gastrointestinal surgery; however, the potential side effects of excision of MLNs on social dominance are still unknown. METHODS: MLNs were removed from male mice (7-8 weeks old). Four weeks after MLN removal, social dominance test was performed to investigate social dominance; hippocampal and serum interleukin (IL)-1ß, IL-10, and tumor necrosis factor-alpha (TNF-α) were investigated; and histopathology was used to evaluate local inflammation of the ileum. The composition of the gut microbiota was then examined to understand the possible mechanism, and finally intraperitoneal injection of IL-10 was used to validate the effect of IL-10 on social dominance. RESULTS: There was a decrease in social dominance in the operation group compared to the control group, as well as a decrease in serum and hippocampal IL-10 levels, but no difference in serum and hippocampal IL-1ß and TNF-α levels, and no local inflammation of the ileum after MLN removal. 16S rRNA sequencing analysis showed that the relative abundance of the class Clostridia was decreased in the operation group. This decrease was positively associated with serum IL-10 levels. Furthermore, intraperitoneal injection of IL-10 in a subset of mice increased social dominance. CONCLUSIONS: Our findings suggested that MLNs contributed to maintaining social dominance, which might be associated with reduced IL-10 and the imbalance of specific flora in gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Interleukin-10 , Mice , Male , Animals , Tumor Necrosis Factor-alpha , RNA, Ribosomal, 16S/genetics , Lymph Nodes , Inflammation
6.
Cell Rep ; 42(5): 112431, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37099426

ABSTRACT

While dysbiosis in the gut is implicated in the impaired induction of oral tolerance generated in mesenteric lymph nodes (MesLNs), how dysbiosis affects this process remains unclear. Here, we describe that antibiotic-driven gut dysbiosis causes the dysfunction of CD11c+CD103+ conventional dendritic cells (cDCs) in MesLNs, preventing the establishment of oral tolerance. Deficiency of CD11c+CD103+ cDCs abrogates the generation of regulatory T cells in MesLNs to establish oral tolerance. Antibiotic treatment triggers the intestinal dysbiosis linked to the impaired generation of colony-stimulating factor 2 (Csf2)-producing group 3 innate lymphoid cells (ILC3s) for regulating the tolerogenesis of CD11c+CD103+ cDCs and the reduced expression of tumor necrosis factor (TNF)-like ligand 1A (TL1A) on CD11c+CD103+ cDCs for generating Csf2-producing ILC3s. Thus, antibiotic-driven intestinal dysbiosis leads to the breakdown of crosstalk between CD11c+CD103+ cDCs and ILC3s for maintaining the tolerogenesis of CD11c+CD103+ cDCs in MesLNs, responsible for the failed establishment of oral tolerance.


Subject(s)
Dysbiosis , Immunity, Innate , Humans , Dysbiosis/metabolism , Lymphocytes/metabolism , Integrin alpha Chains/metabolism , Dendritic Cells/metabolism , Anti-Bacterial Agents/metabolism , Intestinal Mucosa/metabolism
7.
Wiad Lek ; 76(1): 115-121, 2023.
Article in English | MEDLINE | ID: mdl-36883499

ABSTRACT

OBJECTIVE: The aim: To analyze the mRNA gene expression level of Aire, Deaf1, Foxp3, Ctla4, Il10, Nlrp3 and distribution of NLRP3+-cells in mesenteric lymph nodes (MLNs) of the offspring of rats with GD, both untreated and treated with glibenclamide and in conditions of insulin oral tolerance formation. PATIENTS AND METHODS: Materials and methods: The study involves 160 male rats, one- or six-month-old. The mRNA genes expression was studied by real time quantitative poly¬merase chain reaction. Structure of Nlrp3+ -cells population was studied by histological sections of MLNs. RESULTS: Results: We observed AIRE gene repression, reduced mRNA levels of Deaf1 and the transcription factor Foxp3 in offspring of rats with GD. This was accompanied by inhibition of IL-10 gene expression and negative costimulatory molecules Ctla4. The development of the experimental GD was accompanied by transcrip¬tional induction of the Nlrp3 gene in MLNs of descendants. The administration of glibenclamide to pregnant female rats with GD inhibited the transcription of the Nlrp3 gene only in one-month-old offspring (5.3-fold) and did not change it in six-month-old animals. In offspring of rats with GD, the density of the NLRP3+-lymphocyte population in the MLNs increased, more pronounced in one-month-old animals. The administration of glibenclamide to pregnant rats with GD reduced the number of NLRP3+ -lymphocytes only in one-month-old offspring (by 33.0 %), whereas this index in six month-old offspring even increased. CONCLUSION: Conclusions: Experimental prenatal hyperglycemia leads to increased proinflammatory signaling and violation of peripheral immunological tolerance formation more pronounced at one month of life.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes, Gestational , Female , Male , Pregnancy , Humans , Animals , Rats , CTLA-4 Antigen , Glyburide , NLR Family, Pyrin Domain-Containing 3 Protein , Immune Tolerance , Forkhead Transcription Factors , DNA-Binding Proteins , Transcription Factors
8.
Immunol Lett ; 251-252: 75-85, 2022 12.
Article in English | MEDLINE | ID: mdl-36332824

ABSTRACT

Immunology is a rapidly evolving field of research with sophisticated models and methods. However, detailed data on total immune cell counts and population distributions remain surprisingly scarce. Nevertheless, recently established quantitative approaches could help us understand the overall complexity of the immune system. Here, we studied a major histocompatibility complexclass II - enhanced green fluorescent protein knock-in mouse model to precisely identify and manipulate lymphoid structures. By combining flow cytometry with light sheet microscopy, we quantified MHC II+ populations of the small intestine and associated individual mesenteric lymph nodes, with 36.7 × 106 cells in lamina propria, 3.0 × 105 cells in scattered lymphoid tissue and 1.1 × 106 cells in Peyer's patches. In addition to these whole-organ cell counts, we assessed approximately 1 × 106 total villi in the small intestine and 450 scattered lymphoid tissue follicles. By direct noninvasive microscopic observation of a naturally fully translucent mouse organ, the cornea, we quantified 12 ± 4 and 35 ± 7 cells/mm2 Langerhans- and macrophage-like populations, respectively. Ultimately, our findings show that flow cytometry with quantitative imaging data analysis enables us to avoid methodological discrepancies while gaining new insights into the relevance of organ-specific quantitative approaches for immunology.


Subject(s)
Lymphoid Tissue , Peyer's Patches , Animals , Mice , Intestinal Mucosa , Intestine, Small , Lymph Nodes , Histocompatibility Antigens Class II/immunology
9.
J Genet Genomics ; 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36356718

ABSTRACT

The immune regulatory effects of probiotics have been widely recognized to be strain-specific. However it is unknown if there is a species- or genus-dependent manner. In this study, we use an in vitro mesenteric lymph node (MLN) model to systematically evaluate the immunostimulatory effects of gut-derived potential probiotics. The results exhibit an obvious species or genus consensus immune response pattern. RNA-seq shows that T cell-dependent B cell activation and antibody responses may be inherent to this model. Of the five tested genera, Akkermansia spp. and Clostridium butyrium directly activate the immune response in vitro, as indicated by the secretion of interleukin-10. Bifidobacterium spp. and Bacteroides spp. activate immune response with the help of stimuli (anti-CD3 and anti-CD28 antibodies). Lactobacillus spp. blunt the immune response with or without stimuli. Further investigations show that the cell surface protein of A. muciniphila AH39, which may serve as a T cell receptor cognate antigen, might evoke an in vitro immune activation. In vivo, oral administration of A. muciniphila AH39 influences the proportion of T regulatory cells (Tregs) in MLNs and the spleen under homeostasis in both specific pathogen-free and germ-free mice. All these findings indicate the distinct effects of different genera or species of potential gut-derived probiotics on intestinal and systemic immunity.

10.
Curr Res Immunol ; 3: 175-185, 2022.
Article in English | MEDLINE | ID: mdl-36045707

ABSTRACT

Lymphocytes regulate the immune response by circulating between the vascular and lymphatic systems. High endothelial venules, HEVs, special blood vessels expressing selective adhesion molecules, such as PNAd and MAdCAM-1, mediate naïve lymphocyte migration from the vasculature into the lymph nodes and Peyer's patches. We have identified that DACH1 is abundantly expressed in developing HEV-type endothelial cells. DACH1 showed a restricted expression pattern in lymph node blood vessels during the late fetal and early neonatal periods, corresponding to HEV development. The proportion of MAdCAM-1+ and CD34+ endothelial cells is reduced in the lymph nodes of neonatal conventional and vascular-specific Dach1-deficient mice. Dach1-deficient lymph nodes in adult mice demonstrated a lower proportion of PNAd+ cells and lower recruitment of intravenously administered lymphocytes from GFP transgenic mice. These findings suggest that DACH1 promotes the expression of HEV-selective adhesion molecules and mediates lymphocyte trafficking across HEVs into lymph nodes.

11.
Saudi Pharm J ; 30(6): 655-668, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35812139

ABSTRACT

Most vaccines approved by regulatory bodies are administered via intramuscular or subcutaneous injections and have shortcomings, such as the risk of needle-associated blood infections, pain and swelling at the injection site. Orally administered vaccines are of interest, as they elicit both systemic and mucosal immunities, in which mucosal immunity would neutralize the mucosa invading pathogen before the onset of an infection. Hence, oral vaccination can eliminate the injection associated adverse effects and enhance the person's compliance. Conventional approaches to manufacturing oral vaccines, such as coacervation, spray drying, and membrane emulsification, tend to alter the structural proteins in vaccines that result from high temperature, organic and toxic solvents during production. Electrohydrodynamic processes, specifically electrospraying, could solve these challenges, as it also modulates antigen release and has a high loading efficiency. This review will highlight the mucosal immunity and biological basis of the gastrointestinal immune system, different oral vaccine delivery approaches, and the application of electrospraying in vaccines development.

12.
Eur J Pharm Biopharm ; 174: 29-34, 2022 May.
Article in English | MEDLINE | ID: mdl-35364254

ABSTRACT

Efficient delivery of highly lipophilic drugs or prodrugs to the mesenteric lymph nodes (MLN) can be achieved following oral administration with lipids. However, it remains unclear which specific MLN can be targeted and to what extent. Moreover, the efficiency of drug delivery to the retroperitoneal lymph nodes (RPLN) has not been assessed. The aim of this study was to assess the distribution of a highly lipophilic model drug cannabidiol (CBD), known to undergo intestinal lymphatic transport following administration with lipids, into specific MLN and RPLN in rats at various time-points post dosing. In vivo studies showed that at 2 h following administration, significantly higher concentrations of CBD were present in the region second from the apex of the MLN chain. From 3 h following administration, concentrations in all MLN were similar. CBD was also found at substantial levels in RPLN. This study demonstrates that drug concentrations in specific MLN are different, at least at the peak of the absorption process. Moreover, in addition to the MLN, the RPLN may also be targeted by oral route of administration, which may have further implications for treatment of a range of diseases.


Subject(s)
Cannabidiol , Prodrugs , Administration, Oral , Animals , Excipients , Lipids , Lymph Nodes , Rats
13.
Bull Exp Biol Med ; 172(4): 467-471, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35175475

ABSTRACT

We studied interrelationships between the cytoarchitectonics of the mesenteric lymph node and the levels of microRNA-21, microRNA-221/222, and microRNA-429 in the lymph, blood serum, and breast tissues in female Wistar rats with chemically induced breast cancer. After polychemotherapy, significant correlations were found between miRNA-221 and the number of lymphoblasts in the germinal centers and between miRNA-222 and the number of lymphoblasts in the germinal centers and macrophages in the medullary cords of the mesenteric lymph nodes.


Subject(s)
MicroRNAs , Neoplasms , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Female , Lymph Nodes/pathology , MicroRNAs/genetics , Neoplasms/pathology , Rats , Rats, Wistar
14.
Front Oncol ; 12: 1060006, 2022.
Article in English | MEDLINE | ID: mdl-36591482

ABSTRACT

Purpose: The most important prognostic factor for survival in ovarian cancer patients is complete cytoreduction. The preoperative prediction of suboptimal cytoreduction, considered as any residual disease at the end of surgery, could prevent futile surgery and morbidity. Here, we aimed to identify markers in the preoperative abdominal CT scans of an unselected cohort of patients with ovarian cancer that are predictive of incomplete cytoreduction. Methods: This is a single-institution retrospective analysis of 105 epithelial ovarian cancer (EOC) patients treated with surgical cytoreduction between 2010 and 2020. Twenty-two variables on preoperative abdominal CT scans were compared to the intraoperative macroscopic findings by Fisher's exact test. Parameters with a significant correlation between intraoperative findings and imaging were analyzed by multivariate binary logistic regression analysis regarding the surgical outcome of complete versus incomplete cytoreduction. Results: Complete cytoreduction (CC), indicated by the absence of macroscopic residual disease, was achieved in 79 (75.2%) of 105 patients and 46 (63.9%) of 72 International Federation of Gynecology and Obstetrics (FIGO) stage III and IV patients. Twenty patients (19%) were incompletely cytoreduced due to miliary carcinomatosis of the small bowel, and six patients (5.7%) had various locations of residual disease. Thirteen variables showed a significant correlation between imaging and surgical findings. Large-volume ascites, absence of numerically increased small lymph nodes at the mesenteric root, and carcinomatosis of the transverse colon in FIGO stage III and IV patients decreased the rate of CC to 26.7% in the multivariate analysis. Conclusion: Large-volume ascites, the absence of numerically increased small lymph nodes at the mesenteric root, and carcinomatosis of the transverse colon are markers in preoperative CT scans predicting a low chance for complete cytoreduction in unselected ovarian cancer patients in a real-world setting.

15.
Acta Pharm Sin B ; 11(9): 2859-2879, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34589401

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease, but none of the current treatments for PD can halt the progress of the disease due to the limited understanding of the pathogenesis. In PD development, the communication between the brain and the gastrointestinal system influenced by gut microbiota is known as microbiota-gut-brain axis. However, the explicit mechanisms of microbiota dysbiosis in PD development have not been well elucidated yet. FLZ, a novel squamosamide derivative, has been proved to be effective in many PD models and is undergoing the phase I clinical trial to treat PD in China. Moreover, our previous pharmacokinetic study revealed that gut microbiota could regulate the absorption of FLZ in vivo. The aims of our study were to assess the protective effects of FLZ treatment on PD and to further explore the underlying microbiota-related mechanisms of PD by using FLZ as a tool. In the current study, chronic oral administration of rotenone was utilized to induce a mouse model to mimic the pathological process of PD. Here we revealed that FLZ treatment alleviated gastrointestinal dysfunctions, motor symptoms, and dopaminergic neuron death in rotenone-challenged mice. 16S rRNA sequencing found that PD-related microbiota alterations induced by rotenone were reversed by FLZ treatment. Remarkably, FLZ administration attenuated intestinal inflammation and gut barrier destruction, which subsequently inhibited systemic inflammation. Eventually, FLZ treatment restored blood-brain barrier structure and suppressed neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra (SN). Further mechanistic research demonstrated that FLZ treatment suppressed the TLR4/MyD88/NF-κB pathway both in the SN and colon. Collectively, FLZ treatment ameliorates microbiota dysbiosis to protect the PD model via inhibiting TLR4 pathway, which contributes to one of the underlying mechanisms beneath its neuroprotective effects. Our research also supports the importance of microbiota-gut-brain axis in PD pathogenesis, suggesting its potential role as a novel therapeutic target for PD treatment.

16.
Immunol Rev ; 303(1): 119-137, 2021 09.
Article in English | MEDLINE | ID: mdl-34046908

ABSTRACT

IgA is produced in large quantities at mucosal surfaces by IgA+ plasma cells (PC), protecting the host from pathogens, and restricting commensal access to the subepithelium. It is becoming increasingly appreciated that IgA+ PC are not constrained to mucosal barrier sites. Rather, IgA+ PC may leave these sites where they provide both host defense and immunoregulatory function. In this review, we will outline how IgA+ PC are generated within the mucosae and how they subsequently migrate to their "classical" effector site, the gut lamina propria. From there we provide examples of IgA+ PC displacement from the gut to other parts of the body, referencing examples during homeostasis and inflammation. Lastly, we will speculate on mechanisms of IgA+ PC displacement to other tissues. Our aim is to provide a new perspective on how IgA+ PC are truly fantastic beasts of the immune system and identify new places to find them.


Subject(s)
Peyer's Patches , Plasma Cells , Immunoglobulin A , Intestinal Mucosa , Lymph Nodes
17.
Acta Pharm Sin B ; 11(4): 1047-1055, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33996416

ABSTRACT

Psoriasis is an autoimmune inflammatory disease, where dendritic cells (DCs) play an important role in its pathogenesis. In our previous work, we have demonstrated that topical delivery of curcumin-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) could treat Imiquimod (IMQ)-induced psoriasis-like mice. The objective of this study is to further elucidate biofate of PLGA NPs after intradermal delivery including DCs uptake, and their further trafficking in psoriasis-like mice model by using fluorescence probes. Two-sized DiO/DiI-loaded PLGA NPs of 50 ± 4.9 nm (S-NPs) and 226 ± 7.8 nm (L-NPs) were fabricated, respectively. In vitro cellular uptake results showed that NPs could be internalized into DCs with intact form, and DCs preferred to uptake larger NPs. Consistently, in vivo study showed that L-NPs were more captured by DCs and NPs were firstly transported to skin-draining lymph nodes (SDLN), then to spleens after 8 h injection, whereas more S-NPs were transported into SDLN and spleens. Moreover, FRET imaging showed more structurally intact L-NPs distributed in skins and lymph nodes. In conclusion, particle size can affect the uptake and trafficking of NPs by DCs in skin and lymphoid system, which needs to be considered in NPs tailing to treat inflammatory skin disease like psoriasis.

18.
Int J Pharm ; 602: 120621, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33892057

ABSTRACT

The introduction of combination antiretroviral therapy (cART) led to substantial improvement in mortality and morbidity of HIV-1 infection. However, the poor penetration of antiretroviral agents to HIV-1 reservoirs limit the ability of the antiretroviral agents to eliminate the virus. Mesenteric lymph nodes (MLNs) are one of the main HIV-1 reservoirs in patients under suppressive cART. Intestinal lymphatic absorption pathway substantially increases the concentration of lipophilic drugs in mesenteric lymph and MLNs when they are co-administered with long-chain triglyceride (LCT). Chylomicrons (CM) play a crucial role in the intestinal lymphatic absorption as they transport drugs to the lymph lacteals rather than blood capillary by forming CM-drug complexes in the enterocytes. Thus, lipophilic antiretroviral drugs could potentially be delivered to HIV-1 reservoirs in MLNs by LCT-based formulation approach. In this study, protease inhibitors (PIs) were initially screened for their potential for intestinal lymphatic targeting using a computational model. The candidates were further assessed for their experimental affinity to CM. Tipranavir (TPV) was the only-candidate with substantial affinity to both artificial and natural CM in vitro and ex vivo. Pharmacokinetics and biodistribution studies were then performed to evaluate the oral bioavailability and intestinal lymphatic targeting of TPV in rats. The results showed similar oral bioavailability of TPV with and without co-administration of LCT vehicle. Although LCT-based formulation led to 3-fold higher concentrations of TPV in mesenteric lymph compared to plasma, the levels of the drug in MLNs were similar to plasma in both LCT-based and lipid-free formulation groups. Thus, LCT-based formulation approach alone was not sufficient for effective delivery of TPV to MLNs. Future efforts should be directed to a combined highly lipophilic prodrugs/lipid-based formulation approach to target TPV, other PIs and potentially other classes of antiretroviral agents to viral reservoirs within the mesenteric lymphatic system.


Subject(s)
HIV-1 , Administration, Oral , Animals , Humans , Lymph Nodes/metabolism , Pyridines , Pyrones , Rats , Sulfonamides , Tissue Distribution , Triglycerides
19.
J Crohns Colitis ; 15(4): 678-686, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-32949122

ABSTRACT

Crohn's disease [CD] is an inflammatory bowel disease of unknown aetiology. During recent decades, significant technological advances led to development of -omic datasets allowing a detailed description of the disease. Unfortunately these have not, to date, resolved the question of the aetiology of CD. Thus, it may be necessary to [re]consider hypothesis-driven approaches to resolve the aetiology of CD. According to the cold chain hypothesis, the development of industrial and domestic refrigeration has led to frequent exposure of human populations to bacteria capable of growing in the cold. These bacteria, at low levels of exposure, particularly those of the genus Yersinia, are believed to be capable of inducing exacerbated inflammation of the intestine in genetically predisposed subjects. We discuss the consistency of this working hypothesis in light of recent data from epidemiological, clinical, pathological, microbiological, and molecular studies.


Subject(s)
Crohn Disease/microbiology , Food Microbiology , Refrigeration , Yersinia/pathogenicity , Causality , Crohn Disease/genetics , Genetic Predisposition to Disease , Humans
20.
Front Cell Infect Microbiol ; 11: 783049, 2021.
Article in English | MEDLINE | ID: mdl-35111693

ABSTRACT

BACKGROUND: Gut-microbiota-brain axis links the relationship between intestinal microbiota and sepsis-associated encephalopathy (SAE). However, the key mediators between them remain unclear. METHODS: Memory test was determined by Water maze. Intestinal flora was measured by 16S RNA sequencing. Neurotransmitter was detected by high-performance liquid chromatography (HPLC). Histopathology was determined by H&E, immunofluorescence (IF), and terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) staining. Flow cytometry was employed to determine the proportion of macrophages. RESULTS: Fecal microbiota transplantation (FMT) relieved hippocampus impairment of SAE rats by inhibiting inflammation cytokine secretion, the expression of IBA-1 and neurotransmitter disturbance, and cell apoptosis and autophagy, accompanied by the reduced M1 polarization and M1 pro-inflammation factors produced by macrophages in mesenteric lymph nodes (MLNs). Actually, M1 polarization in SAE rats depended on intestinal epithelial cell (IEC)-derived exosome. GW4869-initiated inhibition of exosome secretion notably abolished M1 polarization and the secretion of IL-1ß. However, GW4869-mediated improvement of hippocampus impairment was counteracted by the delivery of recombinant interleukin (IL)-1ß to hippocampus. Mechanistically, IEC-derived exosome induced the excessive circulating IL-1ß produced by CP-R048 macrophages, which subsequently induced damage and apoptosis of hippocampal neurons H19-7 in an autophagy-dependent manner. And reactivation of autophagy facilitates intestinal IL-1ß-mediated hippocampal neuron injury. CONCLUSION: Collectively, intestinal flora disturbance induced the exosome release of IECs, which subsequently caused M1 polarization in MLNs and the accumulation of circulating IL-1ß. Circulating IL-1ß promoted the damage and apoptosis of neurons in an autophagy-dependent manner. Possibly, targeting intestinal flora or IEC-derived exosome contributes to the treatment of SAE.


Subject(s)
Exosomes , Sepsis-Associated Encephalopathy , Animals , Epithelial Cells , Fecal Microbiota Transplantation , Neurons , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...